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Observability-based Optimization of Coordinated
Sampling Trajectories for Flowfield Estimation

Levi DeVries, Sharanya J. Majumdar, and Derek A. Paley

Abstract— Autonomous vehicles are effective environ-
mental sampling platforms whose sampling performance
can be optimized by path-planning algorithms that drive
vehicles to specific regions of the operational domain con-
taining the most informative data. In this paper, we apply
tools from nonlinear observability, nonlinear control, and
Bayesian estimation to derive a multi-vehicle control
algorithm that steers vehicles to an optimal sampling
formation in an estimated flowfield. Sampling trajectories
are optimized using the empirical observability gramian.
We reconstruct the parameters of the flowfield from
noisy flow measurements collected along the sampling
trajectories using a recursive Bayesian filter.

I. INTRODUCTION
An autonomous vehicle sampling in an environ-

ment inaccessible to a manned vehicle can shed
light on physical processes in the atmosphere and
ocean [1],[2],[3]. However, there exists a need to
optimize vehicle sampling trajectories such that
they provide the most informative data. For ex-
ample, large-scale severe weather systems such as
hurricanes span tens to hundreds of thousands of
square kilometers [4], of which even the longest
endurance hurricane-sampling vehicle covers just
a small fraction. Automatic control algorithms can
steer multiple vehicles to coordinated sampling tra-
jectories that are designed for data collection. This
paper utilizes tools from nonlinear observability
to optimize coordinated sampling trajectories for
flowfield estimation. The estimator performance is
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improved by maximizing the observability of flow-
field parameters over a candidate set of coordinated
trajectories [5].

This work falls within the general context of
(mobile) sensor placement for estimation of an un-
known field [6],[7],[8]. The goal is to place a finite
number of sensors in a possibly mobile configu-
ration that maximizes an associated cost function.
We use the empirical observability gramian [7], [9]
to evaluate candidate sampling trajectories and im-
plement a recursive Bayesian filter to estimate an
unknown flowfield from noisy measurements col-
lected along the trajectories. The empirical observ-
ability gramian has been previously employed for
sensor placement in monitoring chemical reactions
[7] and for model reduction of high-dimensional
nonlinear systems [10]. Related work [6] provides
placement strategies for static sensors in order to
achieve optimal coverage of a time-invariant field.
In distributed parameter estimation [11], [12], and
[13], one assumes the unknown field follows a
known process model such as a partial differential
equation and estimates the unknown parameters
associated with the model. An alternate strategy
using sensor platforms with time-varying com-
munication is a distributed information-consensus
filter [14].

Techniques exist to estimate wind fields using
unmanned aircraft. The authors in [15] imple-
mented an unscented Kalman filter to estimate
wind disturbances affecting microscale unmanned
aerial vehicles. In [16] the authors provide a
method for estimating wind fields for small and
mini unmanned aerial vehicles. At the macroscale,
the authors in [17] implemented an extended
Kalman filter to provide wind shear estimates for
use in feedback control of aircraft. In [8] the au-
thors used Gaussian process regression to estimate
a wind field for exploration and exploitation by



gliding UAV’s.
A tool well suited to evaluate the effectiveness

of candidate sensor measurements is nonlinear
observability. The authors in [9] used the nonlinear
observability rank condition [18] to evaluate the
effectiveness of Lagrangian drifter sensors for es-
timating point vortex flows, whereas the authors in
[19] assimilated Lagrangian drifter measurements
in an extended Kalman filter to estimate ocean
flows. In this paper we calculate the empirical ob-
servability gramian resulting from measurements
collected by each sampling vehicle. The empirical
observability gramian is proportional to the Fisher
information matrix [20], differing by only the
measurement noise covariance. The singular values
of the observability gramian provide a measure of
flowfield observability along a candidate sampling
trajectory. Observability of the flowfield is opti-
mized here by maximizing the smallest singular
value of the observability gramian over a set of
candidate trajectories, although other metrics exist
[7], [20].

We take the following technical approach to
design an observability-based sampling algorithm
and apply it to sampling an idealized vortex model.
We assume the vehicles collect noisy measure-
ments of the flowfield and implement a recursive
Bayesian filter to estimate the flowfield parameters.
Using the estimated flowfield, we calculate the
smallest singular value of the empirical observ-
ability gramian to optimize sampling trajectories
over a given time interval. The optimal sampling
trajectories and the estimated flowfield are then
implemented in a decentralized nonlinear, multi-
vehicle control algorithm to steer vehicles along
optimized sampling trajectories, which in this case
are circular formations.

