
To appear in 2009 AIAA GNC, Invited session on UAV Cooperative Control Technologies for Integrated Defense

Coordinated Perimeter Patrol with Minimum-Time

Alert Response

Derek A. Paley∗

University of Maryland, College Park, Maryland, 20742, USA

Laszlo Techy† and Craig A. Woolsey‡

Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA

This paper describes a decentralized feedback framework for coordinated base defense
with multiple UAVs. Each UAV is modeled as a constant-speed particle moving in a plane,
equipped with steering control and a downward-looking intruder sensor. The feedback
framework enables a UAV team flying in a steady, uniform wind to (1) cooperatively
patrol a convex perimeter and (2) optimally prosecute intruder alerts. The coordination
of patrolling UAVs minimizes coverage gaps in space and time. Each intruder alert is
prosecuted by a nearby UAV on a time-optimal path that minimizes response time. After
passing over an alert site, the prosecuting UAV resumes the coordinated patrol. This
algorithm provides continuous monitoring of a base perimeter and prompt response to
intruder alerts with minimal human intervention.

Nomenclature

rk Position of kth UAV
ṙk Inertial velocity of kth UAV
C Convex loop that circumscribes the base perimeter
ck Center of loop traversed by kth UAV
κk Curvature of C at rk
θk Orientation of velocity of particle k relative to wind direction
γk Orientation of inertial velocity of particle k
ψk Time-phase of particle k on C

Subscript
k, j Particle indices

I. Introduction

This paper describes a decentralized feedback framework for coordinated control of multiple UAVs in
base defense. Each UAV is modeled as a constant speed particle moving in a plane, equipped with steering
control and a downward-looking intruder sensor. The feedback framework enables a UAV team flying in a
steady, uniform wind to (1) cooperatively patrol a convex perimeter and (2) optimally prosecute intruder
alerts. The coordination of patrolling UAVs minimizes coverage gaps in space and time. Each intruder
alert is prosecuted by a proximal UAV on a time-optimal path that minimizes response time. After passing
over an alert site, the prosecuting UAV resumes the coordinated patrol. This algorithm provides continuous
monitoring of a base perimeter and is robust to false alarms and decoys.
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Figure 1. Conceptual sketch of the time-optimal alert response scenario.

The proposed framework for base defense builds on a rigorous mathematical foundation for feedback
control of autonomous vehicles modeled as planar, self-propelled particles.1–3 Cooperative steering algo-
rithms exist to stabilize relative equilibria of the flow-free particle model,4,5 including parallel and circular
formations, as well as formations moving around convex loops.6 These algorithms employ models of coupled
phase oscillators to regulate the spatial separation between particles in simple formations. Recently, steering
algorithms have been provided to stabilize collective motion in a time-invariant flowfield,7 including an al-
gorithm to isolate a time-splay formation—a circular formation in which the particles are uniformly spaced
in time.

In this paper, we apply the particle-control approach to the base-defense application. A feedback al-
gorithm is provided to stabilize a time-splay formation in steady, uniform wind on a strictly convex loop
that circumscribes the base perimeter. A multi-UAV patrol in a time-splay formation minimizes the spa-
tiotemporal gaps in the perimeter coverage. Consequently, each point on the perimeter is inspected with
the maximum frequency permitted by the number of UAVs and length of the perimeter. Analysis of the
coverage properties of the time-splay formation is performed using a novel space-time projection.

Prompt response to intruder alerts is achieved via time-optimal path planning in wind. Whenever an alert
is generated by a patrolling UAV, the alert is prosecuted by the next UAV in line. The UAV that generates the
alert continues on the perimeter patrol; the prosecuting UAV follows a shortcut that minimizes the response
time. Minimum-time paths for a Dubin’s vehicle in steady wind can be generated using a simple geometric
method.8 Time-optimal path planning in wind has been previously paired with feedback coordination on
convex loops in the context of an aerobiological-sampling mission.9 In the aerobiological-sampling mission,
two UAVs coordinate their motion along semicircular trajectories designed to measure the flux of airborne
particles. In the base-defense application, an arbitrary number of UAVs can be coordinated.

The paper is organized as follows. Section II introduces the base-defense algorithm. Section III sum-
marizes the mathematical model of the planar dynamics of a UAV team in wind. Section IV describes a
decentralized algorithm to stabilize a time-splay formation on a convex loop and reviews a geometric method
to generate a time-optimal path for an individual UAV. Simulation results are presented in Section V.

II. Base-Defense Algorithm

Consider a convex perimeter circumscribing a base that must be defended by a collection of N UAVs. We
seek an optimal method for patrolling the perimeter and responding to intruder alerts along the perimeter,
as summarized by the following two objectives:

• In nominal conditions, the UAVs coordinate their motion along the perimeter such that the visitation
rate at any given point along the curve is constant.

• If an intruder is detected, one UAV responds in minimum time, while the remaining N − 1 UAVs
continue to patrol the original perimeter.
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Figure 2. Flow diagram of the time-optimal alert response scenario.

