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3D reconstruction of fish schooling kinematics from underwater video

Sachit Butail and Derek A. Paley

Abstract— This paper describes a probabilistic framework to
estimate the shape and position of multiple fish in a school. We
model the fish shape as an ellipsoid with a curvature coefficient
that allows us to incorporate bending. An expression for the
extremal contour in terms of state parameters is used to derive
a likelihood function for shape. We present a motion model
that uses curvature as an input to the turning rate. Tracking
is performed using a particle filter with joint probabilistic data
association. We evaluate our algorithm using simulated data
and further characterize its performance using real data from
a laboratory experiment with six giant danios.

I. INTRODUCTION

Animal aggregations have fascinated and inspired re-
searchers studying collective behavior in many species [14].
Where biologists stand to gain from tools in engineer-
ing that help advance the understanding of animal groups,
engineers use this improved understanding to design bio-
inspired robotic systems. Among animals that demonstrate
collective behavior, fish are particularly attractive because
a wide variety of schooling fish are easy to procure and
maintain in a laboratory environment.

While there are many control strategies that appear to
replicate collective behavior [24], [12], there are far fewer
experiments that have managed to quantify this kind of
behavior in nature. A major reason for this is that automatic
tracking of multiple targets is inherently hard. Advances
in computer vision techniques have helped: e.g., tracking
positions of up to eight fish in three dimensions [26].
Still, an underwater environment presents challenges such
as changing light conditions, clutter and reflections. We
would not expect fish to exhibit natural behavior were we to
put markers on them. A typical schooling behavior as seen
from an underwater camera consists of numerous occlusions,
speed bursts and sharp turns.

Fast starts and quick turns are common swimming behav-
ior, often as a precursor to an escape or attack [25]. In a
fish school the collective response to an external cue can
take place within a fraction of a second. In such a scenario
the pose of each fish may not give a complete picture. The
sensory volume of a fish that determines nearest neighbor
interactions is dependent on the instantaneous pose and shape
of the fish body [10]. In this paper we build a framework to
track position, orientation, and shape of individual fish in a
school.
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Fish schools have been tracked in both their natural
environment [11] and in laboratories [26], [17]. Positions
of up to fourteen fish have been tracked in two dimensions
[17] and groups of four and eight fish have been tracked in
three dimensions [26]. In [11] an acoustic sensor is used to
track individual fish in a school from a moving platform. In
[26], [17] least squares fitting is used to join track segments
already matched on the image plane.

We are not aware of any prior instance of automatic
shape tracking of multiple fish in a school. In the context
of computer vision, our objective is to track the structure
of multiple non-rigid objects through time. We have ap-
proximate knowledge of our target geometry when it is
not in motion. Structure of a rigid object can be estimated
using feature extraction [21] or optical flow [1]. For a non-
rigid object, however, shape estimation is relatively difficult.
Feature-tracking algorithms extended to non-rigid objects
involve distorting a regular shape along the low frequency
modes. A detailed model is then created through training
data [15], or determined probabilistically [22]. We found
feature tracking to be unsuccessful in tracking multiple
similar looking objects. Another method not tested here
called shape from silhouette builds a 3D approximation of
an object based on overlapping volumes from within the
silhouettes of multiple views [8].

As our objective is to solve a multi-target tracking prob-
lem, we are concerned with data association and occlusions.
There is an extensive amount of literature on both these
aspects that are addressed in different applications [3], [18],
[13]. For example, in [13], [19] occlusions are explicitly
handled by using prior knowledge about target geometry.

In this paper we utilize prior information about our target
shape in a probabilistic tracking framework. We model fish
motion as having constant speed along its body direction
(heading) with orientation driven by random turning rates.
The yaw motion is proportional to curvature about the yaw
axis. We model fish shape as an ellipsoid that can be bent
along its center line as a function of a single parameter called
curvature. This model relates the shape and its 2D projection.
State estimation is performed using a particle filter with joint
probabilistic data association for motion correspondence.
We evaluate our algorithm using simulated data and further
characterize its performance using a laboratory experiment
with six giant danios (Danio aequipinnatus) in a 300 gal tank.

