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Dynamic Altitude Control for Motion

Coordination in an Estimated Shear Flow

Levi DeVries∗ and Derek A. Paley†
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Windfields present a challenge to multi-vehicle coordination in appli-

cations such as environmental sampling. The presence of a windfield can

disrupt inter-vehicle spacing such that the group covers less area, expends

energy at a faster rate, strays from a desired formation, or provides irregu-

lar measurement data. However, an autonomous or remotely piloted vehicle

can also take advantage of the vertical variation of a windfield to maintain

a desired inertial speed and to coordinate its motion with other vehicles.

This paper presents results for motion coordination in an estimated flow-

field with wind shear using a three-dimensional self-propelled particle model

with a dynamic altitude control. The paper derives conditions specifying

the feasibility of speed-regulated trajectories and Lyapunov-based decen-

tralized control algorithms to stabilize parallel formations in a known, uni-

form shear flow and symmetric circular formations in a known vortex flow.

These algorithms are extended to unknown flowfields by presenting a dis-

tributed, recursive Bayesian filter that provides local estimates of the flow

from noisy flowspeed measurements, allowing particles to utilize flowfield

estimates in the control. Theoretical results are illustrated using numerical

simulations.
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N Number of particles in the system

k Particle index; 1, . . . , N
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~rk/O Vector of three-dimensional position of particle k with respect to origin O

rk Complex coordinates of kth particle’s horizontal position

zk Altitude of kth particle

ṙk Complex coordinates of kth particle’s horizontal velocity

fk Complex coordinates of horizontal flow velocity at rk

θk Orientation of kth flow-relative horizontal velocity

γk Orientation of kth total horizontal velocity

uk Flow-relative horizontal steering control of kth particle

νk Total horizontal steering control of kth particle

hk Flow-relative horizontal speed of kth particle

sk Total horizontal speed of kth particle

ξk Total horizontal speed control of kth particle

wk Climb rate of kth particle

ck Instantaneous center of the kth particle’s horizontal trajectory

Wref Reference wind speed

zref Reference altitude

h0 Shaping parameter in shear flow model

Ω Set of flowfield parameters

α̃ Noisy flowfield measurement

A Vector of flowfield measurements

σ2
α Variance of flowfield measurement noise

γ0 Reference angle

s0 Reference speed

Kγ Steering control gain

Ksp Speed control gain

i Imaginary unit

I. Introduction

Unmanned and remotely piloted aerial vehicles are now commonly used as persistent

surveillance and environmental sampling platforms.1,2 Multiple long-endurance vehicles de-

ployed in a coordinated manner can collect data over vast spatial and temporal domains

while simultaneously regulating the sampling densities of their measurements. The duration

of a sampling mission is limited by the amount of energy (fuel, batteries, etc.) a vehicle

can carry. In addition, external flowfields due to wind impede vehicle motion and disrupt

multi-vehicle coordination, causing vehicles to possibly cover less area, expend more energy,
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or provide irregular measurement data.

However, external flows need not always be a disruptive phenomenon. For example,

nature provides instances of animals taking advantage of external flowfields in order to

travel with greater efficiency: vultures fly in thermals to gain altitude and remain aloft with

little to no wing flapping,3 and albatross utilize wind shear to travel vast distances without

landing.4 This paper addresses how multi-vehicle systems may similarly utilize vertical wind

shear as a means of maintaining multi-vehicle coordination via altitude control.

The wind shear allowing albatross to soar great distances while expending minimal energy

occurs when bodies of air move relative to the ground and one another.5 This relative motion

creates significant changes in windspeed with altitude. During the process known as dynamic

soaring,4 albatross utilize stronger windspeeds at higher altitudes to compensate for kinetic

energy losses due to aerodynamic drag. In this manner, the bird takes advantage of external

wind to control its forward speed such that it can maintain flight.4 While albatross use wind

shear as a means of maintaining flight over long distances, wind shear can also be used as

a means of regulating horizontal speed in order to coordinate the motion of multiple aerial

vehicles using only altitude and steering control.

With only speed and turn rate control, decentralized multi-vehicle control algorithms

can be used to steer vehicles to sampling formations with desired inter-vehicle spacing in a

spatially-varying flowfield.6,7 However, the vehicle speed relative to the flow is often assumed

to be fixed to maximize endurance. This paper shows that the total horizontal speed can be

controlled by utilizing knowledge of the flowfield’s vertical flowspeed profile. By varying a

sampling vehicle’s altitude to achieve a desired total speed over ground, inter-vehicle spacing

can be regulated without sacrificing vehicle endurance.

This paper extends a two-dimensional model of self-propelled particle motion to three

dimensions by assuming each particle maintains control of its climb rate. In recent years much

work has been produced regarding the coordination of multi-vehicle systems in a horizontal

plane. In a flow-free setting, Sepulchre et al.8 stabilized parallel and circular formations,

as well as symmetric circular formations in which particle separation is regulated along the

circular formation. In moderate flows, where particle speeds are greater than the magnitude

of the flowfield such that forward progress can always be maintained, Paley and Peterson6

extended the parallel and circular formation results to motion in a time-invariant flowfield

as well as symmetric circular formations in a uniform flowfield. Techy et al.9 extended the

results to motion around convex loops. Similar work includes that of Frew et al.10 who used

Lyapunov analysis to generate guidance vector fields in a known flowfield, and Zhang,11 who

used orbit functions to coordinate motion on smooth curves. Extensions to time-varying

flows were made by Peterson and Paley12 and to strong flowfields, in which the flowfield

magnitude may be greater than the particle speed, were made by DeVries and Paley13 as
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well as Bakolas and Tsiotras.14

This paper presents a three-dimensional motion model in which each vehicle maintains

constant flow-relative speed with respect to the horizontal plane and controls its vertical

speed. Justh and Krishnaprasad15 utilized a three-dimensional self-propelled particle model

and derived multi-vehicle steering control algorithms to stabilize rectilinear, circular, and

helical formations. Using a similar model, Scardovi et al.16 provided control algorithms

stabilizing the same formations under varying communication topologies. Hernandez and

Paley17 extended the results to three-dimensional motion within a time-invariant flowfield.

