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This paper presents a quantitative assessments of the orbits and sensor character-
istics of satellites intended for cislunar space domain awareness. A dynamic simulation
of the cislunar environment enables a numerical analysis of various pairings of sens-
ing satellites and resident space objects. Preliminary contributions include analysis of
orbit families, including Earth orbits, Moon orbits, and L1 and L2 orbits, for their viabil-
ity in the mission of space-based cislunar situational awareness. We propose a set of
metrics for observability, including sensor considerations like occultation and lighting
conditions, which can be used to inform the specific orbit parameterization for cislunar
space domain awareness orbit design.

1. Introduction

Space domain awareness (SDA) and space traffic management (STM) are chal-
lenging due to an increasingly congested environment populated by a growing number
of maneuverable vehicles and vehicles planned for deep space, i.e., beyond geosyn-
chronous Earth orbit (GEO). Orbit design for the space-based cislunar domain aware-
ness mission is an important topic due to the large range and limited viewing geome-
tries between Earth-orbiting satellites and satellites in cislunar orbits. Complex astro-
dynamics must be modeled for objects in cislunar space, since lunar gravity cannot be
neglected or treated as a perturbation to a dynamic model for cislunar object tracking,
as it can in dynamic models of Earth-orbiting vehicles.

The cislunar regime is of increasing interest to the space industry due to its value
for applications such as astronomy, interplanetary mission staging, lunar exploration
and communications, and Earth orbit insertion [1]. Spacecraft placed in Earth-Moon
collinear Lagrange points L1 and L2 avoid the gravity wells of the Earth and Moon,
surface environmental issues, and artificial and natural space debris. These spacecraft
require low stationkeeping propellant (on the order of centimeters per second) and can
travel between L1 and L2 or between Earth-Moon space and Sun-Earth space [2].
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In July 2019, a near-rectilinear halo orbit (NRHO) was chosen as the orbit for the
future Lunar Gateway, which will be developed by the U.S. National Aeronautics and
Space Administration (NASA) and the European Space Agency (ESA) to serve as a
solar-powered communications hub, science laboratory, short-term habitation module,
and holding area for rovers and other robots [1]. Cislunar orbits can also be used as
storage locations for spare Earth-orbiting satellites, allowing responsive insertion of
these spares into operational Earth orbits with none of the indications and warnings
normally associated with launch of a new vehicle into Earth orbit [3]. Despite the
desirable characteristics of certain cislunar orbits, NASA’s ARTEMIS P1 (THEMIS B)
and ARTEMIS P2 (THEMIS C) were the first two satellites to achieve orbit around
an Earth-Moon Lagrange point as recently as 2010 [4]. As the opportunities offered
by the cislunar regime become realities, space domain awareness and space traffic
management specific to this environment will become increasingly critical capabilities.
Preliminary results from this study could be used to inform the requirements for future
cislunar space domain awareness systems, i.e., by placing satellites into specific orbits
that maximize performance for SDA and STM missions.

Various models describe motion in the Earth-Moon system, including patched-
conics approaches that switch among two-body models with the Earth, the Sun, and
the Moon as central bodies; three-body models including the Earth and the Moon as
primary masses; n-body models that directly incorporate the gravitational effects from
more bodies than the two primaries; and models that incorporate perturbations like so-
lar radiation pressure. A three-body model, which is used here, may be derived from
a set of simplifying assumptions. The restricted three-body problem assumes that a
body of negligible mass moves under the influence of two massive bodies, whereas
the circular restricted three-body problem additionally assumes that the two primary
masses move in nearly circular orbits about their barycenter. For the Earth-Moon
system, these assumptions are valid since a large spacecraft of 5900 kg would have
less than 10−16 times the force on the primaries that the primaries would have on
each other, and the Moon’s orbit has an eccentricity of only 0.055 [5]. The Circu-
lar Restricted Three-Body Problem (CR3BP) is used here as the basis for a dynamic
simulation in which the relative motion of two satellites of negligible mass is studied.