The contributions of this paper are as follows:

o We mathematically relate the 3D shape of a fish body
to its 2D image under perspective projection, using a
model of a bent ellipsoid.

« We implement a probabilistic estimation algorithm to



automatically track 3D position and shape of individual
fish in a school.

The paper is outlined as follows: Section II provides a
background on nonlinear estimation and data association
methods. Section III presents the bent ellipsoid model and
describes the mathematical relation of the 3D model to its
2D projection according to the tracking variables (position,
heading and curvature) in terms of a likelihood function. The
problem is then cast in a particle filtering framework. Section
IV describes experimental results and Section V provides a
summary of the paper and highlights of our ongoing work.

II. MULTI-FISH TRACKING AND DATA ASSOCIATION

In this section we give an overview of nonlinear estimation
techniques followed by a brief discussion on data association
techniques needed to resolve measurement target association.

A. Nonlinear estimation

Both the motion and measurement models discussed in
this paper are nonlinear functions of state. In this case
a linear estimator such as Kalman filter would diverge
easily. In vision-based systems, nonlinear estimators such
as the extended Kalman filter (EKF), the unscented Kalman
filter (UKF) and the particle filter are often used to track
targets [2]. While the extended Kalman filter (EKF) has
been successfully used in target-tracking systems, particle
filters perform better than the EKF in scenarios that involve
high nonlinearities and non-Gaussian distributions [2]. In this
paper we use a standard sampling importance resampling
(SIR) particle filter to track multiple fish in a school. Within
a particle filter we use a measurement likelihood function
to encode our confidence in the information we receive. A
likelihood function is a conditional probability P(Z|X) of a
measurement Z given state X [3].

Although we use only heading in our state vector, in order
to model shape we need the body orientation represented by
a rotation matrix [& ¢ Z]. We make the assumption that a
fish does not roll about its center line. Using the mean & we
compute the cross product of the vertical axis in the inertial
frame with & to get the g direction in the body frame. The
rotation matrix is completed by setting 2 = & X g.

B. Data association

Data association, common to all multi-target tracking
systems, is the task of matching measurements to targets. In
our context, for example, this implies maintaining the same
measurement-target associations through consecutive frames.
In an environment with clutter it is typical to get more
measurements than the number of targets. A simple strategy
is to assign a measurement to the nearest measurement esti-
mate; this strategy is called the nearest neighbor filter (NNF)
[3]. An optimal Bayesian filter in this scenario would take
into account all of the past history of measurement-target
associations and branch out a path from each such pairing to
assign a probability to the latest set of measurements. The
number of paths in such a scenario increases exponentially
with the number of measurements [16]. Fortunately, there

exist several heuristics to trim these paths [16] (For a review
of data association techniques please refer to [9].)

In this paper we use a method called joint probabilistic
data association (JPDA) [3]. The JPDA algorithm assigns
probability values to measurement-target associations based
on current measurements and state estimates. These values
are then used to assign a weight to each association. The final
update to a target estimate during a time-step is a weighted
sum of all possible measurement updates. At any time-step
k, the set of all valid target-measurement associations, 6,
is generated based on a gating volume. A feasible event
0 € 0 is created such that (i) each measurement has only
one source and (ii) each target (excluding clutter) produces
exactly one measurement or no measurements at all. The
joint measurement-target association probability 3;; between
measurement j and target ¢ is [3]

Bij =Y P(012%), )
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where Z* is the set of all measurements up to
time k. P(6|Z*) as per Bayes theorem is the prod-
uct of the measurement-association likelihood function
P(Z[k]|0,Z*~) and the prior P(#). Z[k| represents all
measurements at k. All unassigned measurements are as-
sumed to be uniformly distributed across the entire ob-
servation region. The probability of each association in a
feasible event is computed using the measurement likelihood
function. In a particle filtering framework, the measurement
likelihood function is averaged over all samples [18].