In order to regulate vehicle speed in an unknown flowfield, each vehicle must estimate the

local wind shear. Prior works have generated flowfield estimates from noisy measurements

using nonlinear observer techniques,12 a distributed consensus filter,18 and a particle filter.19

This paper utilizes a distributed, recursive Bayesian filter20 to estimate the parameters of an

idealized shear flow model. The filter utilizes a nonlinear likelihood function to assimilate

noisy measurements of the flowfield and to determine the most probable point in parameter

space corresponding to the true flowfield parameters.

The estimation of wind fields has been given much attention in recent years. Many

techniques have been utilized to estimate the wind fields affecting aircraft from micro- to

macro-scales. At the micro-scale, Palanthandalam-Madapusi et al.21 implemented an un-

scented Kalman filter to estimate wind disturbances. Chao and Chen22 employed multiple

UAV’s to estimate parameters associated with a partial differential equation approximating

a wind field. At the macro-scale, Mulgund and Stengel23 implemented an extended Kalman

filter to provide wind shear estimates for use in feedback control of aircraft. Lawrance

and Sukkarieh24 used Gaussian process regression to estimate a wind field for exploration

and exploitation of gliding UAV’s. In related work, Lynch et al.25 utilized decentralized

proportional-integral (PI) average consensus estimators coupled with Kalman filtering to

model environments using sensor platforms with time-varying communication topologies.

The contributions of this paper are: (1) a model of particle motion in three dimensions

with constant (flow-relative) speed in the horizontal plane and corresponding feasibility con-

ditions for desired trajectories of the motion model; (2) decentralized control algorithms

that steer particles to feasible equal-speed parallel formations in a time-invariant uniform

flowfield with vertical shear and to feasible equal-speed circular formations in which parti-

cles are equally spaced in a spatially varying flowfield; (3) a recursive Bayesian filter that

estimates the shear flow from noisy flowspeed measurements and an implementation of the

decentralized control laws using the estimated shear flow.

The outline of this paper is as follows. Section II presents a model of three-dimensional

self-propelled particle motion subject to a time-invariant flowfield with a known vertical

profile, assuming the flow magnitude is less than the vehicle speed relative to the flow. It
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also presents the derivation of a coordinate transformation that enables the speed to be

indirectly regulated by controlling altitude and feasibility conditions for altitude-induced

speed-regulated trajectories. Section III presents a recursive Bayesian filter framework for

estimating flowfield parameters using noisy flowspeed measurements. Section IV uses non-

linear control techniques to design decentralized multi-vehicle control algorithms that steer

vehicles to a desired formation with a desired speed and provides simulations of each control

algorithm in a flowfield with unknown wind shear. Section V summarizes the paper and

provides insight into ongoing work.

II. Particle Dynamics in a Shear Flow

This section derives a model of three-dimensional vehicle motion in a flowfield where each

vehicle travels at constant (flow-relative) speed in the horizontal plane and maintains control

of its climb rate. The vehicle model is then used to derive feasibility conditions for speed

regulated trajectories.

A. Three-dimensional Self-propelled Particle Model in a Flowfield

The three-dimensional, self-propelled particle model that is derived in this section extends

previous models of self-propelled particle motion in a plane6,8,9,26,27,28 by assuming each

particle has control of its turn rate and climb rate. Previous works on particle motion

in three dimensions by Justh and Krishnaprasad,15 Scardovi et al.,16 and Hernandez and

Paley17 assume each particle moves at constant (flow-relative) speed in three-dimensions.

This paper assumes each particle travels at fixed (flow-relative) speed in the horizontal

plane and controls its altitude so as to reach a desired total horizontal speed. Development

of the particle model in this section enables the derivation of control algorithms in Section

IV.

Consider a collection of N Newtonian particles each able to control its turn and climb

rates. The kth particle’s position with respect to a ground-fixed inertial reference frame

is represented by the vector ~rk/O. When convenient we represent the position of the kth

particle in the horizontal plane using complex coordinates rk = xk+ iyk ∈ C and the altitude

zk ∈ R+, as shown in Figure 1(a). In the absence of flow, each particle’s horizontal motion

is controlled by a gyroscopic steering force normal to its horizontal velocity ṙk, which has

constant magnitude hk. The orientation of the kth particle’s horizontal velocity is a point

θk on the unit circle such that in complex coordinates, the horizontal velocity is hke
iθk =

hk(cos θk + i sin θk). A decentralized steering controla θ̇k = uk(r,θ, z) is designed using state-

aThe subscript is dropped and bold fonts are used to represent an N × 1 matrix, e.g., r = [r1 r2 ... rN ]T

and θ = [θ1 θ2 ... θN ]T .
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Figure 1. (a) Particle position represented in three dimensions; (b) flow-relative and total
velocity orientation coordinates; and (c) total horizontal velocity of the kth particle.

feedback control when the states are known and observer-based feedback otherwise. The kth

particle’s climb rate control is żk = wk(r,θ, z). The flow-free equations of motion of the kth

particle are

ṙk = hke
iθk

θ̇k = uk

żk = wk.

