
ABSTRACT

Title of thesis: Flowfield Estimation and Vortex
Stabilization near an Actuated Airfoil

Daniel Fernando Gomez Berdugo
Master of Science, 2019

Thesis directed by: Professor Derek A. Paley
Department of Aerospace Engineering and
Institute for Systems Research

Feedback control of unsteady flow structures is a challenging problem that is

of interest for the creation of agile bio-inspired micro aerial vehicles. This thesis

presents two separate results in the estimation and control of unsteady flow struc-

tures: the application of a principled estimation method that generates full flowfield

estimates using data obtained from a limited number of pressure sensors, and the

analysis of a nonlinear control system consisting of a single vortex in a freestream

near an actuated cylinder and an airfoil. The estimation method is based on Dy-

namic Mode Decompositions (DMD), a data-driven algorithm that approximates

a time series of data as a sum of modes that evolve linearly. DMD is used here

to create a linear system that approximates the flow dynamics and pressure sensor

output from Particle Image Velocimetry (PIV) and pressure measurements of the

flowfield around the airfoil. A DMD Kalman Filter (DMD-KF) uses the pressure

measurements to estimate the evolution of this linear system, and thus produce an

approximation of the flowfield from the pressure data alone. The DMD-KF is imple-



mented for experimental data from two different setups: a pitching cambered ellipse

airfoil and a surging NACA 0012 airfoil. Filter performance is evaluated using the

original flowfield PIV data, and compared with a DMD reconstruction. For control

analysis, heaving and/or surging are used as input to stabilize the vortex position

relative to the body. The closed-loop system utilizes a linear state-feedback control

law. Conditions on the control gains to stabilize any of the equilibrium points are

determined analytically for the cylinder case and numerically for the airfoil. Sim-

ulations of the open- and closed-loop systems illustrate the bifurcations that arise

from varying the vortex strength, bound circulation and/or control gains.
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Chapter 1: Introduction

1.1 Motivation and Approach

Unsteady flow structures play an important role in the generation of lift in

flow regimes with separated flow. Separated flow typically occurs in cases with low

Reynolds numbers, high angles of attack, rapid airfoil motion, or in the presence of

gusts [1]. These conditions are typical for small scale flyers such as insects, birds,

and micro aerial vehicles (MAVs) [2]. The rise in popularity of MAVs has led to

increased interest in modeling and control of unsteady separated flow. In fixed

wing aircraft, unsteady flow structures are usually undesirable, but biological flyers

such as insects and birds take advantage of flow structures to enhance lift or reject

gusts [2].

As a motivating example, during dynamic stall, the lift coefficient increases

beyond its value found in the static stall condition, due to the formation of a leading

edge vortex (LEV). As the angle of attack increases further, the LEV sheds and the

lift coefficient falls [3]. Some insects are able to stabilize the LEV to take advantage

of the increased lift [4]. There is great interest in applying feedback control to

enhance or regularize unsteady lift production by stabilizing the leading edge vortex.

Feedback control of an airfoil can be divided into two problems: (1) given a
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set of measurements, determine what is the state of the flowfield and (2) given the

state of the flowfield, determine what should be the actuation command in order to

obtain the desired lift. These are referred as the estimation and the control problems

respectively. Solving this feedback control problem fully is beyond the scope of this

thesis. Instead, this work presents an approach to each of these problems separately

and the results obtained therein.

A prerequisite for feedback control based on flow structures is a tractable

model of the flowfield dynamics. Modeling of unsteady flow has been done since

the early days of aerodynamics. However, such models take advantage of small

angle or inviscid flow assumptions to develop an analytic solution and thus are

not suitable in more general cases [1]. The flowfield near an airfoil is governed

by nonlinear partial differential equations. Accurate solutions exist in the form of

computational fluid dynamic solvers; however these are computationally expensive

and the state space is usually intractable for the purpose of estimation and control.

A simple mathematical model for the evolution of a LEV and the forces on the

airfoil is still an open question. Current approaches focus on data-driven methods

and potential flow models [2]. The approach in this thesis is to use a data driven

modal decomposition approach for estimation and a simplified potential flow model

for control.
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1.1.1 Approach for Estimation

Estimation can be achieved by a dynamic observer operating on a model of the

flowfield. Common approaches include linearization of the Navier-Stokes equations

[5], fitting a reduced-order model to experimental data, such as the Goman-Khrabrov

model [6], or using modal decompositions [7].

Modal decomposition methods extract a small number of modes that contain

most of the information from a set of high-dimensional data. For example, Proper

Orthogonal Decomposition (POD) [8] provides a set orthogonal modes that can

be used to optimally represent the original dataset in an energetic (least-squares)

sense. A reduced number of POD modes can be used to reproduce the original

dataset; however, these modes do not necessarily correspond to structures that

evolve coherently in time and space [9]. Balanced POD (BPOD) [10] finds modes

that are the most controllable and observable, making it very useful for feedback

control as in [11]. However, BPOD requires prior knowledge of the dynamics of the

system [7].

An alternative modal decomposition that focuses on describing the time evo-

lution of the states is Dynamic Mode Decomposition (DMD). DMD is a data-driven

algorithm initially developed for modal decomposition and analysis of fluid flows [12].

In the context of fluid mechanics, DMD decomposes the flow into modes of oscil-

lation and, thus, provides a useful dynamical description of the system. DMD has

been commonly used to analyze the behavior of unsteady flow [7]. The traditional

procedure used for analyzing a flow using DMD is to assimilate velocity data ob-
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tained either computationally or through Particle Image Velocimetry (PIV). Modal

decomposition generates a reduced-order, approximate model in terms of the DMD

modes, which may be used for estimation.

If DMD is performed with both state and output data, a linear system that

approximates the dynamics and the output equation can be constructed, and a

Kalman Filter (KF) may be applied to estimate the states [13]. We refer to this

filter as a DMD Kalman Filter (DMD-KF). This thesis applies the DMD-KF to

generate full flowfield estimates using DMD modes and data obtained from a lim-

ited number of pressure sensors. Define the original data set as the training set,

which contains PIV data and pressure measurements. Sparsity Promoting DMD

(DMDSP) selects a reduced number of modes in order to simplify the system, while

providing a sufficiently accurate approximation of the flowfield. The DMD-KF uses

pressure measurements as inputs to estimate a linear dynamical system in which the

states are the amplitudes of the DMD modes. With knowledge of the modes and

an estimate of the amplitudes, the flowfield is reproduced.The performance of the

estimator is evaluated with the original training data set and a separate test data

set consisting of a different realization of the same system. Although our analysis

was conducted offline, the estimator may be useful for real-time analysis and control

of a flowfield when distributed pressure measurements are available, but in-situ PIV

measurements are not.
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1.1.2 Approach for Control

Most approaches to modeling the leading edge use a point vortex model. This

model assumes inviscid flow with vorticity contained in point vortices. With enough

point vortices, the model approximates the behavior of a continuous vorticity dis-

tribution. A point vortex model sheds point vortices to model the generation and

shedding of vorticity from the leading and trailing edges of an airfoil. The aim

of this work is the stabilization of a leading edge vortex (LEV), which forms and

sheds off of airfoils at high angles of attack during dynamic maneuvers. The leading

edge vortex presents itself as a large vortical structure above the airfoil that grows,

sheds, and grows again [14]. Motion of the airfoil perpendicular and parallel to the

freestream is called heaving and surging, respectively. We consider heaving and/or

surging as control inputs to the LEV stabilization problem. This work presents a

first step in developing a feedback control law that stabilizes a vortex near an airfoil.

This thesis models the vortical structure as a single vortex, an approach that was

considered in [15]. Initially we present the stabilization of a vortex near a cylinder.

Then the model is extended to an airfoil.

1.2 Relation to Prior Work

1.2.1 Dynamic Mode Decomposition for Flowfield Analysis

The DMD-KF is different from [16] [17] in which the Kalman filter is used for

obtaining the DMD modes more precisely in the presence of noise. To be useful for
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estimation, the DMD modes should not only represent the dataset in which DMD

was performed, but also the ensemble of flow trajectories possible for the underlying

dynamics. Ideally, it is desirable to obtain modes that are physically significant to

the system, instead of modes that fit patterns specific to the data used to compute

DMD modes. Physically significant modes may more accurately represent different

realizations of the same system. Indeed, DMD may be able to provide such a general

model of the dynamics even if the system is nonlinear.

Obtaining physically significant modes is a goal of many DMD-related papers:

Extended DMD [18] uses a dictionary of functions to better approximate the Koop-

man operator of the underlying dynamics; Total DMD [19] [20] seeks to correct for

the effect of noisy data; [9] shows that Spectral POD optimally accounts for the vari-

ation in an ensemble of DMD modes; and Sparsity Promoting DMD (DMDSP) [21]

finds the most relevant DMD modes for a set of data. Implementing these variations

of DMD could potentially improve the perfomance of the DMD-KF, however such

an exploration lies beyond the scope of this thesis. Other works have used DMD

with pressure measurements to obtain optimal actuation frequencies for open-loop

control [22], predicting forces on a pitching airfoil [23], and performing feedback

control for flow reattachment [24].