When a threat is detected, there is a trade-off between these two objectives. In one limiting case, the
UAVs don’t take any action other than reporting the threat and continuing their original, coordinated flight
plan. In this case, only the perimeter-patrol objective is achieved. Alternatively, one of the UAVs (e.g., the
one that detected the threat) might divert from the perimeter and loiter above the threat. In this case, the
number of vehicles covering the perimeter decreases to N − 1 and gaps in the perimeter coverage increases.
Also, if there are N or more simultaneous threats, no UAVs will remain to execute the perimeter-patrol task.

We propose an approach to perimeter surveillance that simultaneously achieves the two goals. Consider
the event in which a threat is detected by one of the UAVs (UAV1) at point rf ; see Figure 1. The alert is
reported to the rest of the group, and UAV1 continues its flight path without diverting to investigate further.
The next UAV in sequence (UAV2) designs a minimum-time flight path from its current location to rf , and
diverts from its original path to reach the threat as quickly as possible.a

To ensure that the diversion of UAV2 does not disrupt the remaining formation (and its perimeter
surveillance task), the remaining N − 1 UAVs assume that UAV2 is continuing to maintain synchrony, using
a virtual-particle representation in the coordination algorithm. Once the threat is detected again (or the
endpoint of the time-optimal trajectory is reached, whichever occurs first), UAV2 returns to the original
flight plan. If UAV2 confirms the threat, the next UAV in sequence (UAV3) is tasked to arrive at the
intrusion point in minimum time, and this cycle repeats. A flow-diagram of this can be seen in Figure 2.
This approach ensures that the overall perimeter surveillance is not comprised after an individual alert, but
it may be susceptible to intruder maneuvering during the handoff between UAV2 and UAV3.

Space-time analysis of the base-defense algorithm illustrates how it minimizes the gaps in perimeter
coverage. Figure 3(a) depicts the spatiotemporal coverage of a convex perimeter achieved by a single UAV
in wind. The UAV trajectory is blue; its sensor swath is gray. Since the perimeter is a closed loop, we
identify the left and right edges of the space-time plot. Figure 3(b) depicts the spatiotemporal coverage
of a convex perimeter achieved by three coordinated UAVs in wind. The coverage gaps are minimized by
a time-splay formation. Figure 3(c) depicts the minimum-time response of a three-UAV patrol to a single
intruder alert. The minimum-time shortcut appears as a “hop” rightward and upward on the space-time
projection. Subsequent to prosecuting the alert, the UAVs return to a time-splay formation.

aHere, we assume the threat is static, or slowly moving, relative to the intercept time for UAV2. In an interesting variation,
one might incorporate an estimate by UAV1 of the threat’s trajectory and modify the intercept path accordingly.
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Figure 3. Space-time analysis of coordinated perimeter coverage with time-optimal alert response.

III. UAV Dynamic Model

We represent each UAV as a constant-speed particle moving in a plane subject to steering control and
a time-invariant flowfield. The equations of motion of particle k ∈ {1, . . . , N} in a time-invariant flowfield
fk = f(rk) are7

ṙk = s0e
iθk + fk

θ̇k = uk,
(1)

where s0eiθk is the velocity of k relative to the flow and uk is the steering control. Let ṙk = ske
iγk represent

the velocity of k relative to the ground, where sk = |s0eiθk + fk| and γk = arg(s0eiθk + fk). We have

ṙk = ske
iγk

γ̇k = νk,
(2)

where sk > 0 and νk = ν(uk) is invertible as long as |fk| < s0 for all rk. For example, the speed of a
unit-speed particle in a steady, uniform flow, fk = β, is

sk = β cos γk +
√
s20 − β2 sin2 γk. (3)

Note, if νk = ω0sk, where ω0 6= 0, then particle k orbits a circle with radius ω−1
0 and fixed center7

ck = rk + ω−1
0 ieiγk , (4)

since, along solutions of (2),
ċk = (sk − ω−1

0 νk)eiγk ≡ 0. (5)

IV. Theoretical Results

This section describes a decentralized algorithm to stabilize a time-splay formation on a convex, closed
perimeter in a uniform, steady wind. A multi-UAV patrol in a time-splay formation minimizes the spa-
tiotemporal gaps in the perimeter coverage. This section also reviews a geometric method to generate a
time-optimal path for an individual UAV to prosecute an alert in minimum time.
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IV.A. Coordinated Perimeter Patrol

