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Abstract— Command and control of an aerial swarm is a
complex task. This task increases in difficulty when the flight
volume is restricted and the swarm and operator inhabit
the same workspace. This work presents a novel method for
interacting with and controlling a swarm of quadrotors in a
confined space. EMG-based gesture control is used to control
the position, orientation, and density of the swarm. Inter-agent
as well as agent-operator collisions are prevented through a
velocity controller based on a distance-based potential function.
State feedback is relayed to the operator via a vibrotactile
haptic vest. This cobot human swarm interface prioritizes
operator safety while reducing the cognitive load during control
of a cobot swarm. This work demonstrates that an operator can
safely and intuitively control a swarm of aerial robots in the
same workspace.

I. INTRODUCTION

Swarm robotics is an emergent field. Applications in this
field range from agriculture [1] and material transport [2], to
search and rescue [3] and entertainment [4]. Regardless of
the task at hand, the operator is responsible for making sure
that the behavior of the swarm is in accordance with the given
objectives. As the tasks become increasingly complicated and
operators become more involved, it becomes especially im-
portant to consider factors that affect the interaction between
the operator and the swarm. By reducing the cognitive load
on the operator, they may be able to make more informed
decisions, leading to more effective and efficient interactions.

The field of human-swarm interactions explores the in-
terface between human operators and robotic swarms in an
effort to optimize control over the swarm while reducing
the cognitive load on an operator. A cobot, or collaborative
robot, is a robot intended to interact with humans within
a shared environment. This paper describes a novel cobot
human swarm interface (HSI) that reduces cognitive load
on the operator by addressing one of the largest hurdles in
collaborative robotics, agent-operator collision. The safety
of the operator is prioritized and encoded into each agent
through the use of distance-based potentials, where as motion
and gesture controls relay desired commands and control of
an aerial swarm.

Gesture and motion controls are effective methods of
relaying an operator’s intent to robotic systems. Not only are
gestures natural and intuitive means of communication, but
machine-learning algorithms have bridged the gap allowing
operators to use gestures to communicate with, command,
and control robotic systems.

[5], [6], and [7] describe vision-based gesture control
methods in which convolutional neural networks classify
gestures made by the operator. Once classified, these gestures

are translated into control signals and sent to their robotic
systems. [8] and [9] extend this idea to multi-agent systems
by enabling agents to classify gestures onboard and perform
the assigned tasks defined by those gestures autonomously.
One downfall to these methods is that they require line of
sight to the operator to receive the intended instructions.

Another method of relaying desired commands is through
the use of muscle and motion sensing devices such as
the Mbientlab IMU bracelet, Myo armband, or OYMotion
gForcePro+. [10] presents a method for controlling the 3D
position of a quadrotor by confining the motion of the
quadrotor to a 3D surface. The position of the quadrotor is
determined by finding the intersection between that surface
and a pointing vector generated from the arm of the operator
wearing an IMU. An external button is used to iterate
between predefined surfaces to achieve the desired motion
in space. [11] describes an interpreter that uses the motions
and static gestures of an operator wearing a Myo armband
to replace the functionalities of a computer mouse, allowing
an operator to control the formation of a swarm by simply
drawing the desired formation with their arm. [12] shows that
static gestures may be used to interact with a virtual menu,
allowing an operator to have access to a library of desired
controls through which they may guide a swarm of ground
robots through an environment with obstacles. Similarly, [13]
develops a clustering algorithm to perform online gesture
recognition and showed that an operator wearing a Myo
armband may successfully navigate a drone through an
obstacle course containing hoops. Others such as [14], [15],
and [16] have expanded these control paradigms to develop
multi-modal interfaces that include speech as well as motion
and gesture control for their multi-agents systems. Motion
and gesture controls are used to select the desired agents,
where as speech control is used to directly relay the desired
commands to those selected agents.

While being able to control a quadrotor is crucial, the
information received about the quadrotor and its states can
be just as important, allowing an operator to make more
informed decisions. In indoor settings, the domain in which
robots move may be limited, so operators naturally rely
on visual feedback as their main source of information
pertaining to a robot’s states. While this is generally suf-
ficient, it becomes increasingly more difficult to estimate
these parameters in multi-agent systems or environments that
include obstacles.