(1)

The model (1) is augmented by including a time-invariant horizontal flowfield whose

magnitude varies with altitude. A wind shear model such as this can adequately represent

many environmental systems of interest. For example, a hurricane exhibits wind shear at

low altitudes along the vertical profile of the storm as shownb in Figure 2(a). Assuming the

flowfield is separable into horizontal and vertical terms, the flowfield model is

fk = f(rk, zk) = q(zk)g(rk) ∈ C, (2)

where g(rk) ∈ C is a continuously differentiable, unit vector characterizing the horizontal

flowfield direction. The function q(zk) ∈ R+ describes the dependence of the flow magnitude

on altitude. The authors adopt the following model of q(zk):
4,5,19,29

qk = q(zk) = Wref
ln(zk/h0)
ln(zref/h0)

, (3)

where Wref is the reference windspeed at reference altitude zref and h0 is a shaping parameter

of the vertical gradient(see Figure 2(b)). We assume the flow-relative speed of the kth particle

is greater than the maximum flowspeed, i.e., hk > qk, so that each particle can maintain

forward progress at any altitude. Note for the model (3), ∂qk/∂zk > 0.

bFrankline, J. L., Black, M. L., and Valde, K, “Eyewall Wind Profiles in Hurricanes Determined By GPS
Dropwindsondes”, http://www.nhc.noaa.gov/aboutwindprofile.shtml, 17 July 2012.
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Figure 2. (a) The mean windspeed profile of a hurricane versus altitude;b (b) wind shear
model (3).

In the presence of flowfield fk, each particle’s velocity is represented by the vector sum

of its velocity relative to the flow and the flow velocity relative to the ground, as shown in

Figure 1(b). The equations of motion of the kth particle become6

ṙk = hke
iθk + fk

θ̇k = uk

żk = wk,

(4)

where ḣk = 0. (Note that if a vertical component of the flow were included, it could be

cancelled by wk.)

For the purpose of path horizontal planning in a flowfield, one desires control of the

horizontal component of the inertial velocity rather than the horizontal velocity relative to

the flow. For this reason let the magnitude and direction of the total horizontal velocity be

defined by,6

sk , |hkeiθk + fk| (5)

γk , arg(hke
iθk + fk), (6)
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such that from Fig. 1(c) we havec

sk cos γk = hk cos θk + 〈fk, 1〉 (7)

sk sin γk = hk sin θk + 〈fk, i〉. (8)

Taking the time derivative of (7) and (8) with ḣk = 0 gives

ṡk cos γk − skγ̇k sin γk = θ̇khk sin θk + 〈ḟk, 1〉 (9)

ṡk sin γk − skγ̇k cos γk = θ̇khk cos θk + 〈ḟk, i〉, (10)

where ḟk = ∂fk
∂rk
ṙk + ∂fk

∂zk
żk. Solving for ṡk in (9) and substituting the result into (10) to solve

for γ̇k gives

γ̇k = (1− s−1k 〈fk, eiγk〉)uk + 〈∂fk
∂rk
eiγk , ieiγk〉+ s−1k 〈∂fk∂zk

, ieiγk〉wk , νk, (11)

where νk is the steering control of the total horizontal velocity orientation. Similarly, solving

(10) for γ̇k and substituting into (9) to solve for ṡk gives

ṡk = 〈fk, ieiγk〉uk + sk〈∂fk∂rk
eiγk , eiγk〉+ 〈∂fk

∂zk
, eiγk〉wk , ξk, (12)

where ξk is the control of the total horizontal speed.

Now solving for wk and uk with respect to νk and ξk using (11) and (12) gives the

altitude-speed control variable transformation

wk =
〈fk,ieiγk 〉skνk+(sk−〈fk,eiγk 〉)(sk〈

∂fk
∂rk

eiγk ,eiγk 〉−ξk)−sk〈
∂fk
∂rk

eiγk ,ieiγk 〉〈fk,ieiγk 〉

〈 ∂fk
∂zk

,fk〉−sk〈
∂fk
∂zk

,eiγk 〉
, (13)

and the steering control variable transformation

uk =
〈 ∂fk
∂zk

,ieiγk 〉
(
ξk−sk〈

∂fk
∂rk

eiγk ,ieiγk 〉
)
+sk〈

∂fk
∂zk

,eiγk 〉
(
〈 ∂fk
∂rk

eiγk ,ieiγk 〉−νk
)

〈 ∂fk
∂zk

,fk〉−sk〈
∂fk
∂zk

,eiγk 〉
. (14)

From (11) and (12) the equations of motion for a particle subject to steering and altitude

control are

ṙk = ske
iγk

ṡk = ξk

γ̇k = νk

żk = wk,

(15)

c〈x, y〉 , Re (x∗y), where x∗ is the complex conjugate of x, denotes the inner product of complex numbers
x and y.
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where νk, ξk, and wk are given by (11)–(13).

The mappings from νk and ξk to wk and uk in equations (13) and (14) are singular when

the denominator is zero. The singular conditions of (13) are derived as follows.

Lemma 1. The transformations (13) and (14) are singular in flowfield model (2) when

θk = arg(fk)± π/2, (16)

or
∂qk
∂zk

= 0. (17)

Proof. Equations (13) and (14) are singular when

〈∂fk
∂zk
, hke

iθk + fk〉 − 〈∂fk∂zk
, fk〉 = ∂q

∂zk
hk〈g(rk), e

iθk〉 = 0. (18)

Noting that arg(fk) = arg(g(rk)) completes the proof.