The contributions of this work are (1) a frame-
work to evaluate candidate sampling trajectories in
a time-invariant flowfield using flowfield parameter
observability as a scoring metric; (2) a decen-
tralized multi-vehicle control to steer vehicles to
circular formations that are a specified distance
from a reference position, which constitute the set
of candidate sampling trajectories; and (3) a multi-
vehicle control algorithm using nonlinear observ-
ability and recursive Bayesian estimation to recon-
struct a time-invariant flowfield from noisy flow

measurements. The contributions are illustrated via
numerical simulations in a Rankine vortex flow.

Section II describes a self-propelled particle
model of vehicles in a moderate flowfield; nonlin-
ear observability measures; and recursive Bayesian
estimation. Section III provides a decentralized
multi-vehicle control that steers vehicles to circular
formations at a specified distance from the origin.
In addition, Section III applies nonlinear observ-
ability measures to evaluate candidate sampling
trajectories in a parameterized flowfield. Section
IV presents a multi-vehicle control algorithm for
optimal sampling of a parameterized flowfield and
provides numerical simulations of the theoretical
results. Section V summarizes the paper and de-
scribes ongoing research.

II. CONTROL OBJECTIVE AND BACKGROUND

The general control problem we address here
is the optimization of an observer-based feedback
controller using observability measures as a de-
sign metric. We assume there is a fleet of N
sampling vehicles collecting measurements of a
known, time-invariant flowfield characterized by
M parameters. The vehicles are steered by a de-
centralized feedback controller parameterized by
Q control parameters. The overall system, which
may be nonlinear, is1

ż = g(z,u(z,Ω̂ΩΩ; χχχ);ΩΩΩ)

ααα = h(z,u(z,Ω̂ΩΩ; χχχ);ΩΩΩ),
(1)

where z contains the states of all N vehicles. The
dynamic control u is a function of the vehicle
states z augmented by the estimated flowfield
parameters Ω̂ΩΩ∈RM and parameterized by χχχ ∈RQ.
The function g(·) represents the vehicle dynamics
that are affected by the flow and therefore depend
on the flowfield parameters ΩΩΩ. The outputs ααα are
measurements of the flowfield.

When we assume vehicles collect noisy mea-
surements of the flow, an observer is implemented
to provide estimates of the flowfield parameters Ω̂ΩΩ.
The observer dynamics are

˙̂
ΩΩΩ = w(z,Ω̂ΩΩ, α̃αα), (2)

1The notation g(a,b;α,β ) represents a function g(·) that depends
on the state variables a,b and the parameters α and β . We use
bold fonts to represent either a column matrix, e.g., of vehicle
positions r = [r1 r2 ... rN ]

T , or a set of parameters, e.g., ΩΩΩ =
(Ω1,Ω2, . . . ,ΩM).
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Fig. 1. Model of (a) flow-relative velocity and (b) total velocity.

where α̃αα = ααα + ηηη are measurements corrupted
by noise ηηη . In this paper we implement (2) in
discrete time using a Bayesian filter. The goal is
to optimize the control parameters χχχ using the
flowfield estimates Ω̂ΩΩ such that the Ω̂ΩΩ converges
to ΩΩΩ.

The remainder of this section reviews contribu-
tions from prior work that are utilized in Sections
III and IV. First, we review a planar model of
self-propelled particle motion in a moderate time-
invariant flowfield in which the flow magnitude is
strictly less than the vehicle speed. Then we define
measures of the observability of nonlinear systems.
Finally, we describe a framework for recursive
Bayesian estimation of a time-invariant flowfield.

A. Vehicle Dynamics in a Moderate Flowfield

This section reviews a two-dimensional model
of self-propelled particle motion in a moder-
ate flowfield [21],[22],[23],[24],[25],[26], in which
each particle assumes control of its turn rate
relative to the flow. Control of the total-velocity
turn rate is assumed by utilizing a coordinate
transformation [21] that is nonsingular as long as
the flow speed does not exceed the vehicle speed.

Consider a collection of N planar Newtonian
particles each able to control its turn rate. The
kth particle’s position with respect to a ground-
fixed inertial reference frame I = (O,~e1,~e2) is
represented by the vector ~rk = xk~e1 + yk~e2 ∈ R2

as shown in Figure 1(a). For ||~rk|| 6= 0 the polar
coordinates (rk,φk) of the kth particle’s position
are

rk =
√

x2
k + y2

k (3)

φk = tan−1(yk/xk). (4)

Each particle’s motion is controlled by a gyro-
scopic steering force normal to its velocity ~̇rk =
ẋk~e1+ ẏk~e2. In the absence of flow, ~̇rk has constant
magnitude, which we assume to be unity without
loss of generality. The orientation of the kth parti-
cle’s velocity is a point θk on the unit circle, such
that ẋk = cosθk and ẏk = sinθk. The decentralized
steering control θ̇k = uk(r,θθθ ; χχχ) is designed using
state-feedback control when the states are known
and observer-based feedback otherwise. The flow-
free equations of motion of the kth particle are [22]

ẋk = cosθk
ẏk = sinθk
θ̇k = uk.