One method to relay pertinent information quickly is
through the use of haptic devices. Intensity, duration, rhythm,
and tactor locations are all parameters that can be varied



to develop a library of haptic patterns to relay desired
information to an operator. [17] and [18] utilize an Omega
3 active force feedback device as both a joystick and tool to
provide haptic feedback. As the Omega teleoperates a swarm
of aerial vehicles, resistive force feedback is provided to the
operator during flight when the selected direction of travel
is impeded by an obstacle, aiding the operator in navigating
the swarm around obstacles in the environment. [19] presents
a haptic glove paired with six tactors that corresponded to
the axes of motion of a teleoperated quadrotor. The tactors
on the glove vibrate with varying intensities in proportion to
the quadrotor’s proximity to any obstacles, providing spatial
awareness even when the quadrotor moved directly out of the
operator’s line of sight. Others have developed libraries of
vibrotactile patterns that relayed changes in robotic system’s
states such as the density and center of mass of a swarm
of aerial robots [20] or the attitude of a virtual aircraft
[21]. While these works show the benefits of using muscle
and motion control sensors as pipelines to provide robotic
systems with their operator’s intent or desired controls, they
are limited to teleportation applications, that is, they lack the
ability to allow the operator to directly and safely interact
with these robotic systems.

Artificial potential fields and barrier functions have a
rich history of being used in path planning and collision
avoidance applications for autonomous systems. [22], [23],
and [24] successfully developed a steering-based collision
avoidance method for vehicles by virtually attaching a variety
of velocity potential functions to objects detected in the
surrounding environment. The aggregate of the surrounding
velocity fields is used to safely steer the car around obstacles.
[25] and [26] apply potential fields to the problems of
multi-agent path planning through obstacle rich complex
environments. [27], [28] and [29] utilize potential fields and
barrier functions, respectively, to ensure inter-agent collision
avoidance during completion of tasks assigned to the multi-
agent systems. The swarm-velocity controller presented here
leverages these works to develop a potential based approach
that achieves online inter-agent safety as well as operator col-
lision avoidance, while continuously attempting to maintain
the prescribed formation.

The contributions of this paper are as follows: (1) a hu-
man swarm interface that prioritizes operator safety through
the use of distance-based potential functions and feedback
control and (2) a gesture-based control methodology that
provides an operator with control of a swarm’s position,
orientation, and density in either the global frame or the
operator’s body frame. The HSI prevents collisions between
the vehicles and the operator, allowing the operator to focus
their efforts on completing their tasks rather than their
personal safety.

The remainder of this paper is organized as follows.
Section II presents experimental preliminaries required to
understand the presented work. Section III delves into the
control strategies employed, and Section IV reports the
experimental results. The conclusions and future work are
discussed in Section V.

II. BACKGROUND

The HSI described below is comprised of three distinct
pieces of hardware: an EMG-based gesture recognition arm-
band used by the operator to provide desired commands
and controls, an aerial swarm of homogeneous miniature
quadrotors, and a haptic vest used to provide continuous
feedback to the operator.

Electromyography (EMG) sensors measure and record the
electrical signals generated in muscles during contraction
[30]. The OYMotion gForcePro+ armband is a wearable
EMG based gesture recognition device shown in Fig. 1a.
Containing an 8-channel EMG array and a 9-axis IMU,
the gForcePro+ provides a real-time orientation estimation
of the operators forearm as well as gesture recognition via
Bluetooth BLE 4.2 up to a range of 10m. Gesture recognition
is accomplished utilizing a trainable AI model onboard the
armband that allows for up to 16 unique user-defined gestures
[31].

The Bitcraze Loco Swarm [32] is an aerial robotic swarm
consisting of homogeneous quadrotors called Crazyflies
[33] utilizing the Loco Positioning system for localization.
Crazyflies, shown in Fig. 1b, are miniature quadrotors mea-
suring 92mm × 92mm with a takeoff weight of 27g. The
Loco Positioning system is an Ultra Wide Band radio based
localization system used to find the 3D position of the
Crazyflies in space [34]. Loco Positioning nodes [35] are
positioned within a room. For this work, these nodes were
used to define a flight volume for the swarm. Each Crazyflie
is paired with a Loco Positioning deck [36]. High frequency
radio messages are sent back and forth between the nodes
and the decks, allowing the system to measure the distance
between each node and the deck to calculate the position
of the deck and therefore the Crazyflie. Position estimation
is performed onboard the Crazyflie and sent to the ground
station. The Loco Swarm was flown using Crazyswarm,
a system architecture for controlling multiple Crazyflies
simultaneously [37].

