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Coordination in an Unknown Spatiotemporal

Flowfield

Cameron K. Peterson∗ and Derek A. Paley†

University of Maryland, College Park, MD, 20742, USA

Cooperating autonomous vehicles perform better than uncooperating

vehicles for applications such as surveillance, environmental sampling and

target tracking. For multiple vehicles to cooperate effectively, the naviga-

tion control laws should account for disturbances caused by ocean currents

or atmospheric winds. This paper provides dynamic decentralized control

algorithms for motion coordination in an unknown, time-invariant flowfield.

The algorithms simultaneously estimate the flowfield and use that estimate

in an observer-based feedback control that stabilizes a moving formation.

Each vehicle uses noisy measurements of its own position to generate inde-

pendent flowfield estimates. For a uniform flowfield, we provide a theoreti-

cally justified approach for each vehicle to estimate the flow independently.

For a nonuniform flowfield, we propose a distributed algorithm using an in-

formation filter to reconstruct the flowfield and a consensus filter to share

information between vehicles. In either case, the vehicles use the flowfield

estimate to steer to a circular formation.

Nomenclature

an Flowfield coefficient, n = 1, . . . , l

ck Center of circle traversed by particle k

Ck Covariance matrix for particle k

e1,k Position error for particle k, e1,k ∈ R
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e2,k Flowfield error for particle k, e2,k ∈ R
e3,k Coefficient error matrix for particle k, e3,k ∈ Rl×1

fk Flow velocity at position rk

gk(t) Bounded state perturbation for particle k at time t

Ik Information matrix for particle k

K Kalman filter gain matrix

Km Control algorithm gains, m = 1, . . . , 3

KP Consensus filter proportional gain

KI Consensus filter integral gain

mk Measured position difference for particle k

M Error covariance matrix

N Number of particles

P N ×N projector matrix

Pk kth row of matrix P

rk Position of particle k

ṙk Inertial velocity of particle k

Rk Measurement variance of particle k, R ∈ R
sk Inertial speed of particle k at time t

uk flow-relative steering control of particle k

vk Measurement noise for particle k

yk Measurement matrix for particle k, y ∈ Rl×1

γk Orientation of the inertial velocity of particle k

δ Perturbation bound

ηk Consensus filter integrator term for particle k

νk Steering control of particle k

ω0 Constant angular rate

φ Consensus filter gain factor, φ ∈ R
ψk Flowfield basis vector evaluated at the position of particle k, ψk ∈ Rl×1

τk Consensus variable for particle k

θk Orientation of the flow-relative velocity of particle k

Subscript and Superscripts

k Particle indices, k = 1, . . . , N
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I. Introduction

Cooperation between vehicles improves performance for multi-vehicle tasks such as en-

vironmental sampling, target identification, tracking, and surveillance. Recent research has

focused on designing cooperative-control algorithms to perform these tasks autonomously.1–6

Unknown flowfields such as winds or currents disrupt the motion of an autonomous vehicle

in the atmosphere or ocean. These disturbances are difficult to model and may contribute

to a significant portion of the vehicle’s inertial velocity. Ensuring vehicles work together in

the presence of a temporally and spatially varying flowfield is an ongoing challenge that is

partially addressed in this paper. Cooperative-control algorithms are provided for multiple

autonomous vehicles in the presence of an unknown spatially varying flowfield. We limit the

flowfields to be of moderate intensity, i.e., the flowfield does not exceed the vehicle’s speed

relative to the flow.

Some existing algorithms support operation in an unknown, spatially uniform flow. Sum-

mers et al. account for a constant-velocity wind using adaptive estimates to drive cooperative

vehicles in a loiter circle.2 Burger and Pettersen enable curved trajectory following of sur-

face vehicles by using a conditional integrator to eliminate constant disturbances for vehicle

formations.6 Peterson and Paley use knowledge of the vehicle’s position to dynamically sta-

bilize multiple vehicles to a circular formation in a spatially uniform flowfield.7 All these

approaches require that the estimation value be spatially invariant.

Estimation of spatially varying environmental fields, such as temperature, was performed

by Lynch et al. using multiple vehicles and a decentralized PI consensus filter.8 Consensus

filters provide an effective way to achieve distributed control of many vehicles with communi-

cation constraints.9,10 The scalar field estimate was coupled with a gradient control to move

the vehicles into sampling positions that minimized the uncertainty. For constant, connected

communication between stationary particles, using a consensus filter ensures convergence to

the average of all the consensus inputs. The decentralized filter converges to the same result

as a centralized filter.8

A consensus filter was also used in combination with an information filter by Casbeer

and Beard to estimate the state of a system.11,12 Their work shows that when the consen-

sus filter did not converge prior to estimating the state, the decentralized error covariance

estimates were overly conservative, but the estimated state was close to the one obtained

with the centralized estimator. Olfati-Saber has also worked extensively with decentralized