1.2.2 Control of Vortices near a Cylinder or Airfoil

The interaction of vortices with other bodies, especially airfoils and wings has

been extensively studied in the fluid dynamics literature. Approaches for vortex sta-
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bilization often involve passive structures [25] and jets [26]. Rotational accelerations

have been found to stabilize LEV on revolving wings [27]. Vortex-cylinder models

have also been used extensively in recent years to model the vortex shedding of a

swimming fish [28]. The simple potential flow, vortex-cylinder system considered

in this work has been studied in [29], in which equilibrium point and bifurcations

are analyzed. In [15] a control law is designed using simple vortex-cylinder model

and tested with a simulation with Navier-Stokes equations. The new contribution

presented here lies in a detailed analysis on the conditions on feedback gains that

lead to stability and the corresponding bifurcations that arise from feedback.

1.3 Contributions of Thesis

This thesis can be split into two independent sections. The first is the descrip-

tion an of implementation of a data-driven method for flow field estimation using

pressure sensors near an actuated airfoil. The second is the stability analysis of two

nonlinear systems: a vortex in the presence of an actuated cylinder and a vortex in

the presence of an airfoil.

The main contribution of the estimation section is to apply the DMD-KF

to experimental flowfield and pressure sensor data generated by actuated airfoils

at high angles of attack, an unsteady condition of interest for the application of

feedback control. The first experiment, a pitching cambered ellipse, illustrates the

selection of modes for the reduced-order model and shows the effect of the number

of modes on the performance of the estimator. The second experiment, a surging
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NACA 0012, is evaluated to characterize the performance of the estimator for various

flow conditions. Various sources of estimation error are analyzed and we suggest

strategies to identify them. These results have been published in [30] and [31].

The contributions of the study of the vortex-cylinder system are (1) the design

of a state-feedback control for a surging and/or heaving cylinder that exponentially

stabilizes any of the equilibrium points of the system; and (2) the corresponding

analysis of local bifurcations that arise under variation of the closed-loop control

gains. Simulations of the open- and closed-loop system illustrate these bifurca-

tions and the corresponding vortex trajectory. These results have been accepted

for publication in American Control Conference 2019 [32]. Phase portraits for the

vortex-airfoil system in the open and closed-loop cases are presented for comparison

with the vortex-cylinder system.

1.4 Thesis Outline

The thesis is organized as follows: Chapter 2 provides background information

for the results presented in further chapters, Chapter 3 presents the DMD and DMD-

KF results. Chapter 4 presents the analysis of the cylinder-vortex and airfoil-vortex

systems. Chapter 5 summarizes contributions and susggests future work.

Section 2.1 provides an overview of potential flow modeling and derives the

equations of motion of a single vortex near an actuated cylinder. Section 2.2 sum-

marizes DMD, DMDSP, and DMD-KF.

Section 3.1 describes the implementation of the DMDSP algorithm on two

8



experimental data sets, including an overview of the process ofselecting the number

of DMD modes. Section 3.2 evaluates the DMD-KF performance via comparison to

the original and DMD reconstructed data. Section 3.3 summarizes the DMD-KF

results.

Section 4.1.1 presents the various flow topologies of the open-loop system that

result from the choice of system parameters. Section 4.1.2 analyzes the stability of

the equilibrium points of the closed-loop system, gives conditions on the feedback

gains to achieve exponential stability, and presents simulation results. Section 4.1.3

summarizes the results for the cylinder-vortex system. Section 4.2.1 presents the

equilibrium points and sample trajectories for the airfoil-vortex system. Section 4.2.2

presents results of applying feedback control to stabilize the airfoil-vortex system.

Section 5.1 summarizes the contributions of the thesis and Section 5.2 suggests

future work.
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Chapter 2: Background

2.1 Potential Flow Modeling

The potential flow model assumes the fluid is incompressible and irrotational.

Under this assumption, the fluid velocity can be obtained as the gradient of a po-

tential function [33]. The advantage of potential flow is that the solution can be

decoupled as a sum of elementary flows such as point sources, sinks, vortices, dou-

blets, and uniform flow. For example, a cylinder in uniform flow can be described as

a doublet in a uniform field. This configuration forms a cylinder-shaped streamline

which separates the flow into two regions in the same way the surface of the cylinder

does.

Dettached flow structures arise due to viscous effects and contain vorticity (i.e.

the flow is not irrotational). Despite this, potential flow is useful to model dettached

flow because the transportation of vorticity is mostly driven by convection instead

of diffusion [14]. The vorticity is contained in a point vortex, vortex sheet or vortex

patch that convects according to the flowfield at the vortex position minus the

flowfield of the vortex itself.
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2.1.1 Dynamics of a point vortex near a cylinder

In this work, the vorticity is modeled as a single point vortex. Consider a

cylinder of radius r0 centered at z0, a vortex of strength Γv located at z, and a

freestream velocity u∞, where z, z0, u∞ ∈ C and the real and imaginary components

correspond to x and y components, respectively. The potential for the freestream

flow around the cylinder consists of a uniform flow, a doublet, and a vortex placed

at the center of the cylinder [33]. The strength Γ0 of the vortex placed at the center

of the cylinder (from now on referred to as the bound vorticity) is a free parameter

since any value obeys the boundary conditions of the flow. Let ∗ denote complex

conjugation. The flow felt by the vortex corresponds to that of the freestream around

a cylinder with a bound vortex plus that of an image vortex of opposite strength

placed at [34]

zim = z0 +
r2

0

(zv − z0)∗
. (2.1)

Figure 2.1: The drifting vortex is convected by the influence of the freestream, the
cylinder, the image vortex, and the bound vortex.
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The equations of motion are derived using a complex potential. The potential

F(z) for the flow with a vortex placed at zv, is

F (z)=u∗∞z+
u∞r

2
0

z − z0

+
Γ0

2πi
log (z − z0)− Γv

2πi
log (z − zim) +

Γv
2πi

log (z − zv) . (2.2)

The potential that describes the time evolution of the vortex position, is the potential

of the flow minus the potential of the vortex itself, i.e.,

F−v(z) = F (z)− Γv
2πi

log (z − zv) . (2.3)

The time evolution of the vortex position is given by the conjugate gradient of

F−v(z) evaluated at the position of the vortex [35] i.e.,

żv =

(
dF−v(z)

dz

∣∣∣
z=zv

)∗
=u∞ − u∗∞

r2
0

((zv − z0)2)∗
+
iΓ0

2π

zv − z0

|zv − z0|2
− iΓv

2π

zv − z0

|zv − z0|2 − r2
0

.

(2.4)

2.1.2 Dynamics of a Point Vortex Near an Actuated Airfoil

The flow around an arbitrary shape can be found using a conformal mapping.

A conformal mapping is an angle preserving transformation which, in this context,

maps a cylinder to an arbitrary shape [35]. The potential function around a cylinder

can then be used to find the potential around a new shape such as a Joukowsky

airfoil, a type of airfoil which is of theoretical interest because its shaped is obtained
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by a simple conformal mapping known as the Joukowski transform.

The dynamics for a point vortex in the presence of an airfoil differ from the

cylinder due to the conformal mapping, the imposition of the Kutta condition, and

the Rouge correction. The Joukowsky transform, may induce an asymetry that

breaks the results obtained for the equilibrium conditions for the cylinder. The

Kutta condition states that the flow leaves tangentially to the separating edge. This

condition forces a specific value for the circulation around the airfoil, as opposed to

the cylinder in which different values for the circulation are valid solutions [36]. The

Rouge correction is a term that arises due to the substraction of the potential due

to the free vortex, which is not trivial when using the Joukowski transform [37].

2.1.2.1 Joukowski Transform

Let g(z) represent the mapping function

ζ = g(z) = z + a2/z. (2.5)

z is the coordinate in the circle plane. ζ is the coordinate in the airfoil plane.

Consider a circle of radius r0 = a(1 + c) centered at z0 = −ac and a, c ∈ R. The

circle maps to a Joukowsky airfoil with a sharp trailing edge at z = a→ ζ = 2a [38].

2.1.2.2 Kutta condition

The Kutta condition requires the flow velocity in the circle plane at the trailing

edge to be 0. Can also be written as [38]
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dF

dz

∣∣∣
z=a

= 0. (2.6)

Replacing in (2.2)

0 = u∞e
−iα − u∞eiα

a2(1 + c)2

(a2(1 + c)2
+

Γ0

2πi

1

a(1 + c)
+

Γv
2πi

(
1

a− zv
− 1

a(1 + c)− a2(1+c)2

(z∗v+ac)

)

0 = 2πiu∞
(
e−iα + eiα

)
+ Γv

(
(z∗v + ac)(a(1 + c)− a2(1 + c)2 − (a− zv)(z∗v + ac)

(a− zv)(a(1 + c)(z∗v + ac))− a2(1 + c)2

)
+

Γ0

a(1 + c)

0 = 4πa(1 + c)u∞sin (α) + Γv

(
(z∗v + ac)(zv + ac)− a2(1 + c)2

(a− zv)(z∗v − a)

)
+ Γ0

Γ0 = −4πa(1 + c)u∞sin (α) + Γv
|zv + ac|2 − a2(1 + c)2

|zv − a|2
(2.7)

The term that accompanies Γv ranges from 0 near the surface of the cylinder

(except near the trailing edge) to ∞ near the trailing edge and is always positive.