(5)

Next we augment the model (5) by including
a time-invariant, spatially varying flowfield ~fk =
fx,k~e1+ fy,k~e2 whose magnitude is strictly less than
one. The flowfield is parameterized by ΩΩΩ ∈ RM,
i.e.,

fx,k = fx(xk,yk;ΩΩΩ) ∈ R
fy,k = fy(xk,yk;ΩΩΩ) ∈ R. (6)

For example, consider the following Rankine vor-
tex model [9], for which ΩΩΩ = (rmax,vmax,µ):

fx,k =

{
−vmax (rk/rmax)sinφk, 0<rk<rmax
−vmax (rk/rmax)

−µsinφk, rk>rmax,
(7)

and

fy,k =

{
vmax (rk/rmax)cosφk, 0<rk<rmax
vmax (rk/rmax)

−µcosφk, rk>rmax.
(8)

In the presence of flowfield ~fk, each particle’s
velocity is represented by the vector sum of its
velocity relative to the flow and the flow velocity
relative to the ground, as shown in Figure 1(b).
The equations of motion of the kth particle become
[21], [27]

ẋk = cosθk + fx,k
ẏk = sinθk + fy,k
θ̇k = uk.

(9)

For the purpose of path planning in a flowfield,
we desire control of the inertial velocity rather than
the velocity relative to the flow. For this reason, we
define the magnitude and orientation of the total
velocity

sk ,
√

ẋ2
k + ẏ2

k (10)

γk , tan−1(ẏk/ẋk), (11)



such that, from Figure 1(b),

sk cosγk = cosθk + fx,k (12)
sk sinγk = sinθk + fy,k. (13)

The time derivative of (12) and (13) is [21]

ṡk cosγk− skγ̇k sinγk = −θ̇k sinθk + ḟx,k (14)
ṡk sinγk− skγ̇k cosγk = θ̇k cosθk + ḟy,k, (15)

where ḟi,k =
∂ fi,k
∂xk

ẋk +
∂ fi,k
∂yk

ẏk. Solving for ṡk in (14)
and substituting the result into (15) to solve for γ̇k
yields [21]

γ̇k = (1− s−1
k ( fx,k cosγk + fy,k sinγk))uk

+( ḟy,k cosγk− ḟx,k sinγk), νk,
(16)

where νk is the steering control of the orientation
of the total velocity. From (12), (13), and (16) we
achieve the equations of motion for the kth particle
in a flowfield subject to steering control νk [21]:

ẋk = sk cosγk
ẏk = sk sinγk
γ̇k = νk, k = 1, . . . ,N.

(17)

In a moderate flow, the transformation from νk to
uk (16) is nonsingular and the speed is [21]

sk = fx,k cosγk + fy,k sinγk

+
√

1− ( fy,k cosγk− fx,k sinγk)2.
(18)

The extension to a strong flowfield, i.e., one in
which the flow magnitude can exceed the particle
speed, is possible [27] but outside the scope of this
paper where we assume a moderate flow.

B. Unobservability Measures

In linear systems theory, the singular values σ j
of the observability gramian determine the relative
ease in determining the initial states of a linear sys-
tem from the outputs generated over a time interval
[28, p. 125-126]. Large singular values imply that
it is easy to invert the mapping from outputs to
initial states [9]. The reciprocal of the smallest
singular value σmin of the observability gramian,
called the unobservability index, is a measure of
the relative ease in which an estimation scheme
can determine the initial state of a system [9]; large
values imply that the system is difficult to observe,

whereas small values indicate the opposite. The
unobservability index is [9]

ξ , 1/σmin. (19)

In stochastic estimation, a large value of ξ

implies that noise in the measurements will sig-
nificantly impact the estimate error. Conversely, a
small value of ξ implies that the estimation error
may not be susceptible to measurement noise [9].

While the unobservability index is used to eval-
uate candidate sampling trajectories in this work, it
is one of many metrics providing a measure of ob-
servability. For instance, the estimation condition
number [7], [9]

λ = σmax
σmin

= σmaxξ , (20)

reflects the degree of variability in the observabil-
ity of the system. A large λ implies that a small
perturbation in one direction may have a more
pronounced effect on the output than a large per-
turbation in another direction, which implies that
the observability of the system is sensitive to the
perturbation direction and the estimation problem
may be ill-conditioned [9]. Other metrics of the
observability gramian include the trace, maximum
singular value, and determinant [7], [20]. In this
paper we choose the unobservability index (19)
since it measures the least observable state.