Kalman filter approaches.13–16 He developed techniques applicable to a heterogeneous group

of sensors13 and proved stability for the information-consensus filter.16

The work we present also adopts a distributed information-consensus filter to estimate

the coefficients of a parameterized flowfield, assuming knowledge of a set of basis vectors
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common to all vehicles. The inter-vehicle communication constraints may be time-varying,

provided they are strongly connected over time.10 The estimated flowfield and its directional

derivative at the vehicle locations are fed into decentralized control laws that cooperatively

stabilize vehicles to circular formations. We model each autonomous vehicle as a Newtonian

point mass particle3,17 that has a steering control perpendicular to the velocity relative to

the flowfield and travels at constant, unit speed relative to the flow. We initially assume

each vehicle measures the local flowfield at its current position. We later relax this as-

sumption and require only noisy position measurements to approximate the local flowfield.

Spatially varying flowfields are estimated using a centralized information filter when all-to-all

communication is available, and a consensus filter when limited communication exists.

This paper extends the authors’ previous work7 on estimating spatially invariant flow-

fields using perfect position measurements. We provide an algorithm for a spatially variable

flowfield and prove robustness to measurement noise. We also show that by sharing measure-

ments between vehicles, we can improve performance in a spatially-varying flowfield. The

contributions of this paper are (1) the stabilization of circular formations in an estimated,

uniform flow using only noisy position measurements, and (2) the stabilization of circular for-

mations in a estimated spatially varying flowfield using a decentralized information-consensus

filter with noisy position measurements.

The paper proceeds as follows. Section II introduces the vehicle model and summarizes

previous work on motion coordination in an estimated spatially uniform flowfield. It also

outlines the algorithm for decentralized estimation of a scalar field. Section III shows that

the estimator presented in Section II is robust to measurement noise. Section IV introduces

control algorithms that stabilize circular formations in an unknown spatially varying flowfield

using an information-consensus filter. Conclusions and highlights of ongoing work are given

in Section V.

II. Background: Motion Coordination and Distributed

Estimation of a Scalar Field

This section introduces the vehicle model and summarizes previous results for the si-

multaneous estimation of a flowfield and use of that estimate in a multi-vehicle control.

Section II.A describes a formation control algorithm that drives multiple vehicles to a cir-

cular formation in an unknown flowfield. The flowfield is estimated individually by each

vehicle using noise free position measurements. Sharing estimates between vehicles enables

multi-vehicle formations in unknown spatially varying flowfield. Section II.B summarizes

prior results for the estimation of a scalar field using a distributed algorithm. Specifically,

we summarize the information filter18 and a PI consensus filter.8
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A. Multi-Vehicle Motion Coordination in an Unknown Flowfield

In this paper, each autonomous vehicle is modeled as a self-propelled Newtonian particle.

The particle travels at constant, unit speed relative to an ambient flowfield (e.g., wind or

ocean currents). It is subject to a steering control that acts perpendicular to the velocity of

the vehicle relative to the flowfield. In general the flowfield fk = f(t, rk) may be spatially and

temporally varying. We assume that the flowfield does not exceed the speed of a particle,

i.e., |fk| < 1, which guarantees the particle can always exhibit forward motion in the inertial

(ground-fixed) frame. The position of a single particle, indexed by k = 1, . . . , N , is denoted

by rk. The particle’s inertial velocity is ṙk and the equations of motion are

ṙk = eiθk + fk

θ̇k = uk.
(1)

The steering control uk is the turn rate of the orientation θk of the velocity relative to the

flow. Generally an autonomous vehicle will have physical constraints limiting its turning rate.

However, in this paper we ignore these constraints because we have shown elsewhere7 that

they do not impact the main theoretical results for multi-vehicle coordination. Rewriting

the equations of motion in terms of an inertial speed and orientation gives

ṙk = ske
iγk

γ̇k = νk,
(2)

where γk = arg(ṙk) is the orientation of the inertial velocity of the kth particle and sk =

s(t, rk, θk) = |ṙk| denotes its magnitude. νk is the angular rate of change of the inertial-

velocity orientation of particle k. We use Lyapunov-based control to design νk; the vehicle

control uk is recoverable from νk as long as |fk(t)| < 1.17

In the presence of a constant flowfield whose direction may be rotating in time, a dynamic

control with a flowfield estimator can be used to stabilize a circular formation. The estimated

flowfield is f̂k = f̂(t, rk). Assume that particle k knows its position rk and velocity orientation

θk. The estimated inertial velocity and dynamics are

˙̂rk = ŝke
iγ̂k

˙̂γk = νk,
(3)

where ŝk and γ̂k are the magnitude and orientation, respectively, of the estimated inertial

velocity for particle k. The control algorithm works by dynamically estimating the flowfield

and then using that estimate to steer the particles as described next.