It goes to 1 far away from the cylinder. Figure 2.2 shows the geometrical relation

between this terms to ease visualization.

2.1.2.3 Routh correction

Let Fc(z) be the complex potential in the circle plane. It can be split as

Fc(z) = F−vc (z) +
Γv
2π

log (z − zv) (2.8)

where F−vc (z) is the complex potential for everything (Free stream, bound vortex,
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Figure 2.2: Geometrical relation between terms of (2.7).

image vortex) except the free vortex itself.

The complex potential at corresponding z and ζ points are equal [37].

Fa(ζ) = Fc(z)

F−va (ζ) +
Γv
2πi

log (ζ − ζv) = F−vc (z) +
Γv
2πi

log (z − zv)

F−va (ζ) = F−vc (z) +
Γv
2πi

log

(
z − zv

g(z)− g(zv)

)
.

(2.9)

Then derive and set ζ = ζv to find the complex velocity.

dF−va (ζv)

dζ
= lim

z→zv

d

dζ

[
F−vc (z) +

Γv
2πi

log

(
z − zv

g(z)− g(zv)

)]
=
dz

dζ

[
dF−vc (zv)

dz
+ lim

z→zv

d

dz

(
Γv
2πi

log

(
z − zv

g(z)− g(zv)

))]
=

1
dg
dz

[
w−vc (zv) +R

]
.

(2.10)

The first term inside the brackets is identical to the complex velocity of a vortex

near a cylinder. The second term is known as the Routh correction and evaluates
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to [38]:

R =
iΓv
2π

d2g
dz2

2dg
dz

=
iΓv
2π

a2

zv(z2
v − a2)

(2.11)

The convection velocity for a vortex near an airfoil is the complex conjugate of

(2.10).

ζ̇v =
1(
dg
dz

)∗ (w−vc ∗ +R∗) (2.12)

The term w−vc
∗ is identical to żv in (2.4), however zv in (2.4) has dynamics different

from zv in (2.10), even if Γ0 is replaced by the Kutta condition. To prove this, Let

zv,c have dynamics defined by (2.4), i.e. żv,c = w−vc
∗, and zv,a be the zv used in this

Section, i.e. ζv = g(zv,a). The definition of zv,a implies

ζ̇v =
dg

dz
żv,a

żv,a =

(
dg

dz

)−1

ζ̇v

=

∣∣∣∣dgdz
∣∣∣∣−2

(żv,c +R∗)

=

∣∣∣∣ z2

z2 − a2

∣∣∣∣2(żv,c +

[
iΓv
2π

a2

z(z2 − a2)

]∗)
żv,a =

∣∣∣∣ z2

z2 − a2

∣∣∣∣2(żv,c − iΓv
2π

a2(z3 − za2)

|z|2|z2 − a2|2

)
.

(2.13)

By setting Γv = 0 it is trivial to see żv,a 6= żv,c. The conformal mapping is

a way to obtain the dynamics of the vortex in the airfoil plane, not a coordinate

transform between two equivalent dynamical systems. However we do want to work

on the circle plane and make it equivalent to the dynamics of a vortex near an airfoil

which is why we will use the variable żv,a. Compared to the dynamics near a circle,

there are three new effects at play. The first is the Kutta condition, which fixes

16



Γ0 as a function of the angle of attack, the freestream velocity and the strength

and position of the free vortex. The second is Routh correction, which adds a new

term in the dynamics and the third is a scaling factor which makes speeds near the

trailing edge very high. The scaling factor is not of great interest because it won’t

affect the equilibrium points or the shape of the trajectories.

2.2 Dynamic Mode Decomposition

DMD is a data-driven algorithm to compute the eigenvalues and eigenmodes

of a linear model that approximates the dynamics of data [39]. There are many

variations of and additions to DMD [40]. This thesis uses Schmid’s algorithm [12]

to obtain the DMD modes and eigenvalues and DMDSP by Jovanović, Schmid and

Nichols [21] to select the most relevant modes for a reduced-order model. The

Koopman Observer Form by Surana and Banaszuk [13] creates an observer matrix

for the reduced-order model to be used in the DMD-KF for estimation [41].

2.2.1 Base algorithm

Consider a dataset of m+ 1 snapshots, where each snapshot corresponds to a

vector of observablesψ(tk) ∈ Rn at time step k for k = 1, ...,m+1. The time between

steps must be constant, i.e., tk+1 − tk = ∆t. It is common for n (the dimension of

the snapshot vector) to be much bigger than m+ 1 (the number of snapshots). For

example, in fluids simulations or PIV data there are often more measurements than

time steps. Form two matrices with these snapshots; the columns of these matrices
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contain the snapshot sequence, offset by one time step, such that

Ψ =


| | |

ψ(t1) ψ(t2) · · · ψ(tm−1)

| | |

 and Ψ′ =


| | |

ψ(t2) ψ(t3) · · · ψ(tm)

| | |

 .
(2.14)

DMD is an eigendecomposition of a linear operator A that approximates the

dynamics that evolve the system one step forwards in time, i.e., Ψ′ = AΨ. The

best fit for this operator can be found using the pseudoinverse †, so A = Ψ′Ψ†.

However, if n � m, this approach may not be practical. Instead, the eigenvalues

and eigenvectors of A are obtained without computing A explicitly, using a projected

version of A. Consider the Singular Value Decomposition (SVD)

Ψ = UΣV ∗, (2.15)

where ∗ indicates the conjugate transpose. The columns of U form the POD modes

of the data set Ψ. The pseudoinverse of the SVD satisfies Ψ† = V Σ−1U∗, which

implies

A = Ψ′V Σ−1U∗. (2.16)

Ã is a low-dimensional projection onto the POD basis [12] defined by the columns

of U , i.e.,
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Ã = U∗AU = U∗Ψ′V Σ−1. (2.17)

If m < n, computing the eigendecomposition of Ã (m × m) is easier than

computing the eigendecomposition of A (n × n). Let Λ be the diagonal matrix of

eigenvalues of Ã and W the matrix of right eigenvectors of Ã. The eigenvalues of A

are the same as the eigenvalues of Ã [42] and represent the DMD eigenvalues. The

matrix of DMD modes

Φ = UW (2.18)

corresponds to the approximate eigenvectors of A [42]. Note that the DMD modes

in (2.18) are a linear combination of POD modes.

Let the vector α(t) of DMD mode amplitudes denote the approximate repre-

sentation of the vector ψ(t) of observables in the DMD-mode basis, so ψ(t) ≈ Φα(t).

The time evolution is α(tk+1) = Λα(tk), which implies the approximate solution for

the dynamics of the vector observable is [40]

ψ(t) ≈ Φα(t) = ΦΛ(t−t1)/∆tα(t1), (2.19)

where ∆t = tk+1 − tk. Using the decomposition (2.18) and (2.19) allows us to ap-

proximate the original data or data coming from the same dynamical system, but

with different initial conditions. If the underlying system is linear, the DMD modes

and eigenvalues are inherent to the dynamics, whereas the mode amplitudes depend

on the initial conditions. If the system is nonlinear, the modes and eigenvalues
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may change with the initial conditions of the dataset. However, for the purpose of

estimation, we assume that the modes found are representative of and inherent to

the underlying dynamics. Whether or not this assumption is valid depends on how

nonlinear the system is and how representative the dataset is of the trajectories to

be estimated.

2.2.2 Sparsity Promoting Dynamic Mode Decomposition

In the case of an oscillatory flow, a small number of DMD modes often provides

a sufficiently accurate reconstruction of the data [3]. To find those modes and their

initial amplitudes, we employ the Sparsity Promoting DMD (DMDSP) algorithm

developed by Jovanović, Schmid and Nichols [21], which consists of finding the mode

amplitudes that minimize the cost function

Jγ (α(t1)) =
m∑
k=1

||ψ(tk)− ΦΛtk/∆tα(t1)||2 + γ|αk(t1)|. (2.20)

The first term in (2.20) corresponds to the difference between the original data and

the DMD reconstruction, the second term is a penalty on non-zero mode amplitudes,

and γ is a positive parameter that weights this penalty. After minimizing (2.20) for

a particular value of γ, the modes with non-zero amplitudes are the modes chosen

for the reconstruction; these modes correspond to the most influential modes. Then

(2.20) is minimized again with γ = 0, using only the chosen modes, to obtain the

optimal mode amplitudes to reconstruct the data with the reduced set of modes [21].
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Although fewer modes yield a less accurate reconstruction, only certain modes may

reproduce the dynamics of the system with sufficient accuracy. The value of γ

dictates the numberm∗ of chosen modes, so it represents the desired balance between

the number of modes and the quality of the reproduction [21]. This process is

illustrated in Section 3.1.