The equations of motion in (15) can be utilized to derive decentralized multi-vehicle

control algorithms. However, as shown in Lemma 1, the transformation between motion

models (4) and (15) is singular for θk = arg(fk) ± π/2 or when ∂qk/∂zk = 0, although

the latter condition is impossible for shear model (3). To avoid this singularity, we assume

bounded turn and climb rates and use a saturation function such that (4) becomes

ṙk = hke
iθk + fk

θ̇k = sat (uk;umax)

żk = sat (wk;wmax) ,

(19)

where umax and wmax are the maximum turn and climb rates, respectively. By bounding

uk and wk, the kth particle will pass through θk = arg(fk) ± π/2 with θ̇k = ±umax and

żk = ±wmax.

B. Feasibility of Altitude-Induced Speed Controlled Trajectories

While dynamic altitude control can be utilized as a means of maintaining a desired speed

along a trajectory, not all speed-regulated trajectories are feasible in a spatially-varying flow-

field. For example, in a uniform flowfield it is impossible to maintain a constant horizontal

speed while traveling in a circle. This section derives kinematic constraints that dictate the

feasibility of a desired speed-controlled trajectory.

For a particle to travel along a given curve L with desired speed sd the flow at every

point along the curve must be such that the vehicle can maintain total horizontal velocity
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sde
iγk tangent to L, as shown in Figure 1(c). The angle between fk given by (2) and sde

iγk ,

φk , γk − arg(fk), depends only on the horizontal position rk and not on the altitude zk.

The flow-relative horizontal velocity eiθk must also satisfy the triangle equality such that

sde
iγk = eiθk + fk. From Figure 1(c) notice that the law of cosines implies

h2k = s2d + |fk|2 − 2sd|fk| cosφk, (20)

which, when solved for |fk|, gives

|fk| = sd cosφk ±
√
h2k − s2d sin2 φk. (21)

The following result is based on the argument that, if for all rk ∈ L, there exists a zk such

that |fk| is real and positive, then L is feasible. Since fk is continuous in space, the desired

zk is continuous along L, assuming an arbitrarily large climb-rate saturation wmax.

Theorem 1. Trajectory L traversed with desired speed sd is feasible under the vehicle model

(19) in moderate flowfield (2) if, for all rk ∈ L, there exists an altitude zk such that the

quantity

sd cosφk ±
√
h2k − s2d sin2 φk, (22)

is real, positive, and less than one, where φk = γk− arg(fk) and sd is the desired speed at rk.

Theorem 1 is illustrated in Figure 3 for constant speed straight line and circular trajec-

tories in the flowfield model (2). Consider a straight line trajectory in a uniform flowfield

oriented toward the positive real axis, g(rk) = 1, with vertical wind shear given by (3).

The trajectory is characterized by its constant velocity orientation γk = γ0 and magnitude

sk = sd. Figure 3(a) shows feasibility analysis over the space of trajectory orientations and

speeds in a flowfield parameterized by Wref = 0.5 km/min and h0 = 4. White areas indicate

that the trajectory characterized by (sd, γ0) is feasible while grey areas indicate infeasibility.

The blue dot corresponds to the orientation and velocity of the trajectory in Figure 3(b).

Figures 3(c) and (d) consider a constant-speed counter-clockwise circular trajectory in

a point vortex with vertical wind shear. The flowfield model is given by (2) and (3) with

g(rk) = ieiarg(rk) and shear parameters Wref = 0.5 km/min and h0 = 4. Figure 3(c) illustrates

a planar representation of the feasibility of circular trajectories with radius |ω0|−1 = 30 km

and constant speed sd = 1.5 km/min. A constant speed circular formation centered in the

white area is feasible, whereas one centered in a grey area is infeasible. An example of a

feasible trajectory is shown by the blue circle, centered at c = 10 + 0i. The corresponding

three-dimensional trajectory that maintains sd = 1.5 km/min is shown in Figure 3(d) and is

found by solving (3) for zk such that |fk| satisfies (22).
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Figure 3. Feasibility regions for (a) straight line trajectories in a uniform shear flow and
(c) circular trajectories in a point vortex shear flow. (b),(d) Three-dimensional trajectories
corresponding to blue trajectories characterized in (a),(c).

III. Bayesian Estimation of Shear Flow

In order to control a vehicle’s total horizontal velocity, knowledge of the flow at the

vehicle’s position is required. When the flow is unknown, a nonlinear estimation scheme

enables each particle to estimate the flowfield at its position for use in its steering control.

For the case of a flowfield of the form (2) and (3) with unknown parameters Wref and

h0, the authors assume the flow direction is known to simplify presentation, but direction

can be estimated as well. This section presents a recursive Bayesian filter for estimating

the parameters defining the wind shear model (3). The estimated shear flow is used in a

dynamic altitude control described in Section IV.

Estimation of a spatiotemporal flowfield fk of the form (2) using noisy observations of the

flow can be accomplished by assimilating the observations using a recursive Bayesian filter.
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For linear systems with Gaussian noise the optimal Bayesian filter is the Kalman filter,

whereas for nonlinear systems with nonlinear noise a common Bayesian filter is a particle

filter.20 In either case, the flow estimate is encapsulated in a state vector, which for example

may contain the flow velocity f(rk(t), zk(t), t) at each one of P grid points. An alternative

pursuit is a state vector Ω that contains only a set of M � P parameters, from which the

flowfield f(rk(t), zk(t), t) can be reconstructed. For example, the model (3) is defined by

the parameters Ω = (Wref , h0), such that the flowfield at ~rk/O isd fk = f(rk, zk; Ω). Note

that zref in (3) is a reference altitude, assumed to be known. This representation provides

a significant reduction in computations, making it attractive for use in a sampling scheme.