Let the estimation error for particle k be e1,k = r̂k − rk and e2,k = f̂k − fk. Consider the
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estimator dynamics7

˙̂rk = eiθk + f̂k −K1(r̂k − rk)
˙̂
fk = −K2(r̂k − rk).

(4)

In matrix form, the estimation-error dynamics for particle k areė1,k

ė2,k

 =

−K1 1

−K2 0

e1,k

e2,k

 . (5)

Choosing gains K2 > 0 and K1 = 2
√
K2 > 0 exponentially stabilizes the origin e1,k = e2,k =

0∀ k.7

Next we describe a control law to stabilize a set of particles to a circular formation

centered at ĉk where7

ĉk = r̂k + ω−1
0 ieiγ̂k . (6)

Differentiating (6) we find a steering control νk for which ˙̂ck = 0. This control law ensures

that the estimated circle center is fixed and particle k will travel at a constant radius around

this center point. We have

˙̂ck = ŝke
iγ̂k − ω−1

0 eiγ̂kνk = (ŝk − ω−1
0 νk)e

iγ̂k . (7)

Control νk = ω0ŝk allows us to drive a single particle around a circle with radius |ω0|−1 at

the estimated center point.

Consider the Lyapunov function

Ŝ(r̂, γ̂) ,
1

2
〈ĉ, P ĉ〉+

1

2

(
||e1||2 + ||e2||2

)
, (8)

where e1 = [e1,1, e1,2, ..., e1,N ]T and e2 = [e2,1, e2,2, ..., e2,N ]T . Let 1 = [1, . . . , 1]T ∈ RN . P is

the N ×N projection matrix

P = diag{1} − 1

N
11T , (9)

which is equivalent to the Laplacian matrix of an all-to-all communication topology.19 Ŝ is

equal to zero when ĉ = c01, c0 ∈ C, and the estimation errors are zero.

We have the following result [7, Theorem 4].

Theorem 1. Let fk = β(t) ∈ R satisfy |β| < 1. Also, let r̂k and f̂k evolve according to (4)

with K2 > 0 and K1 = 2
√
K2. Choosing the control

νk(t) = ω0(ŝk +K3〈Pkĉ, eiγ̂k〉), K3 > 0, (10)
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Figure 1. Stabilization of circular formation in an unknown uniform flowfield f = 0.6.

forces convergence of solutions of model (3) to the set of a circular formations with radius

|ω0|−1 and direction determined by the sign of ω0.

Theorem 1 is proven by showing that the control (10) makes
˙̂
S ≤ 0. The set { ˙̂

S = 0} is

achieved only when νk = ω0ŝk for all k, which is our criteria for a circular configuration. In

order to use νk to solve for the turn-rate control uk (which is the input to the vehicle model

(1)) we need the flowfield fk(t) and the directional derivative ḟk(t) of the flowfield,7 given

by ḟk = (∂fk/∂rk) ṙk + ∂fk
∂t

.

Figure 1 illustrates simulation results for model (3) and control (10) with estimator gains

K2 = 0.2 and K1 = 2
√
K2 = 0.894. The magnitude of the spatially uniform flowfield is 0.6.

Figures 1(a) and 1(b) show tracks of the estimated (darker track) and actual (lighter track)

particle positions at 20 and 500 seconds respectively. After 20 seconds the particles have

estimated the flowfield and eliminated the flowfield and position error. After 500 seconds

the particles have also converged to a circular configuration. Figure 1(c) displays the error

between the actual and estimated position, r̂k− rk, and flowfield, f̂k− fk, for particle k = 3.

B. Multi-Vehicle Estimation of an Unknown Scalar Field

This section summarizes the work of Lynch et al.8 in which an information filter and a

PI consensus filter were used to estimate an environmental scalar field using measurements

collected by multiple vehicles. In Section IV we use the same process to estimate a vector

flowfield. Let the environmental field be approximated at position rk with a set of l basis

vectors8

fk =
l∑

n=1

anψn(rk), (11)

where ψ(rk) , ψk = [ψ1(rk), ψ2(rk), ..., ψl(rk)]
T are the basis vectors evaluated at rk and

a = [a1, a2, ..., al]
T are the flowfield coefficients. The coefficients must be estimated in order
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to recover the field, but it is assumed that the basis vectors are known.

The measurement for each vehicle is8

f̃k = ψT
ka+ vk (12)

where vk is Gaussian, zero-mean measurement noise with variance Rk ∈ R. Although Lynch

et al. allow the coefficients to be time-varying, here we assume that the coefficients are

constant, i.e. ȧn = 0 for all n, and estimate them using an information filter.

The information filter is a variation of the Kalman filter that propagates forward the

inverse of the estimate uncertainty covariance. Let M = E[(a−â)(a−â)T ] be the coefficient

error covariance.a The inverse error covariance I , M−1 is the information matrix. Note

that infinite uncertainty in the estimated state results when I approaches zero or I has

no state information. Knowing the state exactly gives infinite information and I → ∞.18

The information measurement is i = Ia.8 Using an information filter instead of a standard

Kalman filter simplifies the amount of data that must be shared between vehicles since the

update information is encompassed in a single covariance matrix and measurement vector.12

The information filter equations are obtained by substituting M = I−1 and â = I−1î

into the standard Kalman filter equations. For this work we implemented a discrete form

of the information filter. Let t be the current time and ∆t indicate a single time step.