2.2.3 Dynamic Mode Decomposition Kalman Filter

DMDSP identifies the mode amplitudes that best fit a time series of training

data. Determining the DMD mode amplitudes provides an estimate of the data,

even in real time. A Kalman filter is a dynamic observer that gives real-time esti-

mates of the system state using a dynamic model and noisy (linear) measurements

from sensors. This section describes a method to estimate the mode amplitudes and

thus the whole data set from a subset of the measurements. Based on the Koopman

Observer Form [13], the main idea is to use DMD on the training data to generate

a linear dynamical system that represents the dynamics we observe and to use a

Kalman Filter to estimate this system from sensor measurements in the test data.

When constructing the snapshot matrices from the training data, every snap-

shot ψ(tk) must contain the states (x ∈ Rnx) to be estimated concatenated with the

observables (y ∈ Rny) that will be readily available as measurements. Here, x corre-

sponds to PIV measurements and y corresponds to pressure sensor measurements,

although this formulation is otherwise general. The snapshot matrices are
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Ψ =



| |

x(t1) · · · x(tm)

| |

| |

y(t1) · · · y(tm)

| |



Ψ′ =



| |

x(t2) · · · x(tm+1)

| |

| |

y(t2) · · · y(tm+1)

| |



. (2.21)

Next, apply the DMD and DMDSP algorithms to obtain a tuple of m∗ DMD

eigenvalues (λi) and DMD modes (φi) and arrange them so complex conjugates

are grouped together. The amplitudes obtained from DMDSP are not required to

create a DMD-based observer, however it is useful to have as reference the best

possible reconstruction using the chosen set of modes. The modes and eigenvalues

are similar but slightly different from those obtained by performing DMD on only

the PIV data. A weighting can be applied to give more emphasis to the states to

estimate (x) or the measurements (y), but this idea was not explored in this thesis.

Instead, all quantities were nondimentionalized so their magnitudes are comparable.

Form observation matrix C by letting Ci be the ith column of C with [13]

Ci = φi, if φi is real, and

Ci = Re (φi) and Ci+1 = Im (φi) , if φi and φi+1 are complex conjugates.

(2.22)
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Form the dynamics matrix F as a block diagonal matrix such that F has a diagonal

entry Fi,i = λi, if λi is real, and block diagonal entry [13]

 Fi,i Fi,i+1

Fi+1,i Fi+1,i+1

 =

 Re (λi) Im (λi)

− Im (λi) Re (λi)

 , (2.23)

if λi and λi+1 are complex conjugates. Split C into Cx and Cy, corresponding to the

first nx and the last ny rows of C, respectively.

Let z denote the vector of DMD amplitudes expressed in block modal form.

These matrices define the linear dynamical system [13]

zk = Fzk−1 (2.24a)

yk ≈ Cyzk (2.24b)

xk ≈ Cxzk. (2.24c)

If the system given by equations (2.24a) and (2.24b) is observable, then a linear

state observer such as a Kalman filter will estimate the state z given measurements

y.

The Kalman filter is the optimal algorithm to estimate the states of a linear

system subject to Gaussian process noise with covariance Q and measurement noise

with covariance R [41]. It involves propagating the current estimate ẑ and covariance

P of the current estimate in time using knowledge of the dynamics and updating

these values based on measurements. In this particular implementation, an extra

step is added to compute the estimate of x using (2.24c). Given the system described
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by (2.24), the filter equations are [41]

Estimate Propagation ẑ−k = F ẑk−1 (2.1a)

P−k = FPk−1F
T +Q (2.1b)

Kalman Gain Kk = P−k Cy(CyP
−
k C

T
y +R)−1 (2.1c)

Assimilating measurements ẑk = ẑ−k +K(yk − Cyẑ−k ) (2.1d)

Pk = (I −KCy)P−k (2.1e)

Estimate of x x̂k = Cxẑk. (2.1f)

The superindex − refer to the estimate before assimilating measurements. The

symbol ˆ indicates the quantity is an estimate, not the true value.

2.2.4 Sources of Error in the Dynamic Mode Decomposition Kalman

Filter

The system dynamics (2.24) can be written as

xk+1 = CxFC
†
xxk +wk; yk = CyC

†
xxk + vk. (2.1)

The process noise wk and measurement noise vk include the inherent noise from the

dynamics and the loss of information due to the approximation. The process noise

can be split into components either in, or orthogonal to, the span of DMD modes:
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i.e.,

wk, = CxC
†
xwk; wk,⊥ = wk −wk, . (2.2)

The terms wk, and vk correspond to the process and measurement noise in the

reduced-order model and are related to the uncertainty induced by assuming a linear

model for the reduced order dynamics. We compute Q and R as

Q = Cov
[
C†xxk+1 − FC†xxk

]
; R = Cov

[
yk − CyC†xxk

]
. (2.3)

In contrast, wk,⊥ is unrelated to the filtering process and corresponds to the inability

of the chosen DMD modes to account for the variability in the states to be estimated.

The DMD-KF will only produce estimates in the span of the DMD modes, so the

best possible estimate for the state, in the least squares sense, is x̃ = CxC
†
xx. We

denote this quantity as the DMD projection. The DMD projection is useful to

quantify the information lost from projecting into a low-dimensional model.

Distinguish between three ways to recreate the evolution of a flowfield from a

modal decomposition: projection, reconstruction, and estimation. Projection refers

to projecting the test data into the span of the modes generated from the training

data. This process yields the least possible `2 norm of the difference between the

instantaneous test data snapshot and a representation in terms of the selected modes,

and thus can serve as a lower bound for the error. Reconstruction refers to finding the

initial mode amplitudes that produce a trajectory, given by (2.19) (i.e., propagation

of DMD modes assuming no process noise), which minimizes the difference from the
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test data. Estimation refers to the result of implementing a DMD-KF to obtain

an approximation of the test data using only a limited set of measurements. A

large difference between the projection and the reconstruction may indicate a large

process noise covariance, which can be attributed to inherently noisy dynamics or a

flawed dynamic model. If the reconstruction error is small, but the estimation error

is large, the problem may be due to a flawed measurement model.

2.2.5 More concepts in DMD

DMD has a close relationship with an operator-theoretic description of dy-

namical systems based on the Koopman operator [43]. The Koopman operator

advances observables of a dynamical system linearly in time [44]. It serves as a way

to represent a finite-dimensional nonlinear system as an infinite dimensional linear

system [44]. If the DMD modes are able to correctly approximate the Koopman

modes of the underlying dynamics, then the DMD-KF is equivalent to the Koop-

man Kalman Filter (KKF) [13].
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Chapter 3: Data Driven Estimation of Unsteady Flowfield near an

Actuated Airfoil

3.1 Dynamic Mode Decomposition on an Actuated Airfoil

This section describes the application of the DMD and DMDSP procedures

described in Sections 2.2.1 and 2.2.2 to two different experimental datasets from air-

foils in periodic unsteady flow conditions. Using two separate experiments allows us

to test the algorithm in a wider variety of conditions. These datasets where obtained

from previously unrelated work by the STAL research laboratory at University of

Maryland [45] [46]. Both datasets consist of a time series of phase-averaged PIV data

and pressure data from sensors embedded in the airfoils. Phase averaging means

that several actuation cycles were done experimentally, then data corresponding to

the same phase at different cycles was averaged together to produce a single cycle.

This procedure reduces the noise in the data, but it also smooths out flow features

that do not occur periodically. Getting rid of such features may or may not be

desirable, but analyzing them is beyond the scope of this thesis. We refer to these

phase-averaged datasets as the training datasets, as these are the sets from which

the DMD modes for the DMD-KF are obtained.
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Experiment 1 consists of a pitching cambered ellipse in reverse flow, with 17

pressure sensors on the suction side of the airfoil and 13 pressure sensors on the high

pressure side [45]. The states to estimate correspond to the velocity components

at predetermined grid points in the airfoil frame of reference. Since the airfoil was

pitching while the PIV cameras were stationary, the region around the airfoil where

data was gathered varied during the pitching cycle. DMD requires information

about every state in every snapshot, so only the points for which there is data

during the entire pitching cycle are included in the area of interest shown in Figure

3.1a, which is the largest area fixed in the body frame that remains in the field of

view throughout a complete pitching cycle. Table 3.2 lists the parameters used in

the experiments.

(a) Experiment 1 (b) Experiment 2

Figure 3.1: Configuration of Experiments 1 [45] and 2 [46]. Teal arrows indicate
direction of actuation

Experiment 2 consists of a surging NACA 0012 airfoil with 8 pressure sensors

on the suction side of the airfoil [46]. The Experiment 2 data set includes four differ-

ent cases that vary the reduced frequency (k) and amplitude (Amp) of the surging

motion, as shown in Figure 3.2. The amplitude is relative to the nominal Reynolds
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Parameter Experiment 1 [45] Experiment 2 [46]

Reynolds number 165000 40000
Free stream velocity 11.9 m/s 0.34m/s
Angle of attack 180◦–200◦ 25◦

Airfoil Cambered ellipse NACA 0012
Actuation Pitching sinusoidally Surging sinusoidally
PIV data points 16907 10369
Pressure sensors 30 8
Time steps 100 84–255

Table 3.1: Summary of experimental parameters.

Amplitude Reduced
Case # ratio frequency

1 0.25 0.160
2 0.25 0.511
3 1.0 0.160
4 1.0 0.511

Table 3.2: Actuation parameters
for Experiment 2.