The bHaptics TactSuit X40 is a virtual reality haptic vest,
shown in Fig. 1c. Weighing 1.7kg, this haptic vest contains
40 vibrotactile motors, 20 on both the front and back, and
is connected to the base station using BLE 4.0. [38].

(a) (b) (c)

Fig. 1: (a) OYMotion gForcePro+, (b) Bitcraze Crazyflie 2.1,
(c) bHaptics TactSuit X40



III. CONTROL STRATEGY

In the control strategy described here, the operator utilizes
gestures to command and control the position, orientation,
and density of the aerial swarm. This is accomplished by
dynamically modifying the formation defining the swarm,
while each agent autonomously follows their assigned goal
positions within the formation.

A. Swarming Formations

The swarming formations used in this work are shown
in Fig. 2. All formations are radially symmetric, which is
a property that is leveraged when controlling the density
of the swarm. While the desired formation is determined
by the number of desired agents and a desired radius, no
agent is assigned a specific location within the formation.
During assembly, the assignment problem is solved using a
Munkres assignment algorithm [39], minimizing the distance
each agent has to travel to complete the formation.

(a) (b) (c) (d) (e)

Fig. 2: Swarming formations per number of agents, ranging
from (a-e) 1-5 agents respectively.

B. Gesture Recognition

One of the objectives of this work is to provide an operator
with the capability to control the position, orientation, and
density of an aerial swarm in both the global frame as well as
the operator’s body frame. This is achieved using the trained
gestures shown in Fig. 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: 8 custom gestures recognized by the gForcePro+ AI
model after training: (a) closed fist, (b) finger pointing, (c)
wrist flexion, (d) wrist extension, (e) ulnar deviation, (f)
radial deviation, (g) finger pinch, and (h) finger spread.

Inspired by the work presented in [40] and [41], the
selected gestures have been shown to be successfully rec-
ognized with a high degree of accuracy using a number
of methods, including those employed on the OYMotion
gForcePro+. The closed fist gesture is assigned the role
of commanding the agents to takeoff from their respective

locations, as well as assembling the agents into formation.
The finger pointing gesture lands the aerial swarm. The
wrist flexion and wrist extension gestures give the operator
positional control over the swarm. The positional control
shown in this work is limited to translation along the X-
axis of the inertial frame. This could be extended with 2
additional pairs of gestures to control the translation in the
remaining two axes. The ulnar deviation and radial deviation
gestures provide the operator with control of the orientation
of the swarm by rotating the swarm counterclockwise and
clockwise in the X-Y plane respectively. The finger pinch
and finger spread gestures allow the operator to decrease
and increase the density of the swarm respectively.

Gestures were selected as the control modality for this
work due to the decrease in the amount of required infras-
tructure in comparison to tablets or hardware-based control
systems, and their lack of ambiguity in comparison to
speech-based control systems. The goal of this work is
to develop an HSI that prioritizes operator safety, while
reducing cognitive load during control of a cobot swarm.
One method to decrease the cognitive load on the operator
is to decrease the amount of infrastructure the operator is
required to engage with.

C. Swarm Velocity Control

Given a swarm of n identical agents, a velocity control
algorithm is developed to safely navigate agents from their
current locations x, to their goal locations xg , while circum-
venting the p obstacles in the environment. The attractive
potential Uiattr and velocity controller Viattr for agent i can
thus be expressed as

Uiattr
(xi) = V0||xi − xig || (1)

and

Viattr (xi) = −∇Uiattr (xi)

= −∇V0||xi − xig ||

= −V0

(xi − xig )

||xi − xig ||

(2)

where Vo is the desired constant velocity.
The obstacle-avoidance velocity controller was designed to

allow agents to safely avoid obstacles while moving towards
their goal. The FIRAS function proposed by Khatib [42] is
frequently used as a repulsive potential function:

Uobs(x) =


1

2
η

(
1

ρ
− 1

ρ0

)2

, ρ ≤ ρ0

0, ρ > ρ0,

(3)

where ρ0 represents the limit distance, or radius of influence,
of the repulsive field and ρ represents the shortest distance
to the obstacle. This function has been adapted for this
applications. The obstacle-avoidance velocity controller Viobs



for agent i can thus be expressed as

Viobs(xi) = −
p∑

m=1
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=
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m=1
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)
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, ρm ≤ ρ0

0, ρ > ρ0,
(4)

where ρm = ||xi − xobsm || is the distance to obstacle m.