Also, let the superscript (−) equal the prior estimates and (+) indicate the updated estimate

equations. The information filter equations are simplified under the assumption that the state

a is constant and does not have process noise. These conditions imply that the predicted

information covariance and information state at time t are equal to the prior values, i.e.

I−(t) = I+(t−∆t) and î
−

(t) = î
+

(t−∆t). For particle k the measurement-update equations

are8,18

I+
k (t) = I−k (t) +ψkR

−1
k ψ

T
k

î
+

k (t) = î
−
k (t) +ψkR

−1
k f̃k.

(13)

Rewriting these equations using Ck , ψkR
−1
k ψ

T
k and yk , ψkR

−1
k f̃k yields8

I+
k (t) = I−k (t) + Ck

î
+

k (t) = î
−
k (t) + yk.

(14)

The matrix Ck and vector yk represent the information gained from particle k in a single

update measurement. The coefficients âk estimated by particle k can be obtained from the

information matrix using8 âk = I−1
k îk. An advantage of using the information filter is that

measurement updates are simply added to the predicted information covariance and vector.

aE[(·)] is the expected value of (·).
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Multiple measurements may be incorporated in a single update step using the summation8

C ,
N∑
k=1

Ck =
N∑
k=1

ψkR
−1
k ψ

T
k (15)

and

y ,
N∑
k=1

yk =
N∑
k=1

ψkR
−1
k f̃k. (16)

The measurement-update equations that incorporate the information from all particles are

I+(t) = I−(t) + C

î
+

(t) = î
−

(t) + y,
(17)

with the estimated coefficients â = I−1î.

Notice that the measurement variance Rk is wrapped into the information update of Ck

and yk, making it easier to share information among heterogeneous sensors groups since all

the information is encapsulated in those two matrices. Let C(i,j),k indicate the entry in the

ith row and jth column of Ck. Likewise yn,k is the nth entry of vehicle k’s measurement

vector.

A centralized information filter can be used directly to estimate â when all-to-all com-

munication is available. When all-to-all communication is unavailable, the information filter

is supplemented by a consensus filter. The consensus filter approximates the average value

of a given input parameter and converges to the true average as long as the vehicle commu-

nication topology is strongly connected over time.10 We use the information-consensus filter

to allow each vehicle to approximate C and y using only information from particles in that

vehicle’s neighbor set Nk. The PI consensus filter is8

τ̇k = φ(τ0,k − τk)−KP

∑
j∈Nk

(τk − τj) +KI

∑
j∈Nk

(ηk − ηj)
η̇k = −KI

∑
j∈Nk

(τk − τj)
(18)

where τ0,k is particle k’s input to the estimated value, e.g. τ0,k = C(i,j),k where i, j = [1, . . . , l]

or yn,k where n = 1, . . . , l. φ ∈ R is a gain factor determining how reliant the consensus

filter is upon its own input. τk is the consensus value, i.e., the approximate average of C(i,j),k

or yn,k. ηk is an integrator term that is only used within the filter equations (18). KP

and KI are the proportional and integral gains, respectively. The sums are computed for

all the particles in the neighbor set of k, where j ∈ Nk indicates that vehicle k receives

communication from vehicle j.
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III. Flowfield Estimation Using Noisy Position Measurements

In this section we show that the observer based control law from Section II.A stabilizes

particles to a circular formation even with imperfect measurements of particle positions. We

assume a uniform flowfield and use the estimator introduced in Section II. In Section IV, we

extend this result to spatially varying flowfields.

Let the position measurement be

r̃k = rk + gk(t), (19)

where gk(t) is bounded noise such as from GPS error or underwater navigation error. The

error dynamics (4) become

˙̂rk = eiθk + f̂k −K1(r̂k + gk(t)− rk)
˙̂
fk = −K2(r̂k + gk(t)− rk).

(20)

In matrix form the estimator-error dynamics represent a perturbed system:ė1,k

ė2,k

 =

−K1 1

−K2 0


︸ ︷︷ ︸

,B

e1,k

e2,k

− gk(t)
K1

K2

 . (21)

Choosing Q ∈ R2×2 to be the identity matrix, the solution to the Lyapunov equation PB +

BTP = −Q is

P =

 (K2+1)
2K1

−1
2

−1
2

(K2+K2
1+1)

2K1K2

 . (22)

Let c1 = λmin(P ), c2 = λmax(P ), c3 = −λmin(Q) = 1, and c4 = 2λmax(P ), where λ represents

the matrix eigenvalue. Also let ek = [e1,k, e2,k]
T .