Using the observability gramian on a nonlin-
ear system to compute the unobservability index
and the estimation condition number requires lin-
earization about an equilibrium point. However,
linearization may not adequately capture the input-
output behavior of the nonlinear system over a
desired operating region. Moreover, nonlinear ob-
servability analysis [18], [29] can be difficult to
apply. One alternative for determining the ob-
servability of a nonlinear system is to use the
empirical observability gramian [9], also known as
the observability covariance matrix [10],[30]. The
empirical observability gramian is useful because
it approximates the input-output behavior of a non-
linear system and is equivalent to the observability
gramian for a linear system.

The empirical observability gramian maps the
input-to-state and state-to-output behavior of a
nonlinear system more accurately than the observ-
ability gramian found by linearization [30]. It is



defined as follows. Let εiei be a small displacement
of the initial parameter along the ith unit vector ei ∈
RM and let ΩΩΩ ∈RM be the initial parameter state.
The (i, j)th component of the M ×M empirical
observability gramian WO is [9]

WO(i, j) = 1
4εiε j

∫ T
0
[
ααα+i(τ)−ααα−i(τ)

]T[
ααα+ j(τ)−ααα− j(τ)

]
dτ,

i = 1, . . . ,M, j = 1, . . . ,M,
(21)

where ΩΩΩ
±i = ΩΩΩ± εiei, produces the output ααα±i =

h(z,u;ΩΩΩ
±i). Measures of the observability of a

nonlinear system can be obtained by applying (19)
and (20) to WO.

Returning to the Rankine vortex example, as-
sume each vehicle collects a (noise-free) flow
measurement

αααk = [ fx,k, fy,k]
T = ~fk ∈ R2. (22)

such that ααα = [αααT
1 ,ααα

T
2 , . . . ,ααα

T
N ]

T ∈R2N . The equa-
tions of motion in (1) with ααα given by (22) produce
a nonlinear input-output system.

Calculating the empirical observability gramian
via integration of (1) with g(·) given by (17)
reveals the input-output observability of the flow-
field parameters ΩΩΩ over a given particle trajectory.
The steering control input νk dictates the sampling
trajectory and is designed to stabilize optimal sam-
pling trajectories. The perturbation size is chosen
to be a fixed percentage of the nominal state size.
For example, a 20% perturbation for rmax = 30 is
ε1 = 6.

C. Bayesian Estimation of a Parameterized Flow-
field

We adopt a nonlinear estimation scheme to en-
able each particle to estimate the unknown parame-
ters of a model flowfield. These estimates are used
by each particle to compute its steering control. In
this section we describe a recursive Bayesian filter
formulation for parameter estimation.

Estimation of a spatiotemporal flowfield ~f of the
form (6) using noisy observations of the flow can
be accomplished by assimilating the observations
using a recursive Bayesian filter. For linear systems
with Gaussian noise, the optimal Bayesian filter is
the Kalman filter, whereas for nonlinear systems
with nonlinear noise models, a common Bayesian
filter is a particle filter [31]. In either case, the flow

estimate is encapsulated in a state vector, which for
example may contain the flow velocity ~f at each
one of P grid points. An alternative we pursue is
a state vector ΩΩΩ that contains only a set of M� P
parameters, from which the flowfield ~f can be re-
constructed. For example, the model (6) is defined
by the M = 3 parameters ΩΩΩ = (rmax,vmax,µ), such
that the flowfield at~rk is ~fk(ΩΩΩ) = ~f (xk,yk;ΩΩΩ). This
representation provides a significant reduction in
computations, making it attractive for use in an
optimal sampling scheme. Note this representation
is only possible for a parameterized flowfield.

The discrete-time Bayesian formalism proceeds
as follows [31]. As in (2), let Ω̂ΩΩ(t) denote the
state estimate at time t, α̃ααk(t) denote the kth

vehicle’s noisy observation at time t, and Ak(t) =
{α̃ααk(1), . . . , α̃ααk(t)} denote the set of observations
up to time t. The posterior probability of the state
Ω̂ΩΩ(t) given Ak(t) is

p(Ω̂ΩΩ(t)|Ak(t)) = β p(α̃ααk(t)|ΩΩΩ(t))
p(Ω̂ΩΩ(t)|Ak(t−∆t)),

(23)

where the coefficient β is chosen so that
p(Ω̂ΩΩ(t)|Ak(t)) has unit integral over the state
space. The conditional probability p(α̃ααk(t)|ΩΩΩ(t))
is a likelihood function that represents the prob-
ability that the state ΩΩΩ(t) generated the observa-
tion α̃ααk(t). Note that p(Ω̂ΩΩ(0)|Ak(0)) is the prior
probability, which we assume to be uniform in
the absence of any information other than the
parameter lower and upper bounds.