III. RECONSTRUCTING FISH KINEMATICS FROM VIDEO

In this section we present a model of fish shape, followed
by a model of fish motion. Measurement models for ex-
tracting position and shape (which includes orientation) from
video are described and cast in a particle-filtering algorithm.

A. Fish shape as a bent ellipsoid

A simple yet robust method to track an articulated object
is to model it as a series of connected quadrics [19], [8].
An even closer approximation of different shapes within an
object can be achieved by modifying the general quadric
equation to form a superquadric [20], or an extended quadric
[28]. All of the above strategies, however, add many more
variables to the state space. We use a similar approach of
modeling the fish shape as a quadric—an ellipsoid—but in a
way that allows us to use a single extra parameter, &', which
we call the curvature, to represent bending of the fish body
during swimming.

We begin with the equation of an ellipse centered at the
origin and oriented along the horizontal axis. Given a point
on the ellipse u = [us UQ]T, its equation can be written
as u?/a® +u2/b? = 1, where a and b are the lengths of the
semi-major and-minor axes respectively. To bend this ellipse
we re-define the long axis as a curve, us = f(up). The
new equation becomes u?/a? + (uz — f(u1))?/b? = 1. For
example, to bend the ellipse in a crescent we set f(u1) =
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Fig. 1. Possible solutions to a quartic equation with at least one repeated
root. Also shown is a bent ellipsoid with its projection on camera plane
showing corresponding scenarios in the same color.

Ku?, where K is the curvature!. When K = 0, the ellipse
is straight; when K # 0, it bends in a parabola.

A similar strategy is employed to bend an ellipsoid in three
dimensions [7]. Consider an ellipsoid with dimensions a, b, ¢
such that @ > ¢ > b. The equation for an ellipsoid that is
bent on its shortest dimension is
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where rz = [7“1 T 7“3] is a point in a body frame B.
We re-write equation (2) in matrix form as
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where Qp = diag{1/a?,1/b% 1/c?,~1}, and 75 =
[rg 1]" is the homogeneous representation of 75. To

express (2) in inertial coordinates, we use the 4 x 4 transfor-
mation matrix 7" from the inertial frame Z to frame B such
that 7z = T'r. We can write (3) as
2(7 5\4 SN2
’I’~‘TQC7"~—|— K (g;l'f‘) _ 2K(T1’ll)°2) (TQT‘) _ O’ (4)

where Q¢ = TTQpT and T; denotes the ith row of 7.

Having written the equation of a bent ellipsoid in inertial
coordinates, we now proceed to project it onto an image
plane under perspective projection. Similar analysis has been
employed for quadrics [6], [19]. Without loss of generality
we assume the camera frame C is coincident with the inertial
frame Z. We represent a line from the origin by L(t) = It
with I = [l1 1o lg]T and t a free parameter. Replacing 7
in (4) with [L(t)T 1]T yields a fourth-order polynomial in
t. For a point to lie on the bounding contour of the 3D shape,
the polynomial should have a single root. The projection of
each such point will form the extremal contour in the image
plane. We seek to find an expression for such a contour in
order to extract information about the 3D shape.

If the discriminant of a polynomial with real coefficients
is zero, it will have at least two roots that are same [4].

Note that this bending causes a proportional increase in the total length
of the ellipse that can be adjusted by setting the length of semi-major axis
as a function of K. In the example above, where f(u1) = Ku?, we can
replace a in the second equation by a; such that a% + K 2a§ = a2, which

implies a, = l/K\/—l +V1+4K2a?/2, for K #0

Fig. 2. Modeling fish as bendable ellipsoids. Shown are image frames
from two cameras with image planes normal to each other. The extremal
contours for each fish use the ellipsoid model.