The contributions of this paper are (1) the formulation of a preliminary set of metrics
to describe the capability of a satellite performing a space domain awareness mission
from an Earth-Moon system orbit to observe an object in another Earth-Moon system
orbit; (2) parametric studies across Earth and Moon two-body orbital parameters to
determine how satellites in these orbits may perform against these metrics; and (3)
numerical examples to illustrate recommendations about the placement of satellites
performing cislunar space domain awareness missions.

The paper’s outline is as follows. Section 2 reviews the Circular Restricted Three-
Body Problem (CR3BP) model of the Earth-Moon system, including a discussion of
its utility in a study of the cislunar environment and the equilibrium points that can be
found in the CR3BP model. Additionally, we list challenges for cislunar space domain
awareness (SDA) and various types of orbits that exist in the Earth-Moon system.
Section 3 describes our methodology, including the formulation of metrics and the set
of observer orbits used for the study. Section 4 describes numerical results for Earth-
orbiting observers of L1 and L2 orbiters and Moon-orbiting observers of L1 and L2
orbiters. Section 5 summarizes the paper and ongoing and future work.
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2. Background

2.1. The Circular Restricted Three-Body Problem
Motion within the Earth-Moon system may be approximated using the dynamics

of the Circular Restricted Three-Body Problem (CR3BP), in which the motion of a
spacecraft with negligible mass is modeled under the influence of the gravitation of
two primaries approximated as point masses [6]. By convention, the motion of the
spacecraft is described using a coordinate system that rotates with the rate of rotation
of the Earth and Moon in circular orbits about their barycenter. The planar CR3BP has
two degrees of freedom, whereas the spatial CR3BP has three. Only one constant of
motion exists, known as the Jacobi integral.

Figure 1: Circular Restricted Three-Body Problem. Mass m is a spacecraft of negligible
mass compared to m1 ≥ m2, which are two large primary masses.

Figure 2: Free-body diagrams of spacecraft m (left) and smaller primary mass m2 (right).
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The free-body diagram for the spacecraft m in Fig. 2 provides the basis for the
equations of motionin the CR3BP. Inertial acceleration ai is ai = a0 +am +2ωωω×v+ω̇ωω×
r+ωωω × (ωωω × r), where a0 is the translational acceleration of the rotating frame, am is
the acceleration of the spacecraft in the rotating frame, 2ωωω×v is Coriolis acceleration,
ω̇ωω is the time derivative of ωωω with respect to the rotating frame, and ωωω × (ωωω × r) is the
centripetal acceleration. Because a0 and ω̇ωω× r go to 0 and am = r̈, then
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By convention, position, velocity, and mass are nondimensionalized in the CR3BP,
so that the distance between the Earth and the Moon (r12) becomes unity, as are the
mean motion of the two primaries and the universal gravitational constant G [7]. The
Earth’s mass is denoted 1−µ, and the Moon’s mass is µ. One distance unit is defined
as 1DU ≡ r12, one mass unit as 1MU ≡ m1 +m2 (so that mass ratio is µ = m2

m1+m2
), and

one time unit as 1TU ≡ T
2π

, where the orbital period T of the primaries about their

barycenter is T = 2π

ω
= 2π

√
r3
12

G(m1+m2)
[8].

Using this nondimensionalization, the equations of motion for a spacecraft of neg-
ligible mass m from Equation 3 become [8]ẍ

ÿ
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ρ3
1
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− µ

ρ3
2
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+
 2ẏ
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 . (4)

By convention, a state in the system with a positive (+z) angular momentum (such
that the spacecraft is moving counter-clockwise in the Earth-Moon rotating frame) is
considered prograde, whereas a clockwise motion is considered retrograde [9]. A
solution in the CR3BP can be one of four types [10]: an equilibrium point, a periodic
orbit (Lyapunov or halo), a quasi-periodic orbit (Lissajous), and chaotic. The halo
orbits near the collinear Lagrange points L1 and L2 grow larger in size but shorter in
period as they shift toward the Moon, and there exists a narrow band of halo orbits
approximately halfway to the Moon from each of these two points that are of particular
interest due to their stability characteristics [11].
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Table 1: Non-dimensionalization constants in the Earth-Moon system