Lemma 1. Given the perturbed system (21) and bounded perturbations

|gk(t) max(K1, K2)| ≤ δ <
c3

c4

√
c1

c2

xε (23)

with 0 < ε < 1 and ||ek(t)|| < x. For all ||ek(t0)|| <
√

c1
c2
x the solution to the perturbed

system (21) will obey

‖ek(t)‖ ≤
√
c2

c1

eξ(t−t0)‖e(t0)‖,
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where

ξ =
(1− ε)c3

2c2

(24)

and ‖ek(t)‖ is ultimately bounded by

‖ek(t)‖ ≤
c4

c3

√
c2

c1

δ

ε
. (25)

Proof. With candidate Lyapunov function V (ek) = eTkPek, the unperturbed system satisfies

c1‖ek(t)‖2 ≤ V (ek) ≤ c2‖ek(t)‖2

∂V

∂ek
≤ −c3‖ek(t)‖2∥∥∥∥ ∂V∂ek

∥∥∥∥2

≤ c4‖ek(t)‖2.

where c1 = λmin(P ), c2 = λmax(P ), c3 = −λmin(Q) = 1, and c4 = 2λmax(P ) [20, Example

9.1]. With gains K2 > 0 and K1 = 2
√
K2 > 0 the origin of the unperturbed system (5) is

exponentially stable [7, Lemma 2]. By [20, Lemma 9.2] the perturbed system will follow (24)

and be ultimately bounded by (25).

This theorem shows that the ultimate bound of the perturbed system (21) is proportional

to δ, indicating that a small perturbation will not result in large steady-state errors. If the

errors are sufficiently small then cooperating vehicles converge to a circular configuration

under control (10).

Proposition 1. Let fk(t) = β(t) ∈ R satisfy |β| < 1. Also, let r̂k and f̂k evolve according

to (21) with K2 > 0, K1 = 2
√
K2 and bounded perturbation (gk(t) max(K1, K2)) ≤ δ.

The distance between solutions of model (3) with the control (10) and the set of a circular

formations with radius |ω0|−1 and direction determined by the sign of ω0 is ultimately bounded

with ultimate bound proportional to δ.

Figure 2 illustrates Proposition 1 for a uniform flowfield, f = −0.5, and position mea-

surements perturbed by zero mean Gaussian noise with standard deviation σ truncated at

δ = 3σ. Figure 2(a) shows the stable circular formation of k = 5 particles. The red tracks

indicate the noisy position measurements and the blue tracks show the actual particle posi-

tion. With K2 = 2 and K1 = 2
√
K2 = 2.83, the constants in Lemma 1 become c1 = 0.204,

c2 = 1.298, c3 = 1 and c4 = 2.6. Choosing ε = .99 gives ultimate bound b = 2.83. A large

ε value increases the bounding exponential but decreases the overall bound b. Figure 2(b)

show the evolving errors for particle k = 3 as well as their bounding exponential functions

and ultimate bound. The position error e1,k = r̂k−rk with ‖e1,k(t0)‖ = 3.2875 is bounded by
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Figure 2. Stabilization to a circular formation in an unknown uniform flowfield with noisy
position measurements.

24.1586e−0.0051t (black lines). And the flowfield error e2,k = f̂k − fk with ‖e2,k(t0)‖ = 1.1726

is bounded by 2.518e−0.0051t (blue lines). Both errors are ultimately bounded by b = 2.83

(red line).

IV. Multi-Vehicle Flowfield Estimation and Control

This section describes two different methods for estimating a spatially varying, time-

invariant flowfield and using that estimate in a motion coordination algorithm. Section IV.A

implements a centralized information filter and Section IV.B a decentralized information-

consensus filter for use when inter-vehicle communication is limited. Both approaches as-

sume that each particle can measure the local flowfield at its current position. However, in

Section IV.C we relax this assumption and instead use only noisy position measurements to

estimate a local flowfield and subsequently, reconstruct the global flowfield.

The flowfield is approximated by a set of basis vectors as given by (11). The basis vectors

are assumed to be known and the flowfield coefficients are estimated using the information

filter described in Section II.B. The flowfield estimate f̂ given by the information filter is

used in control (10) to stabilize vehicles to a circular formation.

A. Centralized Flowfield Estimation Using an Information Filter

A centralized information filter is used when all-to-all communication is available among the

cooperating vehicles. Figure 3(a) illustrates the architecture design. Each vehicle individ-

ually measures the local flowfield at its position, rk. Equations (15) and (16) are used to
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Figure 3. Architecture comparison of the centralized information filter and decentralized
information-consensus filter for flowfield estimation and multi-vehicle control.

obtain Ck and yk. A centralized information filter sums Ck and yk for all k and computes

a single flowfield estimate, f̂ . The flowfield f̂ and its directional derivative are fed into a

decentralized controller for each particle, steering it to a circular formation. At the next

time step this process is repeated and the global flowfield estimate is improved with the

additional measurements. Table 1 provides this algorithm which simultaneously estimates

the flowfield and uses that estimate in a multi-vehicle control.