(This condition is equivalent to having a point on the
surface tangent to its position vector.) Demanding that the
discriminant be zero raises four possible scenarios (Fig. 1):
i. All four roots are the same
ii. Two roots are the same and two are distinct
iii. Two roots are the same same and two are imaginary
iv. Two pairs of repeated roots
Requirement (i) above for a quartic (fourth-order polyno-
mial) is too strong as we can have cases where two roots
are same and the other two do not exist. The only case that
is undesirable is case (ii), i.e., when we have 3 distinct real
roots. Looking at Fig. 1 we see that the projection of points
corresponding to such cases will lie inside the silhouette.
The discriminant for a quartic of the form pyt* + 4pst® +
6pat? + 4dpit + po = 0 is [4]

I3 —27J%2 =0, )

where I = pypo —4psp1 +3p3 and J = papapo + 2p3pap1 —
pap? — pipo — p3. In our case the coefficients p;,i = 0, ..., 4
contain values from the Q)¢ and T matrices along with
curvature K. For example py = Qcaus + K?/0*T}, —
2K /b?T5 4T}, where the subscript ; ; on matrices Q¢ and
T denote element (i, 7). (See the appendix for a list of all
coefficients.) We normalize the vector I with respect to I3
such that L(t) = [u v 1]Tt with [u v]T denoting a
point in the image plane for a camera with unit focal length.
The points on the image plane that satisfy (5) lie inside or
on the silhouette of the projection.

B. Particle-filtering framework

We begin with a model that approximates fish motion. The
following assumptions are made:

o A fish shape is approximated by a bent ellipsoid.

o The ratios between semi-major, medium and minor

axes, a/b,a/c, are the same for all fish.

o A fish does not roll about its centerline; fish maneuver

by yaw and pitch motions only.

The target state vector X = [r’ 2 K, s]T at any time
comprises position » € R3, heading * € R3, curvature
K € R, and speed s € R. The full orientation of a fish
is found by completing the orthonormal frame as discussed
in Section II-A. K is assumed to decay exponentially while
being perturbed by a Gaussian disturbance dy = N(0, 0% ).
The motion model is

=S, T=UXT

. 6
K=-\K; =0, ©



Fig. 3. Motion and measurement models. The left most figure shows how
the ellipsoid turns in the direction of curvature. The grey contour in the
two figures on the right is generated by projecting a bent ellipsoid onto two
camera frames. The black dots are noisy measurements. Random contours
are generated and weighted using the likelihood function for the shape. The
contours that were weighted highest are shown in red dashed lines.

where u = [w, h,z/Jq]T is the control input denoting the
turning rate about each axes in the body frame.
atan(Ka) is the angle of inclination from the center of
ellipsoid to its tip.

For the stochastic version of (6) we model the unknown
turning rates as Gaussian random variables such that w,, =
N(0,02), wn, = N(0,07) and wy = N(0,02). We set 0, <<
oy, and o4, = 0 (the fish turns more than 1t pitches)

dr = sxdt; dx = dw, X

7
dK = —\Kdt + dwy; ds = dws, ™

where dw,, = [dww, dwh,z/)dwq]T

The following likelihood functions represent the measure-
ment model for position and shape. Our observations consist
of the centroid position u = [u U]T and silhouette s =
{ui,v;;4 = 1,...,ns} of each blob, where n; is the number of
pixels in the silhouette. The centroid measurement on a cam-
era image plane with focal length f (in pixels) as a function
of target center position r is u = f [7"1/7"3, TQ/'I"?,]T + Ianp,
where 7, is a two dimensional Gaussian noise vector for u
and v and I is the 2 x 2 identity matrix. The likelihood
function for location of a single measurement, u = wu(r),
and estimate, w, pair is

Ppos(u|r) = N(u; 4, X). (8)

N(u;a, X)) denotes a normal distribution function with mean
4 and noise covariance matrix ¥ € R?*? = diag{o2, 02}.
We use silhouette points to estimate shape. Consider
a point u; = [u, vi]T on the silhouette of an ob-
ject in the image plane. We wish to find the probability
p(u;|r,x, K). Given that ;& and K project an extremal
contour {(u;,v;)|(uj,v;) € C,j =1,...,n.} where n. is the
number of points in the contour, we can write the probability
as p(u;|C). The probability of a point on the silhouette w;
given contour C' (assuming that measurements are normally
distributed about the true state) can be written as the sum

p(u;|C) = Z N(u;;u;, X),
u;eC
where u; = [uj,vj]T The likelihood function for shape