Figure 3.2: Actuation trajectories for
Experiment 2.
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number and the reduced frequency is the actuation frequency ω nondimensionalized

by the freestream velocity v0 and the chord length c as

k =
ωc

2v0

. (3.1)

The first step to analyze the experimental data is to construct snapshot ma-

trices as presented in (2.21), with x corresponding to PIV measurements arranged

in a column vector and y corresponding to the pressure sensor data. The DMD

modes and eigenvalues are obtained following the algorithm described in Section

2.2.1. This algorithm produces m DMD modes, where m+ 1 is the number of time

steps in the data, which is usually more than needed to accurately represent the

system dynamics. Using fewer modes makes the estimation process run faster, so it

is desirable to use only a small number of relevant modes. The DMDSP algorithm

described in Section 2.2.2 is used for this purpose. Varying the sparsity promoting

parameter γ provides a wide range of different mode numbers. Part of the DMDSP

algorithm involves reconstructing the training data, which consists of finding the

mode amplitudes that minimize the square of the difference between (2.19) eval-

uated at every time step and the original data. The reconstruction is important

because it provides the best fit using (2.19) and thus can be used to evaluate if the

system dynamics are well represented by a linear time evolution. The best number

of modes can be chosen by looking at the accuracy of the reconstruction (Figure

3.3b), or by plotting the reconstruction and comparing it qualitatively to the train-

ing data set (Figure 3.4).
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(a) Experiment 1 (b) Experiment 1 (c) Experiment 1 (d) Experiment 2

Figure 3.3: (a) Number of modes chosen by DMDSP for different values of γ; (b,
d) percent performance loss versus number of modes; (c) comparison of projection
error for DMD and POD modes.

Figure 3.3a shows how the number of modes changes with γ in Experiment

1. The percent performance loss from reconstruction of the data with DMD modes

is defined as 100
√

J0(α)
J0(0)

[21]. Figure 3.3b shows the loss of accuracy drops rapidly

between 0 and 13 modes, which implies there are diminishing returns from using

additional modes. Figure 3.4 shows the original data from Experiment 1 and the

reconstruction at half the actuation period, when the leading edge vortex is about to

be shed. The original data and the reconstruction with all of the modes look nearly

identical. In the reconstruction with 13 modes, the vortex can still be seen, but it is

not as clearly defined. In the reconstruction with just five modes, the leading edge

vortex does not appear; only the leading and trailing shear layers are visible.

For estimation, the chosen modes are ideally not used to represent the same

data set from which the modes were obtained (the training set) but rather new

data from the same dynamical system (the test set). To quantify the information

lost from using a set of modes to represent a different realization of the system, we
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Figure 3.4: Training set data and reconstructions with different number of modes
for Experiment 1 at half the actuation period (t*=0.5).

compute the projection of the test set into the span of the modes obtained from the

training data. Fig. 3.3c shows the projection error using DMD and POD modes

of the training set and POD modes of the test set for Experiment 1. Note that

the test set consists of instantaneous PIV data, representative of a case of real-time

estimation. POD modes form a more accurate projection of the data; the difference

corresponds to using three or four more DMD modes for the same level of accuracy,

similar to the result obtained in [3]. The projection error from the POD modes of

the training and test data are very close for the first 10 modes, suggesting that they

contain similar information. For more modes obtained from the training set, the

projection error stays almost constant. Even with the set of POD modes obtained

from the test data, the projection error decreases slowly with the number of modes.

Attaining an error below 5% requires over 60 POD modes.

3.2 Dynamic Mode Decomposition Kalman Filter estimation results

After an appropriate number of modes is chosen, an observer is created fol-

lowing the procedure described in Section 2.2.3. The DMD Kalman Filter estimates

the mode amplitudes from pressure measurements in order to generate the corre-
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sponding estimate of the flowfield. For illustration purposes, we use Experiment 1

to show the results of choosing different numbers of modes and Experiment 2 to

present results for different actuation cases. In both experiments, the DMD-KF is

designed using phase-averaged data, but for Experiment 1, the estimation is tested

using both phase averaged (from the training set) and instantaneous (from the test

set) measurements. For Experiment 2, the test data consists of phase-averaged mea-

surements, so only one period is available. The time t∗ indicated in the results is

the time normalized by the period of the actuation.

3.2.1 Experiment 1: Pitching cambered ellipse

The DMD-KF is applied to both the training and the test data to compare

performance and identify if the estimator is overfitting the data, i.e. identifying

patterns in the training data that don’t generalize to the test data. A plot of the

estimation, reconstruction, and projection errors (defined in Section 2.2.4) over a

period is used to evaluate the estimator quantitatively. A plot of the flowfield is

shown to identify if flow structures are being identified properly and to evaluate the

performance of the estimator qualitatively.

Figures 3.5a to 3.5c show the normalized error for the reconstruction, pro-

jection, and estimation of training data. The normalized error is defined as the

average magnitude of the difference between the estimated (or reconstructed) field

and the original flowfield, normalized by the average magnitude of the velocity over
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the entire flowfield during the period. At the initial time step, the reconstruction

and estimation differ, but then quickly converge. The error in both the estimation

and reconstruction with 5 modes rises around the middle of the period, which is

consistent with the reconstruction being unable to properly reproduce the leading

edge vortex that is shed around this time. The error also increases when using 13

modes but not as drastically as with 5 modes. The estimation using all of the modes

takes more time to converge, and does not achieve the low error of the corresponding

reconstruction using all of the modes, but it does achieve the lowest error overall. A

downside of using all of the modes is the increased computational time to compute

the estimate, since the computational burden of computing a Kalman filter is highly

dependent on the number of states [41].

Figures 3.5d to 3.5f show the corresponding normalized errors for the test data.

Both the reconstruction and the estimation error increase, but the reconstruction

error increased noticeably more. The reconstruction assumes no noise in the dynam-

ics, so it is unable to correct for noisier dynamics or the difference in the evolution

of the system between the test and the training data. The high value for the error

in the case with 99 modes indicates that the extremely low value obtained in the

reconstruction of training set data may be due to overfitting. When applied to the

test data, the advantage of using more modes is lost. In fact, the reconstruction

and estimation errors for 99 and 13 modes look nearly identical, which suggests that

most modes beyond the first 13 may be irrelevant for reproducing the dynamics of

the new data set. Because the estimation error is bounded from below by the pro-
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(a) All modes, training data (b) 13 modes, training data (c) 5 modes, training data

(d) All modes, test data (e) 13 modes, test data (f) 5 modes, test data

Figure 3.5: Experiment 1: Estimation, reconstruction, and projection errors. The
vertical lines in (e) correspond to the frames shown in Figure 3.6.

jection error, to improve the performance, it is necessary to find a set of modes that

better account for the variation in the test data. As shown in Figure 3.3c, many

modes are needed to reduce the error significantly.

It is possible that the difference between the estimation and test data is not

a useful metric for the performance of the estimator. The test data contains tur-

bulent flow, which might need to be filtered out to perform feedback control based

on coherent flow structures. In this case, a new error metric should quantify the

filter’s ability to identify flow features useful for feedback control. Motivated by this

consideration, the performance of the estimator is also studied qualitatively. Figure
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Figure 3.6: Experiment 1: Test set data, training set data, and estimate of the
test data with 13 modes at several times of interest. The color red (blue) indicates
positive (negative) vorticity.
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3.6 shows the results of implementing a DMD-KF with 13 modes for estimation.

For times t∗ = 0 and t∗ = 0.2, the DMD-KF is able to reproduce the test data fairly

accurately. For t∗ = 0.5, the turbulent behaviour is not captured in detail, but the

main flow features, such as the shear layers and the leading edge vortex, are present

in the estimate.

(a) Case 1: Amp = 0.25 k = 0.160 (b) Case 2: Amp = 0.25 k = 0.511

(c) Case 3: Amp = 1.00 k = 0.160 (d) Case 4: Amp = 1.00 k = 0.511

Figure 3.7: Experiment 2: Estimation, reconstruction error and projection. The
vertical lines in Case 3 indicate the frames shown in Figure 3.8.

3.2.2 Experiment 2: Surging NACA 0012

The DMD-KF was applied independently to four cases of Experiment 2, with

the same number of modes, for comparison purposes. The number of modes m∗ = 19
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was chosen by looking at Figure 3.3d, which shows the percent performance loss

versus number of modes. There is little improvement in performance by adding

more than 19 modes in any of the cases. The estimation is performed on the same

data from which the DMD modes are obtained, i.e., the training and the test data

are the same. This limitation in the analysis is due to the use of data from previous

unrelated work, which did not collect simultaneous PIV and pressure data,

but rather phase averaged both measurements [46]. While using the same set

for training and testing is not ideal, we seek here to illustrate an application of the

algorithm.

Figure 3.7 shows the projection, reconstruction, and estimation error for all

actuation cases in Experiment 2. In all cases, the initial estimation error is high.

There are fewer sensors than modes, so the modes can not be inferred instantly,

rather by comparing the predicted dynamics with the observations. The reconstruc-

tion error is also high at the initial time for most cases, whereas the projection error

is low. It is possible that there are initial transients with a time evolution that is

not well captured by the chosen modes. In the cases with Amp = 1; there is a sec-

ondary peak in estimation error; however in this case the reconstruction error is low.