Returning to the Rankine vortex example, sup-
pose the kth particle obtains the following noisy
measurement of the flow at time t and location rk:

α̃ααk(t) = [ fx,k, fy,k]
T +[ηx,k(t),ηy,k(t)]T ∈ R2,

where the noise ηi,k(t) ∼ N (0,σ2
i ) is normally

distributed with zero mean and variance σ2
i for

i = x,y. For each point ΩΩΩ(t) in the M-dimensional
state space, we choose the likelihood function to
be a multi-variate Gaussian, i.e.,

p(α̃ααk(t)|ΩΩΩ(t)) = 1
2π

exp[−1
2 [~fk(ΩΩΩ(t))− α̃ααk(t)]T

Σ−1[~fk(ΩΩΩ(t))− α̃ααk(t)]],
(24)

where Σ = diag(σ2
x ,σ

2
y ).

Assuming measurements are taken at each time
step, the conditional probability density of the state



Ω̂ΩΩ(t) is updated with the equations of motion of
the kth particle in an Euler integration scheme such
that the dynamics in (2) take the discrete form

p(Ω̂ΩΩ(t)|A(t))=β

(
N

∏
k=1

p(α̃ααk(t)|ΩΩΩ(t))

)
p(Ω̂ΩΩ(t)|A(t−∆t)),

(25)

where p(α̃ααk(t)|ΩΩΩ(t)) is given by (24) and
p(Ω̂ΩΩ(t)|AAA(t−∆t)) is the prior probability. We take
the point in parameter space corresponding to
the maximum of the posterior probability density
p(Ω̂ΩΩ(t)|A(t)) to be the best estimate of the flow-
field parameters Ω̂ΩΩ. Note that (25) assumes that
the kth particle communicates its measurement to
either a central hub or to every other particle such
that all vehicles have knowledge of p(Ω̂ΩΩ(t)|A(t)).
Distributed versions of (25) are possible [14], but
beyond the scope of this paper.

III. DECENTRALIZED MULTI-VEHICLE
CONTROL AND OBSERVABILITY-BASED

SAMPLING

In this section we derive controllers to stabilize
multi-vehicle sampling trajectories that optimize
the observability of a parameterized flowfield.
Sampling trajectories are chosen from a family
of sampling formations parameterized by χχχ . For
example, the family of circular sampling patterns
is parameterized by the position of the circle’s
center and its radius. For flowfields with azimuthal
symmetry such as a Rankine vortex model (7)–
(8), the azimuth of the circular pattern’s center
is irrelevant and the family of circular formations
is parameterized by the distance ρ of the center
from the origin and the radius of the circle |ω0|−1.
This section presents a decentralized multi-vehicle
control algorithm to steer vehicles to circular for-
mations parameterized by χχχ = (ρ, |ω0|−1). The
empirical observability gramian is used to evaluate
the family of candidate sampling trajectories and
an observability-based algorithm is presented to
steer vehicles to optimal sampling formations.

A. Stabilization of Circular Formations with Arbi-
trary Azimuth

This subsection uses Lyapunov-based control
techniques [32] to derive a decentralized con-
trol algorithm that steers vehicles to a circular

formation parameterized by χχχ = (ρ, |ω0|−1). The
control laws are derived assuming the particles
travel through a known, time-invariant flowfield.
We relax the known-flowfield assumption in Sec-
tion IV, using instead flowfield estimates provided
by a recursive Bayesian filter.

A particle traveling in a circle rotates about a
fixed point in space. Let the instantaneous circle
center [21], [22] be defined by

~ck =~rk +(ω0sk)
−1[−ẏk, ẋk]

T = [cx,k,cy,k]
T ∈ R2,

(26)
where |ω0|−1 is the radius of the circle. From the
time derivative of (26),

~̇ck =~̇rk(1− (ω0sk)
−1νk), (27)

we see that ~̇ck = 0 for the control νk = ω0sk,
which steers the kth particle about a fixed center
~ck =~ck(0). The following control law forces the
kth particle to converge to a circular trajectory in
which the steady-state value ||~ck||= ρ is specified.

Theorem 1: The particle model (17) with con-
trol

νk = ω0sk[1+K(~̇rT
k~rk)(1−ρ||~ck||−1)], K > 0,

(28)
stabilizes the set of circular trajectories with radius
|ω0|−1 centered at distance ρ from the origin of
reference frame I .

Proof: Consider the potential function

V =
N

∑
k=1

1
2
(||~ck||−ρ)2, (29)

where ||~ck|| =
√
~cT

k~ck is the distance of circle
center k from origin O. The time derivative of (29)
along solutions to the equations of motion (17) is

V̇ =
N

∑
k=1

(1−ρ||~ck||−1)(~̇rT
k~rk)(1− (ω0sk)

−1
νk).