P!, . for camera [ is the product of probabilities over all the
silhouette points

e = [ p(uslC). ©)

u; €S

TABLE I
PARAMETER VALUES USED FOR TRACKING

Parameter | Value Parameter | Value
ou 3.0 pixels oy 2.0 rad/s
O 3.0 pixels op 0.20 rad/s
oK 0.01 ow 0.001 rad/s
Os 5 mm/s A 10

The contours that align with the silhouette will always
have a point on the silhouette and are consequently weighted
the highest. In a multi-camera setup, where multiple per-
spectives of a scene are captured at the same instant, the
combined likelihood function is a product over the likelihood
for all cameras, Pspq = [[, P, Fig. 3 shows an example
of weighting contours using the shape likelihood function.
Note that position and shape likelihood functions are not
independent since silhouette points depend on the position of
a target in space. We use a position-only likelihood function
in scenarios where it is difficult to use shape information
such as during occlusions. Due to symmetry in the shape
representation there is a forward-backward ambiguity in the
likelihood function.

For the first time step, the particle filter is initialized man-
ually and the length of each fish is assigned. Measurement-
target association performed at each step is based on the
position-only likelihood function. If the projected extremal
contours of two targets overlap within a camera frame, an
occlusion is assumed and samples are weighted on the basis
of position only. When a target is again found in at least two
cameras without occlusions, the heading « and curvature K
are interpolated from the last time-step without occlusion.
The particle filtering algorithm for tracking multiple fish is
described below.

Initialize a set of samples N for each target j as a normal
distribution about the initial value. For each time-step k:

1. For each target ¢ and a set of validated measurements
based on a suitable gating volume [23], compute 3;; using
(D.

2. For each target 7
a) Compute particle weights and normalize for all mea-

surements Z[k] at time step k, according to

§ ﬁl] m; wZ _w’L § w’Lp b

JEZ[k]

where P, = P, if the target is occluded and P, =
Pspa otherwise.

b) Resample using normalized weights w;.

c) Estimate the output by computing the mean of each
parameter over all sample values.

d) Propagate each particle using motion model (7).

IV. EXPERIMENTAL METHODS AND RESULTS

Obtaining ground truth is not possible for all the pa-
rameters that we wish to estimate. In order to characterize
the performance of our tracking algorithm, particularly the
likelihood function and motion model, we run it on a single
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Fig. 4. Results from 25 Monte Carlo runs of a single fish simulation.

Errors plotted as dots are shown for position, heading and curvature. For
heading the angle between the estimated vector and true value is shown.

simulated fish. The simulated motion is generated by (6)
and the shape is constructed using the method described in
Section III-A. Fig. 3 shows a few steps in such a simulation.
At each step, the extremal contours were projected onto two
different camera planes and peppered with pixel noise having
¥ = diag{2,2}. These contours were used as silhouette
measurements for the tracker. Fig. 4 shows the results from
25 Monte Carlo runs of the algorithm using five hundred
samples with a time-step of 1/15 seconds for 5 seconds each.

For our laboratory experiment we tracked six giant danios.
These schooling fish are 4-5 cm long. The fish were moved
from a 20 gal tank into a 300 gal (1.2 m wide and 0.91
m deep) tank and kept there for a few days to acclimatize.
Schooling behavior was observed soon after the fish were
moved into the large tank. Four CWC-620WP Speco cameras
were mounted on the inside wall of the tank such that
the maximum volume was covered. (Three cameras were
mounted at the bottom, middle and top levels spaced at
120 degree intervals. The bottom and top cameras were at
an inclination pointing into the tank. A fourth camera was
mounted on top opposite to the other top camera.) Intrinsic
calibration was performed using the MATLAB™ calibration
toolbox [5]. Extrinsic calibration was performed by moving
a checkerboard between the cameras and propagating the
extrinsic parameters, [R t}, between overlapping camera
views until all camera positions and orientations were known
with respect to a common inertial frame.