This result implies the system is evolving in a manner that is well approximated by

the DMD linear model, but the DMD-KF is unable to completely capture the time

evolution, possibly due to a flaw in the measurement model.

As a representative example, Figure 3.8 shows the flowfield for Case 3 at sev-
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eral points of interest. At the initial time there are large differences, especially

around the tail of the airfoil. Around t∗ = 0.2 the flow speed is low, which might

mean the flow is hard to observe; there is a peak in error observed in Figure 3.7d.

Around t∗ = 0.6, the original and the estimation look nearly identical. During the

remainder of the cycle, the shedding of the leading edge vortex occurs, which is

a process with increased turbulence, so it is expected that the error in both the

estimate and the reconstruction are higher. Nonetheless, it is possible to see in the

snapshot corresponding to t∗ = 1 that the estimate reproduces the main features in

the flow.

Figure 3.8: Experiment 2: Original and estimated flowfield and estimation error
using 19 modes at several times of interest for case 3. For the error field, the color
red indicates magnitude.
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3.3 Summary

A Dynamic Mode Decomposition Kalman Filter (DMD-KF) is described to

estimate the unsteady flowfield around an actuated airfoil, using information from

pressure sensors. The estimation method consists of using Sparsity Promoting Dy-

namic Mode Decomposition (DMDSP), which finds a reduced set of dynamic modes

(DMD modes) in a data set, and the Koopman Observer Form, which rewrites the

modes in a form suitable for estimation, to create a linear system that approximates

the dynamics of the unsteady flow. A Kalman Filter estimates the states in this

linear system using pressure measurements.

The process of mode selection using DMDSP, and the effects of varying the

number of modes, is illustrated using experimental results from a pitching cam-

bered ellipse. There is a trade off with the number of modes: more modes increases

the time for estimation convergence, both by increasing computational time and by

taking more time steps to converge. In general, using more modes yields a better

estimate, but using a small number of modes may provide a fast and accurate rep-

resentation of the flowfield.

The DMD reconstruction, DMD projection, and DMD-KF estimation use

DMD modes to approximate a flowfield. However the reconstruction and projec-

tion require complete knowledge of the flowfield to reproduce it with DMD modes,

whereas the DMD-KF estimation uses pressure sensor measurements only. Estima-
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tion error may arise from the DMD modes not spanning the features of the data to

estimate, or the dynamics may not be well approximated by a linear system. The

DMD projection is useful to distinguish between these sources of error, since the

projection is independent of the modeled dynamics.
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Chapter 4: State Feedback Stabilization of a Point Vortex near an

actuated Airfoil

4.1 Dynamics of a Point Vortex Near a Cylinder

Recall from Section 2.1, the time evolution of the position of a point vortex

near a cylinder is:

ż =u∞ − u∗∞
r2

0

((zv − z0)2)∗
+
iΓ0

2π

zv − z0

|zv − z0|2
− iΓv

2π

zv − z0

|zv − z0|2 − r2
0

. (4.1)

To include an input term in the dynamics, assume that u∞ consists of a nom-

inal freestream velocity u0 minus the input velocity due to heaving and/or surging.

For simplicity of the model, ignore unsteady aerodynamic effects so the only result

of heaving and/or surging is changing the effective freestream velocity. Without loss

of generality, we assume that the nominal freestream is u0 ∈ R, u0 > 0.

To simplify the algebra, normalize length and time scales so r0 = 1 and u0 =

1, respectively. Define x1, x2, u1, u2, σv, σ0 ∈ R such that u∞ = (1− u1 − iu2)u0,

z = (x1 + ix2)r0, Γ0/2π = r0u0σ0, and Γv/2π = r0u0σv. x1 and x2 are the Cartesian

coordinates of the drifting vortex, normalized by the radius of the cylinder. σv and

σ0 are dimensionless quantities proportional to the drifting and, respectively, bound
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vortex strengths. u1 and u2 correspond to the surging and, respectively, heaving

velocity of the cylinder, normalized by the freestream velocity. In this model, the

motion of the motion of the cylinder is equivalent to a change in the freestream

velocity. In non-dimensional Cartesian coordinates, the equations of motion are

ẋ1 =

(
x2

2 − x2
1

(x2
1 + x2

2)2
+ 1

)
(1− u1) +

2x1x2

(x2
1 + x2

2)2
u2 − σ0

x2

x2
1 + x2

2

+ σv
x2

x2
1 + x2

2 − 1

ẋ2 = − 2x1x2

(x2
1 + x2

2)2
(1− u1) +

(
x2

2 − x2
1

(x2
1 + x2

2)2
− 1

)
u2 + σ0

x1

x2
1 + x2

2

− σv
x1

x2
1 + x2

2 − 1
.

(4.2)

These equations are only valid in the region x2
1 + x2

2 > 1, i.e., when the vortex is

outside of the cylinder.

4.1.1 Bifurcations of the Open-Loop Dynamics

The location of the equilibrium points of (4.2) and their bifurcations are found

by varying σ0 and σv; a thorough description can be found in [29]. To find the zero-

input equilibrium points (x̃1, x̃2), set ẋ1 = ẋ2 = u1 = u2 = 0. The equilibrium

points for this system always occur along the line x̃1 = 0 [29], which follows from

the condition ẋ2 = 0. Solving for ẋ1 = 0 yields the polynomial

x̃4
2 + (σv − σ0)x̃3

2 + σ0x̃2 − 1 = 0. (4.3)

Depending on the value of the parameters σv and σ0, (4.3) can have two, three,

or four real solutions. One solution always lies within the unit circle, which is not
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a valid equilibrium point for the system, because it is inside the cylinder. Without

loss of generality, we take σv > 0: if σv < 0, we can flip the signs of σ0, x2, and u2,

i.e., reflect across the horizontal axis, and obtain the same dynamics; if σv = 0, the

system corresponds to a free particle rather than a vortex.

With these conventions, polynomial (4.3) evaluated at x̃2 = −1 is equal to

−σv < 0, whereas in the limit x̃2 −→ −∞, it is positive. Therefore, the polynomial

must always have a root in the interval (−∞,−1). This equilibrium point exists

for all values of σ0 and σv and, in Section 4.1.2, we show that this point is always

a saddle. In general, varying the σv and σ0 will change the number of equilibrium

points and their positions. Figure 4.1a shows the regions in parameter space for

which the system has three equilibrium points: a saddle on the negative x2 axis (the

lower saddle), a saddle on the positive x2 axis (the upper saddle), and a center on

the x2 axis between the upper saddle and the cylinder. The boundary between the

regions with one and three equilibrium points corresponds to parameter values for

which the system has two equilibrium points: a saddle under the cylinder and an

undefined equilibrium point above the cylinder. However, this region has zero area,

is not of physical interest [29], and we ignore it in the subsequent analysis.

Figure 4.1b shows a bifurcation diagram varying σ0 with fixed σv = 2. Fig.

4.2a shows trajectories in the phase plane of vortex position for σ0 = 0: there is a

single saddle below the cylinder. As σ0 increases, the saddle point moves closer to

the surface of the cylinder. At the critical value, the system exhibits a saddle-node

bifurcation: a new equilibrium point appears on the opposite side of the cylinder

and splits into a center and a saddle, see Figure 4.2b. There is still a saddle point
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below the cylinder, the separatrix comes arbitrarily close to the saddle, then wraps

clockwise around the cylinder getting near the saddle again, before going off to

infinity.

Below the bifurcation point, the phase portrait is split into three regions: the

upper region, the lower region, and periodic orbits surrounding the cylinder. Above

the bifurcation point, the upper region splits into three regions, as shown in Figure

4.2b. More phase diagram topologies for the open-loop system are described in [29].
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Figure 4.1: a) The black regions show the area in parameter space where the system
has three equilibrium points. The dashed line corresponds to the slice shown in
Figure 4.1b. b) Bifurcation diagram fixing σv = 2 and varying σ0. Equilibrium
points far from the cylinder approach the line σ0 − σv, shown as a dotted line.