Note this representation is only possible for a parameterized flowfield with a known model.

The discrete-time Bayesian formalism proceeds as follows.20 Let Ω̂(t) denote the state

estimate at time t, α̃k(t) denote the noisy observation by vehicle k at time t, and Ak(t) =

{α̃k(1), . . . , α̃k(t)} denote the set of observations up to time t. The conditional probability

of the state Ω̂(t) given Ak(t) for vehicle k is

p(Ω̂(t)|Ak(t)) = βp(α̃k(t)|Ω(t))p(Ω̂(t)|Ak(t−∆t)), (23)

where the coefficient β can be ignored in practice as long as p(Ω̂(t)|Ak(t)) is normalized

to have unit integral over the state space. The conditional probability p(α̃k(t)|Ω(t)) is a

likelihood function that represents the probability that the state Ω(t) generated the obser-

vation α̃k(t). Note that p(Ω̂(1)|Ak(0)) is the prior distribution, which is initialized uniformly

according to known bounds.

Suppose the kth particle obtains the following noisy measurement of the flow magnitude

at time t and location (rk(t), zk(t)):

α̃k(t) = q(zk(t)) + ηk(t) ∈ R,

where the noise ηk(t) ∼ N (0, σ2
α) is normally distributed with zero mean and variance σ2

α.

For each point Ω(t) in the M -dimensional state space, we choose the likelihood function to

be a multi-variate Gaussian, i.e.,

p(α̃k(t)|Ω(t)) = 1
2πσ2

α
exp

[
− 1

2σ2
α
||q(zk(t); Ω(t))− α̃k(t)||2

]
. (24)

Assuming measurements are taken at each time step, the conditional probability density

of the state Ω̂(t) is updated with the equations of motion of the kth particle in an Euler

dThe notation g(a, b;µ, χ) represents a function g(·) that depends on the state variables a, b and the
parameters µ and χ.
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integration scheme by discretizing (4) such that

rk(t+ ∆t) = rk(t) + (eiθk(t) + fk(t))∆t

θk(t+ ∆t) = θk(t) + uk(t)∆t

zk(t+ ∆t) = zk(t) + wk(t)∆t

p(Ω̂(t)|A(t)) = β

N∏
k=1

p(α̃k(t)|Ω(t−∆t))p(Ω̂(t−∆t)|A(t−∆t)),

(25)

where p(α̃k(t)|Ω(t−∆t)) is calculated by (24), p(Ω(t−∆t)|A(t−∆t)) is the prior probability

density, and A(t−∆t) = {A1(t−∆t), . . . ,AN(t−∆t)} contains measurements from all vehicles

at t−∆t. The point in parameter space corresponding to the maximum of the posterior

probability density p(Ω̂(t)|A(t)) gives the best estimate of the flowfield parameters Wref

and h0. Note that (25) assumes that the kth particle communicates its measurement to

either a central station or to every other particle such that all vehicles have knowledge of

p(Ω̂(t)|A(t)). Distributed versions of (25) are possible25 but beyond the scope of this paper.

IV. Dynamic Altitude Control for Motion Coordination

This section derives a dynamic altitude control algorithm to stabilize feasible parallel

and circular formations in a flowfield with wind shear. In parallel motion, the orientation of

every particle’s total horizontal velocity is the same. In a circular formation, every particle

rotates about the same fixed point; symmetric circular formations are circular formations

with equal inter-particle spacing.

A. Parallel Formation Control with Speed Regulation

This subsection extends previous work on parallel formation control algorithms6,8 by deriving

a decentralized control algorithm that stabilizes the set of equal speed parallel formations in a

uniform flowfield with wind shear. Particles travel with equal horizontal velocity magnitude

and orientation using altitude-rate control to maintain equal horizontal speed. If the particles

have the same flow-relative speed, then the steady-state altitudes are identical, otherwise

they may differ.

Synchronization of the orientation of the total horizontal velocities to a desired orientation

γ0 corresponds to the maximum of the potential function6,8

U(γ) =
1

2
|pγ|2 +

N∑
k=1

ak0 cos(γ0 − γk), (26)
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where

pγ =
1

N

N∑
k=1

eiγk , (27)

and ak0 = 1 if the kth particle has knowledge of γ0 and zero otherwise. Assuming at least one

particle has knowledge of γ0, the following theorem shows that choosing the steering control

(11) to be the gradient of (26) establishes asymptotic stability of the parallel formation with

the total velocity orientation γk = γ0 for all k ∈ {1, . . . , N}. The authors then design (12)

to ensure convergence to a common reference speed sk = s0 for all k ∈ {1, . . . , N}.

Theorem 2. Consider a flowfield of the form (2) that is spatially uniform with vertical shear

given by (3). The model (19) with climb-rate control

wk = Kspsgn

[
〈∂fk
∂zk

, eiγk〉−
〈fk, ieiγk〉〈∂fk∂zk

, ieiγk〉
sk − 〈fk, eiγk〉

]
[s0 − sk] , Ksp > 0, (28)

and turn-rate control

uk =
−〈∂fk

∂zk
, ieiγk〉wk −Kγsk [〈pγ, ieiγk〉+ ak0 sin(γ0 − γk)]

sk − 〈fk, eiγk〉
, Kγ < 0, (29)

where ak0 = 1 for at least one particle, asymptotically stabilizes the set of feasible parallel

formations in which sk = s0 and γk = γ0 for all k ∈ {1, . . . , N}.