D. Haptic Feedback

The bHaptics TactSuit X40 is a virtual reality haptic vest
shown in Fig. 1c. In this work, these motors provide the
operator with the continuous location of the center of mass
of the swarm with respect to the flight volume. The flight
volume was divided into 40 bins, paralleling the motors
on the vest. The centroid of the swarm is calculated and
localized to 1 of these 40 bins. While the center of mass
is in a given bin, the corresponding tactor vibrates on the
vest; as the center of mass moves, the analogous motors on
the vest vibrate, providing the operator with the continuous
spatial awareness of the swarm’s location relative to the flight
volume and its boundaries in real time. An example of this
feedback can be seen in Fig. 4.

Fig. 4: Experimental setup showing the flight volume defined
by the Loco Position system (LPS) Nodes, the bin partition-
ing utilized to localize the swarm’s centroid, and the vested
operator receiving haptic feedback regarding the location of
the centroid of the swarm.

IV. EXPERIMENTAL RESULTS

Experiments are conducted to demonstrate the gesture-
based control methodology in controlling the position, ori-
entation, and density of the swarm in both the inertial
frame as well as the operator’s body frame, and validate
the utility of the designed swarm velocity controller in
maintaining operator safety during control of a cobot swarm
while occupying the same workspace. All gesture training
and experiments were conducted by the authors.

A. Experimental Setup

The system shown in these results is a Loco Swarm using
Crazyswarm’s goTo() functionality in which waypoints are
sent to each agent at 4Hz and an onboard controller plans
a smooth trajectory from the current state to the waypoint
position. The waypoints, xik+1

, are derived as shown below:

xik+1
=


xik + Viattr (xik)∆t+ Viobs(xik)∆t,

||xik − xig || > Viattr (xik)∆t

xig + Viobs(xik)∆t,

||xik − xig || ≤ Viattr (xik)∆t,

(5)

where xik is the current position of agent i, Viattr
(xik)

are the goal-bound velocities, Viobs(xik) are the collision
avoidance velocities, and ∆t is the inverse of the desired
waypoint frequency. All positions derived using this method-
ology are 2-D positions spanning the X-Y plane, with a
fixed altitude of 1m in an effort to avoid the effects of
the downwash interaction between the aerial agents in the
swarm. The prescribed formation has a radius of 0.75m.
To ensure inter-agent collision avoidance, the agents in the
swarm consider their counterparts obstacles. Fig. 4 shows the
experimental setup. For video results refer to supplemental
materials shown here: https://youtu.be/9kladblLRj8

B. Position Control in Inertial Frame

In the first experiment, the ability to control the position,
orientation, and density of a robotic swarm containing 5
agents through the developed HSI is illustrated. The posi-
tional control over the swarm using the wrist flexion and wrist
extension gestures was mapped to a translation of 1m. The
ulnar deviation and radial deviation gestures were mapped
to rotations of 22.5◦. The finger pinch and finger spread
gestures were mapped to radial translations of 0.25m about
the centroid of the Loco Swarm’s formation. The opera-
tor remained stationary throughout this experiment. Fig. 5
shows a time series of the Loco Swarm’s trajectory, as seen
from above, during a gesture-based flight demonstration. As
shown, an operator can control the position, orientation, and
density of a swarm in the inertial frame.

C. Position Control in Operator Frame

The second experiment continued to utilize gesture con-
trol. A VICON Vantage V8 system with 12 cameras was used
to localize the operator within the environment. During this
experiment, the operator was free to move throughout the
environment as they desired. A robotic swarm containing 3
agents was localized using the Loco Positioning system. The
OYMotion gForcePro+ provides the orientation of operator’s
arm. Once the pose of the operator’s arm is established, a
pointing ray from the operator’s arm is generated, and the
intersection between that ray and the floor may be calculated.
The operator then utilizes the previous translational control
gestures to relay the intersection point to the Loco Swarm
as the desired location for the centroid of the formation.
During this control modality, the translational gestures are
referred to as call gestures. Fig. 6 shows a time series of

https://youtu.be/9kladblLRj8


(a) (b)

(c) (d)

(e) (f)

Fig. 5: Time series (a-f) of the Loco Swarm’s X-Y trajectory
during a gesture based flight demonstration. The locations
denoted with the ◦ and × symbols represent the initial and
final positions of the swarm respectively, before and after
each gesture was performed.

the Loco Swarm’s and operator’s trajectory, as seen from
above, during this flight demonstration. As shown, regardless
of their movement, an operator can successfully control the
position of a swarm in their body frame.