(30)
Substituting the control (28) into (30) gives

V̇ = −K
N

∑
k=1

[~̇rT
k~rk(1−ρ||~ck||−1)]2 ≤ 0. (31)

Equation (31) implies that V̇ is negative semi-
definite with V̇ = 0 occurring when ||~ck|| = ρ or
~̇rT

k~rk = 0 for all k, which occurs when ||~ck|| =
0 since ~̇rk 6= 0. The largest invariant set Λ for
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Fig. 2. Simulation of N = 6 particles in a Rankine vortex with (a)
control algorithm (28) and (b) steering control algorithm (33).

which V̇ = 0 contains circular trajectories with
||~ck|| = ρ or ||~ck|| = 0. The invariance principle
[32] stipulates that particle k converges to Λ.

Figure 2(a) shows a simulation of the control
law (28) with N = 6 particles in a Rankine vortex
described by (7)–(8) with rmax = 30, vmax = 0.7,
and µ = 0.6. Note that each particle converges to
a circular trajectory of radius |ω0|−1 = 10 whose
center lies on the dashed line corresponding to ρ =
30. The control gain is K = 0.1.

To guarantee particle convergence to a single
circular formation whose center is a desired dis-
tance from the origin, we utilize a composite po-
tential. Let ~c = [~c1,~c2, . . . ,~cN ]

T ∈ RN×2. Consider
the potential

V =
1
2

N

∑
k=1

[
~cT

k (Pk~c)T +ak0(||ck||−ρ)2] , (32)

where ak0 = 1 if the kth particle is informed of
ρ and zero otherwise and Pk is the kth row of the
N×N projection matrix P= IN×N−(1/N)11T . We
have the following result.

Theorem 2: The particle model (17) with con-
trol

νk = ω0sk(1+K[~̇rT
k (Pk~c)T

+ak0(1−ρ||~ck||−1)~̇rT
k~rk])

(33)

stabilizes the set of circular formations with radius
|ω0|−1 whose center is ρ units from the origin.

Proof: The time derivative of (32) along
solutions of (17) is

V̇ =
N

∑
k=1

[
~̇rT

k (Pk~c)T +ak0(1−ρ||~ck||−1)~̇rT
k~rk
]

(1− (ω0sk)
−1

νk).

(34)

Substituting (33) into (34) gives V̇ ≤ 0 since

V̇=−K
N

∑
k=1

[
~̇rT

k (Pk~c)T+ak0(1−ρ||~ck||−1)~̇rT
k~rk
]2
.

(35)
Equation (35) implies that the vehicles converge
to the largest invariant set Λ for which

~̇rT
k (Pk~c)T +ak0(1−ρ||~ck||−1)~̇rT

k~rk ≡ 0. (36)

Since ||~̇rk|| 6= 0, (36) is satisfied only when Pk~c= 0
and ||~ck|| = ρ . The quantity Pk~c = 0 only when
~ck = ~c j for all pairs j,k [22]. By the invariance
principle [32] solutions converge to Λ, which con-
tains the desired set of circular formations.

Simulation of the control algorithm (33) with
N = 6 particles in a Rankine vortex is shown in
Figure 2(b) with |ω0|−1 = 10, K = 0.1, a1,0 =
a2,0 = a3,0 = 1, and a4,0 = a5,0 = a6,0 = 0. The
particles converge to a circular formation with
distance ρ = 30 from the origin, shown by the
dashed line.

B. Observability-based Optimization of Control
Parameters

In this section we present an algorithm that uses
nonlinear observability to optimize the parametric
inputs to a coordinated sampling formation. In
many environmental sampling applications, vehi-
cles are driven in repeating patterns to collect mea-
surements within a spatiotemporal volume [33].
The control algorithms driving vehicles to these
formations require a set of parameter inputs χχχ ,
such as χχχ = (ρ, |ω0|−1) for the circular formations
in Section III-A. Here we use the unobservability
index (19) as a metric to evaluate the ability of
members of the formation parameter space χχχ to
observe a flowfield parameterized by ΩΩΩ.

In a known flowfield, a set of sampling param-
eters χχχ produces a corresponding unobservability
index ξ (χχχ) calculated from (1), (19), and (21). The
optimal trajectory is found by optimizing over the
space of sampling parameters

χχχ∗ = argmin ξ (χχχ). (37)

Since this optimization technique iterates only over
the low-dimensional sampling parameter space,
rather than the space of all possible sampling
trajectories, it can be computed rapidly even by
an exhaustive search.
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Fig. 3. (a) Unobservability index versus distance of circular
sampling formation from vortex origin. (b) A sample of controlled
trajectories. The red circle centers at y = 40 and y = 60 correspond
to the red data points of (a).