For the following analysis we use the continuous form of the Kalman filter. The flowfield

coefficients are constant, ȧ = 0, and the flowfield measurement is given by (12). With a

Kalman filter the estimated coefficients evolve according to

˙̂ak = K(f̃k − f̂k) = K(ψT
kak + vk −ψT

k âk), (26)

where K is the Kalman filter gain matrix. Let the coefficient error for particle k be e3,k =

âk − a. We have the following coefficient error dynamics

ė3,k = ˙̂ak − ȧ = K(f̃k − f̂k) (27)

= −KψT
k e3,k +Kvk (28)

Use (20) and (12) to obtain the dynamics for the velocity error

ė1,k = ˙̂rk − ṙk = (f̂k − fk)−K1(r̂k + gk(t)− rk) (29)

= (ψT
k âk −ψT

kak)−K1(r̂k − rk)−K1gk(t) (30)

= ψT
k e3,k −K1e1,k −K1gk(t) (31)
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Table 1. Centralized Information Filter Cooperative Control Algorithm

Input: Basis vector ψ, sensor variances Rk, and circle formation radius |ω0|−1.

For each time step i; particle k, k = 1, . . . , N :

1: Measures its position rk exactly and flowfield f̃k with noise.

2: Evaluates the basis vectors at position rk: ψ(rk) = ψk = [ψ1(rk), ψ2(rk), ..., ψl(rk)]
T .

3: Computes the information matrix Ck and information measurement yk using equations
(15) and (16).

4: Shares its information matrix and measurement vector with all other particles and
computes C and y using Ck and yk, k = 1, . . . , N .

5: Calculates the measurement updates (14) using the prior information covariance I−(t)

and state î
−

(t) along with C and y calculated in step 4.

6: Finds the estimated flowfield coefficients â = I−1î.

7: Computes the estimated flowfield f̂ = ψkâ.

8: Computes control νk (equation (10)) using the estimated flowfield f̂ .

9: Steers using turn-rate control uk = uk(νk), which is computed with the estimated

flowfield f̂ and directional derivative
˙̂
fk = (∂f̂k/∂rk) ṙk.

In matrix form the estimator-error dynamics areė1,k

ė3,k

 =

−K1 ψT
k

0 −KψT
k


︸ ︷︷ ︸

,A

e1,k

e3,k

+

−K1gk(t)

Kvk

 . (32)

Under a noise-free system the error-dynamics reduce toė1,k

ė3,k

 =

−K1 ψT
k

0 −KψT
k


︸ ︷︷ ︸

,A

e1,k

e3,k

 . (33)

Lemma 2. Choosing gains K1 > 0 and Kψk to be positive definite the error dynamics (33)

exponentially stabilizes the origin e1,k = 0 and e3,k = 0 ∀ k.

Proof. The eigenvalues of the triangular matrix A are λ1 = −K1 and λn = eig(−Kψk),

where n = 1, . . . , l. Given that Kψk is positive definite λn < 0 for all n. Choosing K1 > 0

results in λ1 < 0.
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The following is a result of Lemma 2.

Lemma 3. The matrix A defined in (33) is negative definite and the quadratic form

Qk(A) =
[
e1,k eT3,k

] −K1 ψT
k

0 −KψT
k

 e1,k

e3,k

 = −K1e
2
1,k − e1,kψ

Te3,k + eT3,kKψ
T
k e3,k ≤ 0

(34)

is equal to zero only when e1,k = 0 and e3,k = 0 for k ∈ {1, . . . , N}.

Consider the candidate Lyapunov function

Ŝ(r̂, γ̂) ,
1

2
〈ĉ, P ĉ〉+

1

2

(
||e1||2 + ||e3||2

)
, (35)

where e1 = [e1,1, e1,2, ..., e1,N ]T , e3 = [e3,1, e3,2, ..., e3,N ]T represent the noise-free error dy-

namics of (33) and ĉ is the vector of center points defined by (6). Ŝ is equal to zero when

ĉ = c01, c0 ∈ C, and all estimation errors are zero. The time derivative of Ŝ along solutions

of (3) and (33) is

˙̂
S =

N∑
k=1

(〈 ˙̂ck, Pkĉ〉+ ė1,ke1,k + ė3,ke3,k)

=
N∑
k=1

〈eiγ̂k , Pkĉ〉(ŝk − ω−1
0 νk) + e1,k(−K1e1,k + ψTk e3,k) + eT3,k(−KψTk e3,k)︸ ︷︷ ︸

,Qk(A)

 . (36)

Substituting (10) into (36) shows that the time-derivative of the potential Ŝ(r̂, γ̂) satisfies

˙̂
S =

N∑
k=1

(
−K〈Pkĉ, eiγ̂k〉2 +Qk(A)