Noise in images was a major concern despite the labo-
ratory conditions. Changing lighting effects in water gave
rise to glare and clutter in images. The background was
modelled as a running Gaussian average at each pixel [27].
The silhouettes were obtained using a Canny edge detector
on the binary image after filling up any dark pixels.
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Fig. 5. Tracking results with real data for position only. The plot shows
the absolute position error for each fish.

Verification of results: The results for position tracking
were verified using a GUI created in MATLAB in which a
user can click on fish and perform the association manually.
User marked centroid positions were then used to output a
least-squares estimate of position and projected back on to
the images for verification. Shape was verified by projecting
the occluding contour on the image plane and comparing
with the silhouette measurement.

Results & discussion: We are able to automatically
track position of all six fish despite occlusions for over forty
frames. Fig. 5 shows the error norm of difference between
the position vectors and user-verified (ground-truth) data for
all six fish. The tracker’s performance often degrades during
extended occlusions or when the fish are not visible in at
least two cameras, as can be seen in Fig. 5 for the purple
fish after frame 20 and, for the green fish, after frame 35.

Shape estimation (Fig. 6) is highly dependent on mea-
surements, which were often noisy. Not all fish shapes
were tracked well. Errors can be attributed to occlusions,
quick turns and inexact shape representation. We can address
occlusions by using cameras with large field of view, which
ensures that the fish stay within two cameras. Quick turns can
be addressed using high-speed camera to track shape during
fast maneuvers. Lastly, a better approximation of shape can
be made by using bends that are not necessarily about the
center of a fish body by introducing an additional parameter
in the bent-ellipsoid equation, (2).

V. CONCLUSION

We describe a probabilistic framework to estimate position
and shape of multiple fish in a school using underwater
cameras. This framework will be used to quantitatively ana-
lyze fish-schooling kinematics during subsequent behavioral
experiments. We mathematically model fish shape using a
bent ellipsoid with time-varying curvature. We develop an
expression for the extremal contour of such a shape under
perspective projection. We use a motion model with constant
speed and curvature-dependent turning rate in the body
frame. The tracking algorithm uses a particle filter with joint
probabilistic data association to estimate shape.

As part of ongoing work we are exploring methods to
improve shape estimation and track more targets. A prob-
abilistic framework allows us to include a high resolution
camera to augment the shape estimation. We also intend to
detect occlusions and compensate for them. In order to track



Fig. 6. Tracking results for shape. The bent ellipsoid shape is projected back onto two cameras at five different time-steps. Black arrows represent heading.
A target track is lost during occlusion in the 30th frame

larger datasets these algorithms may be implemented on a
parallel processing architecture such as CUDA™,
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APPENDIX

EQUATION FOR A BENT ELLIPSOID UNDER PERSPECTIVE

A

PROJECTION

bent ellipsoid as seen from the camera frame is a

trivariate equation in ry,79,73 Where r = [Tl,’l’z,’l"g]T is
a point in the camera frame. Setting » = L(t) as a function
of scaling parameter in ¢t we get a fourth-order polynomial
equation in ¢ of the form pyt* +4pst34+6pat? +4pit+po = 0.

The

coefficients p;, 7 = 0, ..., 4, of the above polynomial are

(subscript C is dropped from Q¢ for clarity):

Po

4p;

6p2

4p3

Y2

1
B UCT 2K T )
1
=20"Q1:34 + 5_2(4K2(T1,1:3l)T13,4 — 2K (18114
— 4K Ty 4(T1,1:30)T1 4)

1
=1TQq 131 + b—2(6K2(T1,1:3l)2T12,4—
4K (T 1.30)(Ty 130Ty g — 2K To 4(T1 1:30)%)

1

b—2(6K2(T1,1;31)2T1,4 — 2K (T2,1.30)(T1,1.31)?)
K2
Zb—Q(T1,1:31)4

=Q44 +