Figure 3 shows analysis of circular trajec-
tory optimization in a Rankine vortex (7)–(8)
parameterized by the flowfield parameters ΩΩΩ =
(rmax,vmax,µ). The sampling parameter space χχχ =
(ρ,10) is the set of circular formation center
distances ρ from the origin, assuming circular for-
mations of radius |ω0|−1 = 10. Figure 3(a) shows
the log of the unobservability index as a function
of the sampling parameter ρ . Figure 3(b) shows
four sampling trajectories corresponding to the red
data points of Figure 3(a). In each case, the initial
position of the vehicle is located on the desired
circle to eliminate the effect of transient behav-
ior on the unobservability analysis. The flowfield
parameters are ΩΩΩ = (30,0.7,0.6). rmax is shown
by the dashed line in both figures. Notice that
the unobservability is minimized by traveling in
a circle with ρ∗ = 35. For ρ < 20 = rmax−|ω0|−1

there is an increase in unobservability because the
flowfield parameter µ , corresponding to the decay
in flowspeed outside of rmax, is unobservable. For
ρ > 40 the parameters are less observable because
the flow strength decreases exponentially outside
the radius of maximum wind.

Figure 4 shows four pattern subsets of the sam-
pling parameter space that provide significantly
different observability. Pattern subset #1 (PS1)
contains circular trajectories that lie entirely inside
rmax. PS2 trajectories cross rmax. PS3 lies entirely
outside rmax with |ω0|−1 < rmax. PS4 contains rmax.
Since the Rankine vortex model is azimuthally
symmetric, the circle centers are constrained to the
y-axis without loss of generality.

Figure 5 shows the results of unobservabil-
ity analysis over χχχ = (ρ, |ω0|−1), in which the

(PS1) (PS2) (PS3) (PS4)

Fig. 4. Pattern subsets associated with a circular sampling
formation in a Rankine vortex. The dotted line represents rmax.

parameter-space boundaries of the pattern subsets
are evident. Figure 5(a) depicts example trajec-
tories from within each subset as well as the
subset boundaries, which are found analytically.
Figure 5(b) shows the unobservability index over
the parameter space. In both figures ρ and |ω0|−1

are normalized by rmax. Note that areas of low
unobservability correspond to trajectories crossing
rmax (PS2), whereas highly unobservable trajecto-
ries remain entirely inside (PS1) or outside (PS4)
rmax. Trajectories in pattern subset (PS3) are less
observable than (PS2), but more observable than
(PS1) and (PS4). The minimum of the unobserv-
ability index is shown by the white dot in Figure
5(b), along with a scaled image of the optimal
trajectory.

IV. OBSERVABILITY-BASED SAMPLING IN AN
ESTIMATED FLOWFIELD

In this section we combine the results of Sec-
tions II and III in an optimal sampling algorithm
and provide a numerical example of vehicles sam-
pling in a Rankine vortex. A recursive Bayesian
filter estimates the flowfield parameters, which are
utilized to determine optimal sampling parameters
over a time interval Topt . The multi-vehicle control
algorithm (33) is implemented using the flowfield
estimate and the optimal sampling parameters,
such that vehicles are steered to trajectories with
optimal observability.

The sampling algorithm proceeds as follows.
First, the probability density function for the flow-
field parameters ΩΩΩ is initialized either uniformly
within known bounds or from a known prior dis-
tribution. The maximum of the probability density
function corresponds to the initial flowfield param-
eters Ω̂ΩΩ(0) upon which the initial flowfield estimate
f̂k = f (xk,yk;Ω̂ΩΩ(0)) is based. The initial estimate
is utilized in (22) to calculate WO(χχχ) using (21)
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Fig. 5. Observability of a Rankine vortex. (a) Pattern subsets over the parameter space χχχ = (ρ, |ω0|−1) normalized by rmax. (b) The
unobservability index ξ (χχχ) with minimum denoted by the white dot.

over a time horizon Topt and sampling parameters
χχχ . (Note that in this step the transient behavior of
the vehicles as they converge to the formation χχχ

is taken into account; the initial positions of each
particle are used to calculate (21).) The choice of
horizon time depends on the expected accuracy
of the flowfield estimate. For instance, one may
choose Topt to be relatively short initially since
the vehicles have yet to collect measurements. In
this work, we assume a constant horizon time of
Topt = 50 seconds.

The optimal sampling parameters χχχ∗ over Topt
found using (37) are implemented in the control
algorithm νk = νk(xk,yk, f̂k; χχχ∗), where νk is given
by (33). Particles travel along the closed-loop tra-
jectories, collecting noisy measurements α̃ααk(t) and
using the flowfield estimates ~̂fk = f (xk,yk;Ω̂ΩΩ(t))
in the decentralized control. After time Topt has
elapsed, the process is repeated on Topt intervals
to produce an updated set of optimal sampling
parameters χχχ∗ from the new flowfield parameters
Ω̂ΩΩ(t) until the mission completes. An overview of
the sampling algorithm is shown in Table 1 with
an associated block diagram shown in Figure 6.