)
≤ 0. (37)

Using the invariance principle, all of the solutions of (2) with controller (10) converge to the

largest invariant set where

−K〈Pkĉ, eiγ̂k〉2 +Qk(A) = 0, ∀ k. (38)

By Lemma 3 this is satisfied when 〈Pkĉ, eiγ̂k〉 = 0 and Qk(A) = 0 independently. Qk(A) = 0

implies that estimated values r̂k and âk equal the measured values, rk and a. Values γ̂k, fk

and ŝk are functions of âk and θk. This implies that γ̂k, fk and ŝk approach their measured

values and, by (6), ĉk converges to ck. The condition, 〈Pkĉ, eiγ̂k〉 = 0 is satisfied for all k

only when Pkĉ is constant and equal to zero. Since the null space of P is spanned by 1 this

implies ĉk = ĉj for all k, j. In this set, control (10) evaluates to νk = ω0ŝk and ˙̂ck = 0, which
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(b) Flowfield coefficient error for particle k = 15.

Figure 4. This figure shows stabilization to a circular formation with an unknown, spatially
varying flowfield estimated using a centralized information filter.

implies that each particle converges to circular motion around the same fixed center. For

the noisy system (32) we can apply Lemma 1 to find ultimate bounds for the error.

Proposition 2. Let fk =
∑l

n=1 anψn(rk) be a spatially-varying, time-invariant flowfield

where ψn(rk) are known basis vectors, but the an are unknown. Also, let r̂k and â evolve

according to (4) and (26) with K1 > 0 and KψT
k positive definite. Choosing control (10)

forces convergence of solutions of model (3) to the set of a circular formations with radius

|ω0|−1 and direction determined by the sign of ω0.

Numerical simulations used the centralized information filter described in Table 1 to

estimate the coefficients for a nonuniform flowfield. Figure 4 illustrates the results. The

flowfield is modeled using a series of sines and cosines, fk = a1 sin(Re(rk))+a2 cos(Im(rk))+

a3 sin(2Re(rk))i+a4 cos(2Im(rk))i with coefficients a1 = 0.5, a2 = 0.5, a3 = 0.5, and a4 = 0.5.

The stabilized formation of N = 15 particles is shown in Figure 4(a) with a simulation time

of t = 200 seconds. The tracks indicate that the particles have a short transient time

when converging to the final formation. Figure 4(b) shows the error magnitude between

the estimated and actual coefficients, âk − a for k = 15. Despite being fed noisy flowfield

measurements, the coefficient error converges to zero quickly.

B. Consensus-Based Flowfield Estimation Using Flow Measurements

In this section we use an information-consensus filter to estimate a spatially varying, time-

invariant flowfield. Each particle uses the PI consensus filter introduced in Section II.B

to calculate C̄k the approximate average of matrix (15) and ȳk the approximate average

of measurement vector (16). C̄k and ȳk are multiplied by the number of particles N to
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Table 2. Decentralized Information-Consensus Filter Cooperative Control Algorithm

Input: Basis vector ψ, sensor variances Rk, circle formation radius |ω0|−1, and commu-
nication topology.

For each particle k, where k = 1, . . . , N , at each time step t:

1: Measure the exact position rk and flowfield f̃k with noise.

2: Evaluate the basis vectors at position rk: ψk = [ψ1(rk), ψ2(rk), ..., ψl(rk)]
T .

3: For n = 1, . . . , p, where p is the number of consensus filter iterations, repeat: Use the
consensus filter to estimate the components of C and y.

4: Update the estimated coefficients âk using the information filter.

5: Compute control νk (equation (10)) using the flowfield f̂k.

6: Steer the particle using turn-rate control uk, which is computed using the estimated

flowfield f̂k and estimated directional derivative
˙̂
fk = (∂f̂k/∂rk) ṙk.

approximate C and y, which are used in distributed information filters to generate individual

estimates of the flowfield coefficients. The estimated coefficients are fed into a control law

that drives each particle to a circular formation. This process is depicted in Figure 3(b).

To ensure faster convergence multiple consensus updates are performed for every steering

control command. On a vehicle, the information-consensus filter would run as a separate

process completing many consensus iterations between measurement update steps. Table 2

shows the iterative process each particle follows.

Numerical simulations are implemented using the information-consensus filter to generate

individual estimates of the flowfield f̂k. The estimates were used in control (10) to stabilize

a circular formation of N = 15 particles. The simulation results are depicted in Figure 5.