Unit Variable Value
Earth-Moon system orbital period T 27.3215 days
Time unit TU 4.348 days
Distance unit DU 384400 km
Speed unit SU 1.023 km/s
Mass ratio µ 0.012277471

2.2. Equilibrium Points in the CR3BP
At equilibrium points in the CR3BP (known as Lagrange or libration points), grav-

itational and rotational accelerations balance [8]. At stable equilibrium points, pertur-
bations cause oscillations about the equilibrium point, whereas at unstable equilibrium
points, perturbations cause drift away from the equilibrium point. Equilibrium points
occur where the gradient of the pseudopotential U vanishes, where

U =
1
2

ω
2(x2 + y2)+

1−µ

ρ1
+

µ

ρ2
, (5)

so that ẍ
ÿ
z̈

=

 2ω ẏ+ ∂U
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−2ω ẋ+ ∂U
∂y

∂U
∂ z

 . (6)

When a spacecraft is at rest at an equilibrium point, ẋ = ẍ = ẏ = ÿ = ż = z̈ = 0, which
implies ∂U

∂x = ∂U
∂y = ∂U

∂ z = 0. Since ∂U
∂ z = 0 = −zµ((x−1+ µ)2 + y2 + z2)−

3
2 , then z = 0 is

the only solution, meaning that all Lagrange points lie in the xy plane of the rotating
frame established in Fig. 1 [7].

Using U in terms of µ, ρ1, and ρ2, trivial solutions to ∂U
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∂ρ1
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1
) and ∂U
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=
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2
) are set to 0, ρ1 = ρ2 = 1, meaning that the distances from the primaries to

the spacecraft are the same and also equal to the distance between the primaries,
forming an equilateral triangle. These points are known as L4 and L5 [7].

Stating x2 + y2 in terms of µ, ρ1, and ρ2, Equation 5 becomes

U = (1−µ)(
ρ2

1
2

+
1
ρ1

)+µ(
ρ2

2
2

+
1
ρ2

)− µ(1−µ)

2
. (7)

To define the remaining equilibrium points (L1, L2, and L3), full solutions for ∂U
∂x and

∂U
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, the positions of L1, L2, and L3 along the x axis are found
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(8)
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The solutions to Equations 8 are found numerically as functions of mass ratio µ.
See Fig. 3 for a depiction of the geometry of the Lagrange points. In the Earth-

Moon system, L4 and L5 are stable equilibrium points, whereas L1, L2, and L3 are
unstable.

Figure 3: Locations of Lagrange points for the CR3BP. L4 and L5 are stable equilibrium
points, whereas L1, L2, and L3 are unstable.

2.3. Challenges for Cislunar Space Domain Awareness
Objects in cislunar orbits are approximately ten times farther from the Earth’s sur-

face than objects being tracked in geostationary/geosynchronous earth orbits (GEO/
GSO) [12]. Given current technology, optical systems based on the Earth’s surface
are capable of detecting only very large objects (hundreds of meters in size) at those
distances. Deep space missions for science and exploration have used cooperative
methods for orbit determination (e.g., two-way Doppler tracking) at these and larger
ranges, but for space domain awareness and space traffic management purposes,
cooperative methods cannot be assumed [13].

Additionally, objects in cislunar space appear to move very slowly from the per-
spective of an observer based on the Earth’s surface or even orbiting the Earth, such
that there may be insufficient geometric diversity in the observations for the observer
to detect motion and create an orbit estimate. Objects in the cislunar environment can
also spend significant time in front of or behind the Moon, or within a Sun- or Moon-
exclusion angle with respect to an observer’s sensor, which could cause an observer

6



to lose custody of the object. These considerations form the basis for the metrics
proposed in Section 3.