We simulated the observability-based sampling
algorithm with N = 5 vehicles to estimate the flow-
field parameters ΩΩΩ= (rmax,vmax,µ) of the Rankine
vortex model (7)–(8). The initial vehicle positions
were clustered outside rmax and the flowfield was
assumed to have ground-truth parameters rmax =

Table 1 Observability-based Sampling Algorithm.

Inputs: probability density p(Ω̂ΩΩ(t)|α̃αα(0))
producing initial flowfield estimate Ω̂ΩΩ(0);
χχχ(0)∗ = argmin ξ (χχχ;Ω̂ΩΩ(0),Topt) using observability
analysis and initial vehicle positions over iteration time
Topt ; Tf inal ; Topt .
for t < Tf inal do

1. Generate an estimated flowfield using estimated
parameters, ~̂fk(t) = ~f (xk(t),yk(t);Ω̂ΩΩ(t)).
2. Use the estimated flowfield and the current optimal
sampling parameters to calculate the steering control
νk(t) = ν(xxx(t),yyy(t),~̂fff (t); χχχ∗).
3. Update the flowfield parameter estimate by assimi-
lating measurements, so that Ω̂ΩΩ(t)= sup p(Ω̂ΩΩ(t)|A(t)).
if t mod Topt = 0 then

Find the optimal sampling parameters over the ob-
servability iteration time using the current particle
positions and current flowfield parameter estimate,
χχχ∗ = argminξ (χχχ;Ω̂ΩΩ(t),Topt).

end if
4. Set t = t +∆t

end for

30, vmax = 0.5, and µ = 0.8. The duration of the
sampling mission was 400 seconds with observ-
ability iteration occurring every Topt = 50 seconds.
The probability density function was initialized
uniformly over the parameter space rmax ∈ [0,100],
vmax ∈ [0.01,1], and µ ∈ [0,1], and the initial flow-
field parameter estimate was selected randomly
within the space. For simplicity we assumed the
radius of the desired circular formation was held
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Fig. 6. A schematic diagram of the observability-based sampling
algorithm is shown. A recursive Bayesian filter provides flowfield
parameter estimates Ω̂ΩΩ from noisy flow measurements α̃αα . The
estimated flowfield parameters are used to calculate observability
optimizing control parameters χχχ∗ that characterize the multi-vehicle
sampling formation.

constant at |ω0|−1 = 10 so the observability analy-
sis takes place over the sampling parameter space
χχχ = (ρ,10).

Figure 7 shows a snapshot of the sampling
algorithm simulation at t = 20 seconds. Figures
7(a) and 7(b) show the log of two marginal
probability densities2 over the flowfield parameter
space rmax, vmax, and µ . In each figure the black
dot corresponds to the ground truth parameters
and the magenta dot corresponds to the current
estimate. Figure 7(c) shows the result of the initial
unobservability analysis. The red dot corresponds
to the sampling parameter with the highest ob-
servability; the black and magenta dashed lines
correspond to the true and estimated rmax values,
respectively. Figure 7(d) shows the position and
velocity orientation of each particle after t = 20
seconds. The black and magenta dashed circles
correspond to the ground truth and estimated rmax
values, respectively. The true flowfield is plotted
in black while the estimated flowfield is shown
in grey. The red circle corresponds to the optimal
circle center distance ρ∗.

Figure 8 shows a snapshot of the sampling mis-
sion at t = 400 seconds. Figure 8(d) shows the full
particle trajectory in light blue while the converged
formation is in dark blue. Notice that the mode of
the posterior of the Bayesian filter has converged
to the ground-truth. The unobservability analysis in
Figure 8(c) agrees with the predictions in Figure
5(b) in the following sense: for fixed circle radius

2The marginal probability density is the sum of a multi-
dimensional probability density function over a single dimension.

|ω0|−1 = 10 corresponding to |ω0|−1/rmax = 0.33,
the optimal circular formation has center distance
ρ/rmax = 0.85, corresponding to the minimum of
Figure 5(b) for that circle radius.

V. CONCLUSION

This paper presents a multi-vehicle sampling
algorithm that maximizes the observability of an
estimated flowfield. The sampling algorithm steers
vehicles to optimal sampling trajectories selected
from a parameterized space of candidate sampling
trajectories. The observability of the parameters
defining a flowfield model is evaluated along can-
didate trajectories using the empirical observability
gramian. The optimal flowfield observability is
achieved by minimizing the unobservability index,
which is the reciprocal of the smallest singular
value of the empirical observability gramian. We
employ a recursive Bayesian filter to provide esti-
mates of the flow to the steering control algorithm.
Numerical simulations of the algorithm in a Rank-
ine vortex suggest that the sampling algorithm
estimates the flowfield parameters even when noisy
measurements of the flow are used. In ongoing
research we are expanding this sampling algorithm
to higher fidelity flowfield and vehicle models,
including flowfields in which vehicles may not be
able to maintain forward progress against the flow.
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