Figure 5(a) shows the N = 15 particles converging to a circle over 250 seconds. The flowfield

is modeled using fk = a1 sin(Re(rk)) + a2 cos(Im(rk)) + a3 sin(2Re(rk))i + a4 cos(2Im(rk))i

with a1 = 0.5, a2 = 0.5, a3 = 0.5, and a4 = 0.5. The particles have a limited communication

topology, communicating with only four neighbors, such that particle k receives communi-

cation directly from particles k − 2, k − 1, k + 1 and k + 2. It is assumed that the particle

connection forms a ring so that neighbor k−1 for particle 1 is particle N . We set KI = 0.05,

KP = 0.5, φ = .01, and assumed sensor variance Rk = .01. Figure 5(b) shows how for the

coefficient errors, âk −a where k = 15, the error converges to zero. The error values for the

consensus filter take longer to converge than the centralized implementation (Figure 4(b))

due to the imperfect estimates of C and y. This increases the transient time for the particles

to stabilize to a circular formation.
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(b) Flowfield coefficient errors for particle k = 15.

Figure 5. Stabilization to a circular formation in an unknown spatially varying flowfield when
a decentralized information-consensus filter is used to estimate the flow.

C. Consensus Based Flowfield Estimation Using Noisy Position Measurements

In this section we relax the assumption that each particle measures the local flowfield. Instead

the flowfield is estimated using noisy position measurements. Let mk(t) be the discrete-time

measured position difference at time t,

mk(t) = rk(t)− rk(t−∆t) + vk(t). (39)

where vk(t) is Gaussian, zero-mean noise and

ṙk = lim∆t→∞(rk(t)− rk(t−∆t)). (40)

For a sufficiently small ∆t, θk is constant. Substituting (1) into (39) yields

mk(t) ≈ [eiθk(t) + fk(t)]∆t+ vk(t)

mk(t) ≈ [eiθk(t) + f̃k(t)− vk(t)]∆t+ vk(t)
(41)

The local flowfield measurement can be approximated by

ˆ̃fk(t) ≈ m(t)
∆t
− eiθk + (∆t− 1)vk(t)

∆t
. (42)

ˆ̃fk(t) is used in place of local measurements in the centralized information filter of Sec-

tion IV.A or consensus filter of Section IV.B to estimate the global flowfield. In order to

estimate a local flowfield we need to know both the orientation of the velocity relative to the

flow θk and the speed relative to the flow. The latter value equals one under our unit speed
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Table 3. Decentralized Consensus Filter Cooperative Control Algorithm

Input: Basis vector ψ, sensor variances Rk, circle formation radius |ω0|−1, and commu-
nication topology.

For each particle k, where k = 1, . . . , N , at each time step t:

1: Measure the noisy position r̃k.

2: Use the difference between the previous and current position measurement to to esti-
mate the local flowfield measurement (42).

3: Evaluate the basis vectors at the measured position r̃k: ψ(r̃k) , ψ̃k =
[ψ1(r̃k), ψ2(r̃k), ..., ψl(r̃k)]

T .

4: For n = 1, . . . , p, where p is the number of consensus filter iterations, repeat: Use the
consensus filter to estimate the components of C and y.

5: Update the estimated coefficients âk using the information filter.

6: Compute control νk (equation (10)) using the flowfield f̂k.

7: Steer the particle using turn-rate control uk, which is computed using the estimated

flowfield f̂k and estimated directional derivative
˙̂
fk = (∂f̂k/∂rk) ṙk.

particle model. The modified information-consensus filter algorithm which utilizes noisy po-

sition measurements to estimate the local flowfield is given in Table 3. Figure 6 shows the

estimated local flowfield incorporated into the information-consensus filter architecture.

Figure 7 shows the convergence of N = 15 particles to a circular configuration. Each

particle individually estimates the local flowfield using (42). The local flowfield estimate

is used with an information-consensus filter (as described in Section IV.B) to estimate the

coefficients for the flowfield. The global flowfield is modeled with a series of sin and cosine

functions, fk = a1 sin(Re(rk)) + a2 cos(Im(rk)) + a3 sin(2Re(rk))i + a4 cos(2Im(rk))i with

a1 = 0.5, a2 = 0.5, a3 = 0.5, and a4 = 0.5. Figure 7(b) shows the decrease in error between

the estimated and actual flowfield coefficients, âk − a for particle k = 15. Using noisy

position measurements to (1) estimate the flowfield and (2) steer the particles increases the

time it takes to converge to the circular formation.

V. Conclusion

This paper describes the design of decentralized control algorithms for autonomous vehi-

cles that operate in the presence of unknown flowfields. For a uniform flowfield each vehicle

individually estimates the flow using noisy position measurements. It was proven that this

estimator is robust to perturbations. Spatially varying flowfields were estimated using a cen-
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Figure 6. Information-consensus filter architecture when using noisy position measurements
to estimate the flowfield.

tralized information filter and a decentralized information-consensus filter, the later being

necessary when inter-vehicle communication is limited. The information filter reconstructed

the flowfield and the consensus filter shared information between vehicles. Each vehicle

used only its noisy position measurement to determine an approximate estimate of the local

flowfield. The flowfield estimate was used to stabilize multiple vehicles to circular config-

urations. Simulations showed that the centralized information filter and the decentralized

information-consensus filter both converged to the same result.
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