2.4. Cislunar Orbits
Lyapunov orbits and halo orbits are periodic motions about the collinear Earth-

Moon Lagrange points (L1, L2, L3). Lyapunov orbits lie entirely in the plane of the
two primary bodies (the xy plane shown in Fig. 1), whereas halo orbits include an out-
of-plane component. Orbits about Earth-Moon L2, for example, are called halo orbits
when the size of the orbit is comparable to the distance of L2 from the Moon, resulting
in periodic three-dimensional motion. L2 halo orbits require relatively low ∆V to reach
from Earth and have continuous Earth visibility since they are always perpendicular
to the Earth-Moon plane with amplitudes larger than the radius of the Moon [9]. The
CR3BP orbits considered in this paper include Lyapunov orbits about L1 and L2. In
ongoing and future work, we plan to examine a distant retrograde orbit (DRO), a halo
orbit, and a near-rectilinear halo orbit (NRHO), which is a specific type of halo orbit
of interest due to favorable stability properties for long-term missions and favorable
resonance properties that avoid eclipses [14].

3. Methodology

3.1. Observability Metrics
In order to use a CR3BP dynamic simulation to analyze various orbit pairings, we

define several observability metrics. Since an estimate of the orbit of an object is
based on observations, the object must have some apparent motion with respect to
the observer [15]. The first metric is the inverse of the relative angular rate, defined as
hours per degree of motion of the observed object from the perspective of the observer.
A lower value for this metric represents a more observable orbit.

Other viewing geometry concerns, like occultation by the Earth or Moon and Sun
exclusion angles for optical sensors, reduce the amount of time that an object of in-
terest is viewable by the observer. Therefore, the second metric is the percentage
of the orbital period of the object when it is unavailable to the observer for any of
these reasons. A lower value for this metric represents a more observable orbit. Earth
and Moon positions are given in the CR3BP, and we added the Sun’s position by
assuming a mission start date of January 1, 2010 and downloading Sun ephemeris
data with respect to the Earth-Moon barycenter from the JPL Horizons database
(https://ssd.jpl.nasa.gov/horizons.cgi).

Finally, we consider the large range from the observer to the object being ob-
served. Given that objects in orbit around or near the Moon are approximately ten
times farther from Earth than the farthest objects being tracked for other space do-
main awareness efforts (i.e., objects in GEO), range is a critical third metric that can
be reduced by prudent placement of space-based assets.

3.2. Observer Orbits
In the CR3BP dynamic simulation, we placed objects in Lyapunov orbits about L1

and L2, i.e., entirely in the plane of the Earth-Moon system. We used these objects
as the targets of interest to assess various Earth-orbiting and Moon-orbiting observers
using the SDA metrics above. We postulate that, for the purpose of observing these
objects, Moon observing orbits may show greater promise than Earth observing orbits.
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The six Keplerian orbital elements (except eccentricity) are shown in Fig. 4. Two
of these parameters define the size and shape of a two-body orbit: the eccentricity e
describes how elongated an elliptical orbit is compared to a circle (e = 0 for a circular
orbit), and the semimajor axis a is the arithmetic mean of the periapsis and apoapsis
distances (the orbit’s radius for a circular orbit). Two parameters describe the orienta-
tion of the orbital plane in which the ellipse is embedded: the inclination i describes
the vertical tilt of the ellipse with respect to the reference plane, measured at the as-
cending node (where the orbit passes from below through the reference plane), and
the longitude of ascending node Ω horizontally orients the ascending node of the el-
lipse with respect to the reference frame’s vernal point (symbolized by à). Finally, two
parameters describe the orientation of the ellipse within its orbital plane and the (time-
varying) position of an object along its orbit: the argument of periapsis ω defines the
orientation of the ellipse in the orbital plane as an angle measured from the ascending
node to periapsis, and the true anomaly ν defines the position of the orbiting body
along the ellipse at a specific time (epoch). All Keplerian orbital elements are constant
for a given orbit except the true anomaly ν [12].