4.1.2 Closed-Loop Dynamics and bifurcations

In order to design a feedback controller, we linearize (4.2) at any one of the

equilibrium points. Let (x̃, ũ) refer to evaluating the derivative at the equilibrium

point x1 = u1 = u2 = 0, x2 = x̃2. We derive the linear system
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Figure 4.2: Phase portraits for σv = 2. and (a) σ0 = 0, (b) σ0 = 5.5

ẋ1

ẋ2

 = A

 x1

x2 − x̃2

+B

u1

u2

 , (4.4)

where

Aij =
∂ẋi
∂xj

∣∣∣
(x̃,ũ)

and Bij =
∂ẋi
∂uj

∣∣∣
(x̃,ũ)

, i, j = 1, 2. (4.5)

We have

A =

 0 σ0
x̃22
− σv(x̃22+1)

(x̃22−1)2
− 2

x̃32

σ0
x̃22
− σv

(x̃22−1)
− 2

x̃32
0

 (4.6)

and

B =

−1− 1
x̃22

0

0 −1 + 1
x̃22

 . (4.7)

Consider the linear state-feedback control
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u =

u1

u2

 = −

k11 k12

k21 k22


 x1

x2 − x̃2

 = −K(x− x̃). (4.8)

The first subscript in each k indicates which control input the gain corresponds

to (1 for surging and 2 for heaving) and the second subscript corresponds to which

state it multiplies (x1 or x2). We analyze the stability of the feedback system by

looking at the eigenvalues of the matrix A − BK, as indicated by the trace and

determinant. For a 2 × 2 matrix, the determinant is the product of eigenvalues

and the trace is the sum of eigenvalues, so the sign of the determinant and trace

can be used to infer the sign of the real part of the eigenvalues and, thus, the

stability properties of the system. In particular, a negative determinant implies the

equilibrium point is a saddle, i.e., it has one unstable and one stable eigenvalue. If

the determinant is positive, then a positive trace indicates the system is unstable

and a negative trace indicates the system is exponentially stable, i.e., it is stable

and will converge to the equilibrium point [47]. If the determinant is positive and

the trace is 0, or if the determinant is 0, then no conclusion can be reached.

Theorem 1. For an equilibrium point x̃2 of (4.2) to be exponentially stable, the

following two conditions need to hold:

k11k22 −
(
k12 +

1

x̃2

− 2σvx̃
2
2

(x̃2
2 − 1)3

)(
k21 +

1

x̃2

)
> 0 (4.9)

k11 + k22 +
k11 − k22

x̃2
2

> 0. (4.10)
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Proof. Since (4.10) is the trace of A − BK it must be negative for exponential

stability. Condition (4.9) follows from requiring the determinant of A − BK to be

positive, i.e.,

det (A−BK) =

k11k22
x̃4

2 − 1

x̃4
2

−
(
A12 +

x̃2
2 + 1

x̃2
2

k12

)(
A21 +

x̃2
2 − 1

x̃2
2

k21

)
> 0 (4.11)

=

[
k11k22 −

(
A12x̃

2
2

x̃2
2 + 1

+ k12

)(
A21x̃

2
2

x̃2
2 − 1

+ k21

)]
x̃4

2 − 1

x̃4
2

> 0 (4.12)

k11k22 −
(
A12x̃

2
2

x̃2
2 + 1

+ k12

)(
A21x̃

2
2

x̃2
2 − 1

+ k21

)
> 0. (4.13)

Recall from (4.6),

A21 =
σ0

x̃2
2

− σv
x̃2

2 − 1
− 2

x̃3
2

=
σ0(x̃3

2 − x̃2)− σvx̃3
2 − 2(x̃2

2 − 1)

x̃3
2(x̃2

2 − 1)
.

(4.14)

Replace the term σvx̃
3
2 from rearranging (4.3) as

σvx̃
3
2 = 1 + σv(x̃

3
2 − x̃2)− x̃4

2. (4.15)

The terms with σ0 cancel, leaving

A21 =
x̃4

2 − 2x̃2
2 + 1

x̃3
2(x̃2

2 − 1)
=
x̃2

2 − 1

x̃3
2

. (4.16)

Notice

A12 = A21 −
2σv

(x̃2
2 − 1)2

. (4.17)
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Finally substitute (4.16) and (4.17) into (4.13) to obtain (4.9).

Theorem 1 applies to any of the possible equilibrium points described in Sec-

tion 4.1.1. Note that with gains set to 0 and x̃2 < 0, the corresponding equilibrium

point is a saddle, as stated in Section 4.1.1. When feedback is applied, any com-

bination of gains satisfying (4.9) and (4.10) will exponentially stabilize the desired

equilibrium point. Note that the conditions (4.9) and (4.10) can be achieved using

either k11 or k22 (diagonal gains) and either k12 or k21 (cross gains) while setting

the other gains to zero. This corresponds to using only surging (i.e., k21 = k22 = 0),

only heaving (k11 = k12 = 0), only x1 feedback (k12 = k22 = 0), or only x2 feedback

(k11 = k21 = 0). These designs may be advantageous if there are limitations with

the actuators or with the observers. Additionally, since for each design we have two

gains instead of four, it is easier to analyze the effect of each gain.

Corollary 1.1. For the two-gain designs, i.e., either k11 = 0 or k22 = 0 and either

k12 = 0 or k21 = 0, (4.9) reduces to

k12 > k1c > 0 for the lower saddle (x̃2 < 0) (4.18)

k12 < k1c > 0 for the center (x̃2 > 0) (4.19)

k12 < k1c < 0 for the upper saddle (x̃2 > 0) (4.20)
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or

k21 > k2c > 0 for the lower saddle (x̃2 < 0) (4.21)

k12 > k2c < 0 for the center (x̃2 > 0) (4.22)

k21 < k2c < 0 for the upper saddle (x̃2 > 0) (4.23)

where

k1c =
2σvx̃

2
2

(x̃2
2 − 1)3

− 1

x̃2

, k2c = − 1

x̃2

, (4.24)

and (4.10) reduces to

k11 < 0 or k22 < 0. (4.25)

Proof. In closed loop with a two-gain design and using the k1c and k2c as defined in

(4.24), the stability condition (4.9) can be written as

(k1c − k12)k2c < 0 or k1c(k2c − k21) < 0. (4.26)

Conditions (4.18) to (4.23) are derived from (4.26) by isolating the corresponding

gain and flipping the inequality based on the sign of k1c or k2c for the corresponding

equilibrium point. The signs of k1c or k2c are determined from the position and open-

loop properties of the equilibrium points. In open-loop, the determinant condition

(4.9) is

k1ck2c < 0. (4.27)

Recall this condition holds for the center and the opposite equality holds for the
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saddles. For the lower saddle, k1c > 0 and k2c > 0, since x̃2 < 0. For the center

and the upper saddle, k2c < 0 since x̃2 > 0. For the center, the product k1ck2c < 0,

because the equilibrium point is stable and thus k1c > 0. Similarly, k1c < 0 for the

upper saddle, because the product k1ck2c > 0. Condition (4.25) follows from (4.10),

setting either k11 = 0 or k22 = 0, and using the fact that x̃2
2 < 1.
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Figure 4.3: Phase planes for the closed-loop system with σv = 2, σ0 = 0, and non-
zero cross gains k12 (a–b) or k21 (c–d). The red X indicates the original equilibrium
point, the red dots indicate the new equilibrium points that appear due to feedback.
(a) and (c) have gains below conditions (4.18) and (4.21), respectively. (b) and (d)
have gains above condition (4.18) and (4.21), respectively.
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Several representative cases help to visualize the behavior of the closed-loop

system. Fig. 4.3 shows the result of using the cross gains, k12 or k21, either 50%

below or above their corresponding critical values, with all other gains set to zero.

These gains need to satisfy either (4.18) or (4.21), respectively, to convert the lower

saddle to a stable node or focus. In Fig. 4.3a, k12 (surging) does not satisfy (4.18);

the original equilibrium point remains a saddle and a new stable equilibrium point

appears below. This new equilibrium point requires a constant surging input, so it

is equivalent to stabilizing an equilibrium point at a different nominal freestream

velocity. In Fig. 4.3c, the heaving case, no new equilibrium points appear for low

values of k21. In Figs. 4.3b and 4.3d, the gains satisfy their critical conditions and, in

both cases, the original equilibrium point becomes a center. In the surging case (Fig.

4.3b), a saddle appears between the original equilibrium point and the cylinder, and

trajectories near the original equilibrium point form clockwise periodic orbits. In the

heaving case (Fig. 4.3b), two saddles appear and orbits near the original equilibrium

point are counter-clockwise. From a physical perspective, the two new saddles that

appear when choosing k21 to satisfy (4.21) can be interpreted as equilibrium points

for a different angle of the nominal freestream. Note that even with a gain that

satisfies the critical condition, (4.18) or (4.21), trajectories don’t converge to the

desired equilibrium point because the trace is zero.

Fig. 4.4 shows the effect of adding a small negative diagonal gain to the

systems in Figs. 4.3b and 4.3d to make them exponentially stable. Figs. 4.4a

and 4.4c have k11 = −0.2, and Figs. 4.4b and 4.4d have k22 = −0.2. The band

of closed orbits surrounding the equilibrium point in Figs. 4.3b and 4.3d becomes
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Figure 4.4: Phase planes for the closed-loop with σv = 2, σ0 = 0, and multiple two-
gain designs that exponentially stabilize the equilibrium point. The red X indicates
the original equilibrium point, the red dots indicate the saddles that appear due to
feedback. The trajectories shown approximate the stable and unstable manifolds of
the saddles.

a stable spiral that converges to the desired equilibrium point. Since the control

design is based on linearization, convergence to the desired equilibrium point is only

guaranteed close to the equilibrium point. We estimate the region of attraction by

looking at the stable and unstable manifolds of the saddles shown in Fig. 4.4. These

orbits separate regions in the phase plane so we can determine whether an orbit will

converge by checking if it is in the same region as the stabilized equilibrium point.

For the cases shown, using surging and full-state feedback results in the largest
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region of attraction.

4.1.3 Summary of results for the cylinder-vortex system

This Section represents a first step in developing a feedback-control framework

that stabilizes a vortex near an airfoil using surging and heaving as control input.