Proof. Consider the time derivative of the potential function (26) along solutions of model6,8

(15)

U̇ =
∂U

∂γ
γ̇ =

1

N

N∑
k=1

∂U

∂γk
γ̇k =

1

N

N∑
k=1

[
〈pγ, ieiγk〉+ ak0 sin(γ0 − γk)

]
γ̇k. (30)

Choosing the gradient control8

γ̇k = −Kγ
∂U
∂γk

= −Kγ [〈pγ, ieiγk〉+ ak0 sin(γ0 − γk)] , (31)

and solving (11) for uk with ∂fk/∂rk = 0 in a uniform flowfield gives (29). Thus, (30)

becomes

U̇ = −Kγ

N∑
k=1

[
∂U

∂γk

]2
≥ 0, Kγ < 0, (32)

with equality to zero occurring at the set of critical points

Λ =

{
∂U

∂γk
= 0, ∀ k = 1, . . . , N

}
. (33)

Equation (32) ensures solutions are driven to the set Λ of critical points of U which includes
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the parallel formation γk = γ0 (the global maximum of U). For Kγ < 0, variation of (26)

about the critical point γk = γ0 for all k ∈ {1, . . . , N} shows asymptotic stability since U̇ ≥ 0

while all other critical points are unstable.

Under control (29), the speed kinematics (12) of the kth particle are

ṡk =
−Kγsk〈fk, ieiγk〉[〈pγ, ieiγk〉+ak0 sin(γ0 − γk)]

sk − 〈fk, eiγk〉
+

[
〈∂fk
∂zk

, eiγk〉−
〈fk, ieiγk〉〈∂fk∂zk

, ieiγk〉
sk − 〈fk, eiγk〉

]
wk.

(34)

The numerator of the first term in (34) is zero in Λ because 〈pγ, ieiγk〉+ ak0 sin(γ0− γk) = 0,

and with altitude control (28), equation (34) becomes

ṡk = Ksp

∣∣∣∣∣〈 ∂f∂zk , eiγk〉 − 〈fk, ie
iγk〉〈 ∂f

∂zk
, ieiγk〉

sk − 〈fk, eiγk〉

∣∣∣∣∣︸ ︷︷ ︸ (s0−sk)

, κk ≥ 0

(35)

The coefficient κk is non-negative, giving the horizontal speed kinematics of the kth particle

in Λ

ṡk = κk(s0 − sk), (36)

which are asymptotically stable about the critical point s0 (use of the potential function

Us = 1/2
∑N

k=1(s0− sk) and the invariance principle [30, p.128] proves stability). Therefore,

sk → s0 for all k ∈ {1, . . . , N}.

Theorem 2 stabilizes vehicle speeds to a feasible reference value s0 assuming each vehicle

has knowledge of s0. This assumption is relaxed to the case where a subset of particles

contain knowledge of s0 by implementing a consensus algorithm on the speed control. The

result is as follows.

Corollary 1. Consider a flowfield of the form (2) that is spatially uniform with vertical

shear given by (3). The model (19) with climb-rate control

wk = Kspsgn

[
〈∂fk
∂zk

, eiγk〉−
〈fk, ieiγk〉〈∂fk∂zk

, ieiγk〉
sk − 〈fk, eiγk〉

][
ak0(s0−sk) +

1

N

N∑
j=1

(sj−sk)
]
, (37)

where Ksp > 0, ak0 is non zero for at least one particle, and turn-rate control (29), asymp-

totically stabilizes the set of feasible parallel formations in which sk = s0 and γk = γ0 for all

k ∈ {1, . . . , N}.

Proof. Theorem 2 shows that turn-rate control (29) steers horizontal particle velocity orien-

tations to the critical set Λ which includes the asymptotically stable critical point γk = γ0
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Figure 4. Illustration of particle (a) horizontal trajectories, (b) altitudes, and (c) total hori-
zontal speeds when flow-relative particle speeds are equal.

for all k ∈ {1, . . . , N}. In Λ, the speed kinematics of the kth particle with climb-rate control

(37) are

ṡk = κk

[
ak0(s0−sk) +

N∑
j=1

(sj−sk)
]
, (38)

where κk is non-negative, which represent a constant reference consensus algorithm on a

directed spanning tree with reference s0. It follows from Ren [31, Thm 3.1] that sk → s0 for

all k ∈ {1, . . . , N}.

Note equations (28), (29), and (37) are well defined in a moderate flow because the de-

nominator is never zero.6 Figure 4 shows simulation results illustrating Corollary 1 with

N = 5 particles, Ksp = 1, and Kγ = −0.1 in a uniform flowfield with vertical shear pa-

rameterized by Wref = 0.5 km/min and h0 = 4. The reference values γ0 = π/4 radians,

and s0 = 1.25 km/min are chosen consistent with the feasibility analysis of Section II.B.

Particles move at equal speed relative to the flow, i.e., hj = hk = 1 km/min for all pairs

j, k ∈ {1, . . . , N} and ak0 = 1 for two particles. Particle horizontal trajectories are shown

in Figure 4(a) with the corresponding altitude and total horizontal speed shown in Figures

4(b) and 4(c), respectively. Note all particles reach consensus on not only speed but also

altitude since they move at equal speed relative to the flow. Figure 5 shows simulation re-

sults illustrating Corollary 1 where flow-relative particle speeds are randomly chosen from

the interval hk ∈ [1, 1.2]. Note that vehicles reach consensus on total horizontal speed by

converging to different altitudes in order to take advantage of the wind shear.