Figure 4: Keplerian orbital elements (except eccentricity e).

For our parametric analysis of Earth and Moon observing orbits, we varied eccen-
tricity e, semimajor axis a, and inclination i about nominal values to discern how these
variations would affect our metrics. Fig. 5 depicts the geometry of a representative
system with Lyapunov orbits about L1 and L2 and an observer orbit about Earth with
a = 24832 km, e = 0.225, and i = 20◦, propagated for 120 days.
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Figure 5: Geometry of the Earth-Moon system with Lyapunov orbits about L1 and L2
and a representative observer orbit about Earth with semimajor axis 24832 km, eccen-
tricity 0.225, and inclination 20◦.

4. Results

First, we analyze the effectiveness of an Earth orbiter for observing objects in these
L1 and L2 Lyapunov orbits, shown in Fig. 6. General trends can be seen for all three
metrics. Interestingly, for some of the parameters considered, the first and third met-
rics trend in opposite directions with variations in the orbital parameters from nominal
values. This trade off makes intuitive sense when the geometry of a distant observa-
tion problem is considered: the farther from the viewer an object is, the more slowly it
appears to move from the perspective of the viewer.

Additionally, we analyze the effectiveness of a Moon orbiter for the purpose of ob-
serving objects in the same L1 and L2 Lyapunov orbits, shown in Fig. 7. A Moon
orbiter shows superior performance over an Earth orbiter for the mission of observing
an L1 orbiter since the time it takes the L1 orbiter to pass through 1◦ from the perspec-
tive of the observer is more than an order of magnitude less than the time it takes the
same orbiter to pass through 1◦ from the perspective of an Earth orbiter. Additionally,
the L1 orbiter is unavailable for observation by a Moon-orbiting observer near 20% of
the time as compared to the approximately 65% of the time for an Earth orbiter, and
the average distance from the Moon orbiting observer to the L1 orbiter is almost an
order of magnitude smaller than for the Earth-orbiting observer.

A Moon orbiter observing an L2 orbiter shows undesirably large values near 80% for
the percentage of time when the L2 orbiter is unavailable for observation by the Moon
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Figure 6: Results for an Earth orbiter observing L1 and L2 orbiters. The time it takes the
observed object to pass through a single degree and the average distance to the object
show trends with variations in the orbital elements, whereas % inavailability shows no
clear trend with the same variations.

orbiter because of the relative position of the Sun during the simulation time. The Sun
is almost directly behind L2 from the perspective of the Moon for most of the time.
Due to geometry, this means the Sun is also almost directly behind L1, the Moon,
and L2 from the perspective of the Earth, explaining why the values for percentage
inavailability are also large for an Earth orbiter observing L1- and L2-orbiters. A Moon
orbiter observing an L2 orbiter also shows about a two times improvement over an
Earth orbiter in first metric and almost an order of magnitude improvement in average
distance.
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Figure 7: Results for a Moon orbiter observing L1 and L2 orbiters. The metrics show
trends with variations in eccentricity e and inclination i; semi-major axis a is not varied
enough within the dynamic simulation to produce a trend.

5. Conclusion

This paper presents a set of three performance metrics to describe the capabil-
ity of a satellite performing a space domain awareness mission from an Earth-Moon
system orbit to observe an object in a different Earth-Moon system orbit. Parametric
studies across Earth and Moon two-body orbital parameters determine how satellites
in these orbits perform. Numerical examples illustrate recommendations about the
placement of satellites performing cislunar space domain awareness missions. Ac-
cording to the metrics chosen, Moon orbits are a dramatically better choice for the
mission of observing L1- and L2-orbiting objects than Earth orbits, and using an Earth
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orbiter for this mission would require a trade between the observer’s performance on
two of three metrics. Ongoing and future work includes consideration of additional or-
bits both for observers and objects to be observed. For instance, an orbiter about one
of the triangular points (L4 or L5) is likely to perform well when observing orbiters of
L1 and L2.
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