Conditions on the control gains quantify the requirements to stabilize a vortex near

a cylinder and guide the design of more sophisticated nonlinear controllers. The four

possible gains in the linear controller are divided into two types, cross and diagonal

gains, which correspond to actuation perpendicular and, respectively, parallel to the

relative position of the vortex. The original saddle can be exponentially stabilized

with a choice of one cross gain and one diagonal gain, while setting others to zero.

The cross gains induce a saddle-center bifurcation when above a critical value. After

using a cross gain to make the original equilibrium point a center, the diagonal gains

exponentially stabilize the desired equilibrium point.

4.2 Dynamics of a Point Vortex Near an Airfoil

4.2.1 Open-Loop Equilibrium points and dynamics

The equilibrium points are found numerically by finding the minimum in the

magnitude of the vector derivative. The equilibrium points at low vorticities are hard

to obtain because they lie close to the airfoil, where the derivatives blow up. This

system was studied in [38], which obtained the equilibrium points using a different

method. Figure 4.5 compares the results in [38] with the equilibrium points found in
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(a) (b) (c)

Figure 4.5: Equilibrium points for a vortex near an airfoil in (a) [38] (b) airfoil plane,
(c) cylinder plane.

the current implementation. Figure 4.6 shows the corresponding equilibrium points

when the system is expressed in the circle plane so that it may be more easily

compared to the results of Section 4.1.

(a) (b)

Figure 4.6: Phase portrait for a vortex of strength Γv = −5 near an airfoil at an
angle of attack of 10◦ in the a) airfoil plane b) circle plane. Arrows indicate only
direction, not magnitude.

Figure 4.6 shows the phase portrait for the system for a vortex strength of

Γv = −5. The blue points indicate the equilibrium points. The equilibrium point

near the leading edge is a saddle; the equilibrium point near the trailing edge is

an unstable node. Blue lines indicate approximate separatrixes. The plane can be
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divided into three regions: above and below the airfoil, the trajectory of the airfoil

approximates the freestream; very close to the airfoil, the trajectories wrap around

the body but don’t form a periodic orbit; a small distance above the airfoil, vortices

move from the trailing edge to the leading edge, then back and away from the body.

4.2.2 Closed-Loop Dynamics for a vortex near an airfoil

Similarly to the procedure described in 4.1.2, the leading edge equilibirum

point can be stabilized using a linear feedback control law of the form

u =

u1

u2

 = −

k11 k12

k21 k22


x1 − x̃1

x2 − x̃2

 = −K(x− x̃). (4.28)

Where u1, u2 correspond to surging and heaving, respectively, and (x̃1, x̃2)

is the leading edge equilibrium point. Unlike the case for the cylinder, here the

equilibrium points, Jacobian, and control gains are found numerically. The Jacobian

is obtained by applying finite differences at the equilibrium point. The feedback

gains that stabilize the equilibrium point are determined by solving for a linear

quadratic regulator [48]. Figure 4.7 shows the resulting closed-loop phase portrait

in the airfoil plane and the circle plane. The trajectories shown help visualize

the region of attraction for this control law. Vortices starting to the left of the

trajectories that divide the plane vertically will converge to the desired equilibrium

point.

56



(a) (b)

Figure 4.7: Phase portrait for a vortex of strength Γ = −5 near an airfoil at an
angle of attack of 10◦ with closed loop control in the a) airfoil plane b) circle plane.
Arrows indicate only direction, not magnitude.

4.2.3 Summary of results for the airfoil-vortex system

This Section shows preliminary results in extending the model to an airfoil.

Due to added mathematical complexity, analytical results could not be obtained,

but simulations highlight the differences beween both systems. The airfoil-vortex

system has two equilibrium pointe whose position depend on the streangth of the

free vortex and the angle of attack of the airfoil. The equilibrium points found

match the previous literature. Unlike the cylinder-vortex system, no periodic orbits

were found. The leading edge vortex is stabilized using linear quadratic regulation.
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Chapter 5: Conclusion

5.1 Summary of Contributions

This work has produced two separate results in the sides of estimation and

regularization for feedback control of a leading edge vortex. The method for esti-

mation relies on extracting a linear model that approximates the evolution of a high

dimensional system using Dynamic Mode Decomposition. A Kalman filter is im-

plemented on this linear model to estimate the state of the flowfield using pressure

measurements. This method requires a training step in which both flowfield and

pressure measurements are available. The estimate obtained is able to successfully

reproduce the flow structures in the flow when the test data is similar to the training

data.

The estimate produces a description in terms of the flow velocity at every

gridpoint in a region near the airfoil. This is suitable for providing a visual repre-

sentation of the flow and can highlight what regions are reproduced adequatelty.

The strategy for control consists of analyzing two 2 dimensional non-linear sys-

tem which are minimalist representations of the dynamics of a leading edge vortex;

a vortex in the presence of an actuated cylinder and airfoil. Conditions on feedback

gains that stabilize this system are found analytically for the cylinder case. Equi-
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librium points and stabilizing feedback gains are found numerically for the airfoil

case. These systems ignore many aspects of the dynamics of a leading edge vortex,

but continuing adding details to the model may yield hindsight into the stability

properties of the vortex.

5.2 Suggestions for Ongoing and Future Work

To use the DMD-KF for feedback control it is necessary to extract useful

information such lift or the position of the leading edge vortex from the flow data.

The error measure presented in this paper is defined by comparing the velocity at

every grid point, which does not necessarily reflect the quality of the estimation of

specific flow features that may needed in practice for an effective feedback control.

An important next step is to evaluate the performance of the estimator in terms of

the variables that are used for control.

Another topic for future study is the roboustness of the DMD-KF by using

various actuation profiles and flow conditions. It is unlikely the current approach

would work for a wide range of parameters due to the nonlinearities of the system.

A possible solution is to train several DMD-KFs with different parameters and run

them in parallel. Another alternative to deal with nonlinearities is to use a rich

dictionary of observables as in Extended Dynamic Mode Decomposition to better

approximate the Koopman modes of the underlying dynamics.

The vortex model in this paper is an abstract representation of the dynamics

of a leading edge vortex. Future work should extend the model to account for more
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elements relevant to the physics of a leading edge vortex. Additionally, the control

strategies developed with these simple systems can be tested in more accurate flow

models, such as a point vortex or CFD model.

60



Bibliography

[1] C. W. Pitt Ford and H. Babinsky. Lift and the leading-edge vortex. Journal of
Fluid Mechanics, 720:280–313, 2013.

[2] Jeff D Eldredge and Anya R Jones. Annual Review of Fluid Mechanics Leading-
Edge Vortices : Mechanics and Modeling. 2019.

[3] Sathesh Mariappan, A. D. Gardner, Kai Richter, and Markus Raffel. Analysis
of dynamic stall using Dynamic Mode Decomposition technique. AIAA Journal,
52(11):2427–2439, 2014.

[4] Charles Ellington, Coen van den Berg, Sandy Willmott, and Adrian Thomas.
Leading-edge vortices in insect flight. Nature, 384:626–630, 12 1996.

[5] John Kim and Thomas R. Bewley. A Linear Systems Approach to Flow Control.
Annual Review of Fluid Mechanics, 39(1):383–417, 2007.

[6] M. Goman and A. Khrabrov. State-space representation of aerodynamic charac-
teristics of an aircraft at high angles of attack. Journal of Aircraft, 31(5):1109–
1115, 1994.

[7] Clarence W. Rowley and Scott T.M. Dawson. Model Reduction for Flow Anal-
ysis and Control. Annual Review of Fluid Mechanics, 49(1):387–417, 2017.

[8] Kunihiko Taira, Steven L. Brunton, Scott T. M. Dawson, Clarence W. Rowley,
Tim Colonius, Beverley J. McKeon, Oliver T. Schmidt, Stanislav Gordeyev,
Vassilios Theofilis, and Lawrence S. Ukeiley. Modal analysis of fluid flows: An
overview. AIAA Journal, 55(12):4013–4041, 2017.

[9] Aaron Towne, Oliver T. Schmidt, and Tim Colonius. Spectral proper orthog-
onal decomposition and its relationship to dynamic mode decomposition and
resolvent analysis. Journal of Fluid Mechanics, 847:821–867, 2018.

[10] C W Rowley. Model feduction for fluids, using Balanced Proper Orthogonal
Decomposition. International Journal of Bifurcations and Chaos, 15(3):997–
1013, 2005.

61



[11] S. Ahuja and C. W. Rowley. Feedback control of unstable steady states of flow
past a flat plate using reduced-order estimators. Journal of Fluid Mechanics,
645, 2010.

[12] Peter J. Schmid. Dynamic mode decomposition of numerical and experimental
data. Journal of Fluid Mechanics, 656(July 2010):5–28, 2010.

[13] Amit Surana and Andrzej Banaszuk. Linear observer synthesis for non-
linear systems using Koopman Operator framework. IFAC-PapersOnLine,
49(18):716–723, 2016.

[14] Field Manar. Measurements and modeling of the unsteady flow around a thin
wing. PhD thesis, University of Mayland, 2018.
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