Corollary 1 is now implemented using flowfield estimates generated by the Bayesian

filter presented in Section III. The parameter estimates Ω̂(t) = (Ŵref , ĥ0) correspond to

the maximum of the posterior probability density p(Ω̂(t)|A(t)). The estimated flowfield f̂k

replaces the known flowfield fk in the control algorithms (29) and (37). Note that the flow

direction is assumed to be known, and only the parameters Ω = (Wref , h0) in the model (3)

are estimated. The results are described as follows.
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(c)

Figure 5. Illustration of particle (a) horizontal trajectories, (b) altitudes, and (c) total hori-
zontal speeds when flow-relative speeds are in the interval [1, 1.2].

Proposition 1. Consider a spatially uniform flowfield with vertical shear given by (3). For

the particle motion and Bayesian filtering model (25), the controls (29) and (37) calculated

using flowfield estimates f̂k = f(rk, zk, Ω̂(t)) asymptotically stabilize the set of feasible parallel

formations in which γk = γ0 and sk = s0 for all k ∈ {1, . . . , N} and constant s0 and γ0.

Proposition 1 is justified by the decoupling of the estimation error from the control

algorithm. If the recursive Bayesian filter converges around the ground truth parameters

then the flowfield estimates converge to the actual flow, in which case Corollary 1 proves

that vehicles asymptotically stabilize to the set of feasible parallel formations. Figure 6

shows simulation results of iterating the discrete equations of motion (25) with N = 5

particles and flowfield estimates generated by the Bayesian filter. Figures 6(a) and 6(b) show

the particle trajectories and the state-space probability density, respectively, after t = 30

minutes. Figures 6(c) and 6(d) show the trajectories and associated probability density after

t = 400 minutes. The measurement noise is σα = 0.3 and the control gains are Ksp = 1

and Kγ = −0.1. The ground truth flowfield is characterized by the parameters Wref = 0.5

and h0 = 4 as shown by the white dot in Figures 6(b) and 6(d); the reference altitude is

zref = 3 km. The maximum of the probability density is shown as a magenta dot. Note

that as the vehicles continually collect measurements the probability density peaks around

the true values. As this occurs the flowfield estimates become more accurate and the control

algorithm steers vehicles to a parallel formation where each vehicle has the same horizontal

velocity.

B. Circular Formation Control with Speed Regulation

A symmetric circular formation is a circular formation in which particles are spaced evenly

about the circle. This subsection designs distributed steering and altitude controls to stabilize

the set of symmetric circular formations in a point vortex with vertical shear (3).

In order to maintain uniform spacing around the horizontal projection of the formation,
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Figure 6. Simulation illustrating Proposition 1 with N = 5 particles. Particle horizontal
trajectories and state-space probability density of estimated parameters at (a,b) t = 30 minutes
and (c,d) t = 400 minutes.

the particles regulate their total horizontal speed using altitude control. Without loss of

generality, we assume the vortex is centered at the origin of the reference frame I such that

the flowfield is

fk = q(zk)ie
iarg(rk) ∈ C, (39)

with q(zk) given by (3).

The kth particle’s instantaneous center of rotation6 in a flowfield is

ck , rk + iω−10 eiγk , (40)

where |ω0|−1 and the speed sk determine the radius of the circle. The time derivative of (40)

reveals that the control8

νk = ω0sk, (41)
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yields ċk = 0 and the particle is steered in a circle about a fixed center ck. Let c =

[c1, c2, . . . cn]T be the N ×1 vector of circle centers. To steer particles to a common reference

center c0, we adopt the potential function6,8,9

S(r,γ) =
1

2
〈c, Pc〉+

1

2

N∑
k=1

ak0|ck − c0|2, (42)

where P = diag{1} − 1
N

11T corresponds to all-to-all communicatione between particles and

ak0 = 1 if the kth particle is informed of c0 and zero otherwise. If ak0 = 0 for at most N − 1

particles then the control6

νk = ω0[sk +K(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)], K > 0 (43)

drives particles to a circular formation about c0 with radius |ω0|−1.
The control algorithm (43) is extended to stabilize symmetric circular formations in a

non-uniform flowfield by regulating particle speed using altitude control. The phase of the

kth particle represents its progress about the circular formation.8 In the limit that sk is

constant, the phase of the kth particle satisfies

ψk = γk, (44)

in which case the period of rotation is T = 2π/(ω0sk).

Let U(ψ) be a rotationally symmetric phase potential. Rotational symmetry of U(ψ)

implies
∑N

k=1
∂U
∂ψk

= 0.6,8,9 This paper arbitrarily chooses to coordinate particle phases on

an (M,N)-pattern potential, U(ψ).6,8,9 The (M,N)-pattern, where N is divisible by M ,

defines an arrangement of M uniformly spaced clusters of N/M vehicles. The splay formation

corresponds to M = N in which each cluster contains one vehicle. (For an in-depth analysis

of rotationally symmetric phase potentials refer to Sepulchre et al.8)

The time derivative of the composite potential6

V (r,γ) = S(r,γ) + T
2π
U(ψ) (45)

is negative semi-definite under the steering control

νk = ω0sk

[
1 +Kγ

(
sk〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉 − ∂U

∂ψk

)]
, (46)

giving the following result.

eExtensions to limited communication topologies are possible27 but beyond the scope of this work.
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Theorem 3. The particle model (19) in flowfield (2) with climb rate control wk given by

(13) with

ξk = Ksp(s0 − sk), Ksp > 0, (47)

and steering control uk given by (14) with νk given by (46) stabilizes the set of feasible

symmetric circular formations centered at c0 with radius |ω0|−1 in which particle separation

is determined by the critical points of U(ψ), sk = s0 for all k ∈ {1, . . . , N}, and s0 > 0

constant reference speed.