D. Operator Collision Avoidance

The third experiment demonstrates the collision avoidance
capabilities of the HSI. The operator is once again localized
in the flight volume via the VICON system. Once localized,
the position of the operator is added to the list of obstacles.
The 3 agents were assigned an avoidance radii of 0.25m
and the operator was assigned an avoidance radius of 1m.
Fig. 7 shows the minimum, maximum, and average inter-
agent distances during this experiment, as well as the inter-
agent distance prescribed by the formation. The formation is
assigned a radius of 0.75m leading to a prescribed inter-
agent distance of approximately 1.3m. At 115s into this
experiment, the operator decreased the density of the swarm
by increasing the formation radius from 0.75m to 1m, leading
to a prescribed inter-agent distance of approximately 1.73m.
The periods of time near 55s, 80s, and 115s show windows
where the operator was not within collision range of the
swarm. As shown, the lines converge, since the minimum
distance, maximum distance, and average distance between
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Fig. 6: Time series (a-d) of the operator and Loco Swarm’s
X-Y trajectory during a flight demonstration utilizing posi-
tional control in the operator frame. The locations denoted
with the ◦ and × symbols represent the initial and final
positions of the swarm respectively, before and after the
call gesture was performed. The ⋆ symbol denotes the
commanded intersection or call point.

agents are all equivalent for the assigned radially symmetric
three-agent formation. This plot also shows that as the
operator moves back and forth through the swarm, the agents
at no point in time collided with each other and respect their
assigned avoidance radii.
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Fig. 7: Time series showing the minimum, maximum, aver-
age, and formation based inter-agent distance during operator
collision avoidance experiment.

Fig. 8 shows the distance between the operator and the
agents within the swarm during the same experiment. From
this graph, we can see that during the experiment, the
agents avoided collision with the operator, respecting the



operator’s designated boundary. Fig. 9 shows a time series
of the Loco Swarm avoiding collision with the operator as
the operator walks through the center of the flight volume.
For a short window beginning at 60s, the operator moves
forward quickly, forcing the Agent 1 to enter the operator’s
avoidance radius as can be seen in Fig. 9b and Fig. 9c. Agent
1 quickly compensates and exits the operator’s avoidance
radius in an effort to maintain desired distances between
the obstacles. Thus, as the operator moves from one end of
the flight volume to the other, the designed swarm velocity
controller allows the Loco Swarm to actively avoid collision
with all obstacles, which now include the operator, ensuring
the operator’s safety during control of a cobot swarm while
occupying the same workspace. The operator still maintains
control of the aerial swarm via the previously discussed
gesture controls as can be seen at the end of the supplemental
material.
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Fig. 8: Time series of the distance between each agent and
the operator during operator collision avoidance experiment.

V. CONCLUSION

This work presents a novel cobot human swarm interface
(HSI) that prioritizes operator safety while reducing the
cognitive load during control of a cobot swarm. The cognitive
load required to control a single drone in the presence of a
human occupying a confined space is quite high. This load
is magnified significantly by increasing the number of aerial
vehicles being controlled. The HSI uses EMG-based gesture
control to command the position, orientation, and density of
the swarm in both the inertial frame, as well as the operator’s
frame, removing the necessity of controlling multiple agents
individually through the use of swarm formation control.
The location of the centroid of the swarm is relayed to
the operator via a vibrotactile haptic vest. Inter-agent as
well as agent-operator collisions are prevented through a
swarm velocity controller utilizing a distance-based potential
function.

Experimental results demonstrate that an operator can
control an aerial swarm while safely occupying and moving

throughout the same workspace. Quantification of cognitive
loads is a worthwhile endeavour for subsequent research.
Ongoing and future work is focused on adapting this HSI to
more computationally capable autonomous quadrotors, with
an eye towards eliminating the requirement for infrastructure
such as the motion capture system for operator localization
and laptop base station.
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Fig. 9: Time series (a-d) of the Loco Swarm avoiding
collision as an operator walks through the center of the flight
volume. The △ symbol denotes the position of the operator,
while the ◦ symbols denote the agents in the swarm. Both
the operator and the agents are shown with their respective
repulsive radii of influence. The × symbols represent the
assigned goal locations for the agents.
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