Proof. Consider the positive semi-definite composite potential function formed with (45)

such that

Vc(r,γ, s) = V (r,γ) +
1

2

N∑
k=1

(s0 − sk)2. (48)

The time derivative of (48) is

V̇c = V̇ −
N∑
k=1

(s0 − sk)ξk, (49)

where V̇ is negative semi-definite under control8 (46). With speed control (47) equation (49)

becomes

V̇c = V̇ −Ksp

N∑
k=1

(s0 − sk)2 ≤ 0. (50)

By the invariance principle, particles converge to the largest invariant set Λ for which V̇c = 0.

A circular formation centered at c0 with radius |ω0|−1 and vehicle spacing dictated by the

minima of U(ψ) is the only stable isolated equilibrium point in Λ [8, Theorem 6], [6, Corollary

2] and all other isolated equilibria are unstable. Furthermore, the second term on the right

hand side of (50) is zero only when sk = s0 for all k ∈ {1, . . . , N}. Therefore, the only

stable equilibrium for which V̇c ≡ 0 is the circular formation centered at c0 with radius

|ω0|−1, vehicle spacing dictated by the minima of U(ψ), and vehicle speed sk = s0 for all

k ∈ {1, . . . , N}.

Theorem 3 assumes all vehicles have knowledge of the constant reference speed s0. This

result is extended to the case where a subset of vehicles contain knowledge of s0 by imple-

menting a consensus algorithm on the speed control. The result is as follows.

Corollary 2. The particle model (19) in flowfield (2) with climb rate control wk given by

(13) with

ξk = Ksp

(
ak0(s0 − sk) +

1

N

N∑
j=1

(sj − sk)
)
, Ksp > 0, (51)
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where ak0 is non-zero for at least one particle, and steering control uk given by (14) with νk

given by (46) stabilizes particle motion to the set of feasible symmetric circular formations

centered at c0 with radius |ω0|−1 in which particle separation is determined by the critical

points of U(ψ), sk = s0 for all k ∈ {1, . . . , N}, and constant reference speed s0 > 0.

Proof. With control (51) the dynamics of the kth particles speed represent a constant ref-

erence consensus algorithm on a directed spanning tree where the reference signal is s0. It

follows from Ren [31, Thm 3.1] that sk → s0, for all k = 1, . . . , N . With sk = s0, for all

k = 1, . . . , N , the candidate potential function (45) is negative semi-definite under steer-

ing control algorithm (14) with νk given by (46). By the Invariance principle it follows

from Sepulchre [8, Theorem 6] that particles are steered to a symmetric circular formation

centered at c0 with radius |ω0|−1 and vehicle spacing dictated by the minima of U(ψ).

Figure 7 illustrates simulation results of Corollary 2 with N = 6 particles of equal flow-

relative speed hj = hk = 1 km/min, circle radius |ω0|−1 = 30 km, and gains Kγ = 0.1

and Ksp = 1. Particles are steered to a common center c0 = 10 + 0i consistent with the

feasibility analysis of Section II.B. ak0 = 1 for three particles and s0 = 1.5 km/min. The

shear parameters of the flowfield are Wref = 0.5 km/min and h0 = 4 with zref = 3 km.

Note in Figure 7(a) that particles converge to a circular formation in which each particle

maintains equal spacing along the circle. Light blue trajectories indicate the transient period

while particles converge to the circular formation, shown in dark blue. Figure 7(b) shows

the converged formation in three-dimensions. Note that particles oscillate in altitude to

maintain constant speed, which is shown in Figures 7(c) and 7(d), respectively. All particles

converge to the same total horizontal speed.

Next the control algorithm of Corollary 2 is implemented using flowfield estimates from

the recursive Bayesian filter. Figure 8 shows simulation results of (25) with N = 6 particles

and controls calculated using the estimated flowfield parameters. The shear parameters are

Wref = 0.5 km/min and h0 = 4 with measurement noise σ2
α = 0.3. Figure 8(a) shows particle

trajectories in three dimensions after t = 300 minutes. Figure 8(b) shows the state-space

probability density of the parameter space at t = 300 minutes. The white circle represents

the ground truth parameters, whereas the magenta circle represents the point in parameter

space with the highest probability. Figure 8(c) shows three-dimensional particle trajectories

after t = 1500 minutes. Note that particles circle about c0 = 10 + 0i with speed s0 = 1.5

km/min, and achieve equal inter-particle spacing. Flowfield estimates are provided by the

recursive Bayesian filter, whose converged probability density is shown in Figure 8(d).
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Figure 7. Simulation illustrating Corollary 2 with N = 6 particles: (a) horizontal particle
trajectories; (b) formation in three-dimensional space, (c) altitudes over time, and (d) total
horizontal speeds.

V. Conclusion

Flowfields can be disruptive to spatiotemporal coordination in environmental sampling

applications. This paper addresses how a flowfield with vertical shear can be exploited as a

means of controlling vehicle speed via altitude regulation. Control of vehicle speed is used

to coordinate the motion of multiple autonomous vehicles. The paper presents a three-

dimensional model of self-propelled particle motion in which each particle moves at constant

speed relative to the flow in the horizontal plane and controls its climb rate. Decentralized

multi-vehicle control algorithms are derived to stabilize feasible parallel formations with

equal horizontal speed and circular formations with equal particle spacing. In addition, the

authors present a recursive Bayesian filter framework to estimate parameters associated with

a common wind shear model and utilize the corresponding flowfield estimate in the control
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Figure 8. Simulation of symmetric circular formation control (46) with N = 6 particles and
wind shear estimation; trajectories and probability density of shear parameters at (a,b) t = 300
minutes, and (c,d) t = 1500 minutes.

algorithms. Ongoing work seeks to expand this method of control to more general flowfield

and vehicle models.
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