Let C be a strictly convex loop that circumscribes the base perimeter. If νk = κksk, where κk = κ(γk) is
the curvature of C then particle k orbits C and the center ck of C is fixed.9 Let ρk = ρ(φ(γk)) = rk − ck,
where ρ : φ 7→ ρ(φ) and φ : γk 7→ φ(γk) are smooth maps. If the inertial velocity of particle k is tangent to
C, then

eiγk =
∣∣∣∣ dρdφ

∣∣∣∣−1
dρ

dφ
. (6)

and
κ(γk) =

dγk
dσ

, (7)

where

σ(φ) =
∫ φ

0

∣∣∣∣ dρdφ̄
∣∣∣∣ dφ̄ (8)

is arc length on C. Using (6)–(8), we find

κ−1
k =

dσ

dγk
=
dσ

dφ

dφ

dγk
=
∣∣∣∣ dρdφ

∣∣∣∣ dφdγk , (9)

and
dρ

dγk
=
dρ

dφ

dφ

dγk
= eiγkκ−1

k . (10)

Therefore, along solutions of (2) with νk = κksk, we have

ċk = ṙk −
dρ

dγk
γ̇k = (sk − κ−1

k νk)eiγk ≡ 0. (11)

Integrating the closed-loop phase dynamics

γ̇k = κksk (12)

yields

t =
∫ γk

0

dγ

κ(γ)s(γ)
. (13)

The time-phase10 is defined as

ψk = ψ(γk) =
2π
T

∫ γk

0

dγ

κ(γ)s(γ)
, (14)

where T > 0 is the period of a single revolution,

T =
∫ 2π

0

dγ

κ(γ)s(γ)
. (15)

The time-phase (14) represents the progress of particle k around C. Along solutions of (2) we have

ψ̇k =
2π
T

(κksk)−1νk. (16)

Equation (16) shows that for the control νk = κksk, we have ψ̇k = 2π/T , which is constant.
We synthesize a decentralized control that stabilizes a time-splay formation using a Lyapunov-based

design. Consider the composite potential9

V (r,γ) = S(r,γ) +
T

2π
U(ψ), (17)

where S(r,γ) = (1/2)〈c, Pc〉, P = diag{1} − 1
N 11T , and U(ψ) is a rotationally symmetric phase potential.

Since P projects an element of CN into the subspace complementary to the span of 1, then S = 0 if and
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only if ck = cj for all pairs k, j. Rotational symmetry of U implies
∑N
j=1

∂U
∂ψj

= 0. Along solutions of (2) we
have

V̇ =
N∑
j=1

〈eiγj , Pjc〉(sj − κ−1
j νj) +

T

2π
∂U

∂ψj
ψ̇j

=
N∑
j=1

(
sj〈eiγj , Pjc〉 −

∂U

∂ψj

)(
1− (κjsj)−1νj

)
, (18)

where Pk is the kth row of L. Choosing the control law

νk = κksk

(
1 +K

(
sj〈eiγk , Pkc〉 −

∂U

∂ψk

))
, K > 0, (19)

enforces convergence of all particles to C with a phase arrangement in the critical set of U . We stabilize a
time-splay formation on C by choosing U to be an (M,N)-pattern potential, where M = N .4 The time-splay
potential is

UM,N (ψ) =
M∑
m=1

KmUm (20)

with Km > 0 for m = 1, . . . ,M − 1 and KM < 0, where

Um(ψ) =
N

2
|pmψ|2, pmψ ,

1
mN

N∑
j=1

eimψj . (21)

IV.B. Minimum-Time Alert Response

Consider the initial point r0 = x0+iy0 on the curve C and the final point rf = xf+iyf at the intruder location.
The objective is to find minimum time trajectories between the two oriented points. The initial heading
angle θ0 is given and is defined by the curve. The final heading angle can be specified, for simplicity we define
it such that the course angle at the intruder location is parallel to the angle of curve C at the projection
point. Finding optimal trajectories between initial and final states has been addressed previously,11 where
analytical solutions are presented for a subset of all candidate extremal paths: those for which an initial
turn is followed by a straight segment, which is then followed by a second turn in the same direction as the
first. The rest of the candidate extremals may be found using a simple numerical root-finding technique.

The paths for which analytical solutions exist form a particularly important subset of all candidate
extremals: the curvature along these paths does not change sign. Given a set of waypoints that bound a
given closed region in the plane, it is possible to design the connecting paths between these waypoints, such
that the resulting closed curve is convex. This property will be exploited to design the patrol perimeter
in Section V.B. In what follows, we summarize the path planning method, restricting our attention to the
analytical solutions only.11

By Pontryagin’s minimum principle, the optimal trajectories may contain maximum rate turns and
straight segments only.12,13 Observing that maximum turn rate turns correspond to trochoidal paths,14

we can search the solutions in terms of path parameter values, where the trochoidal segments and straight
lines can be smoothly joined together.8 Define two trochoidal segments at the initial and final points and a
straight segment between the two:8

xt1(t) =
s0
δ1ω

sin(δ1ωt+ φt1) + βt+ xt10 (22)

yt1(t) =
−s0
δ1ω

cos(δ1ωt+ φt1) + yt10 (23)

xt2(t) =
s0
δ2ω

sin(δ2ωt+ φt2) + βt+ xt20 (24)

yt2(t) =
−s0
δ2ω

cos(δ2ωt+ φt2) + yt20 . (25)
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Here ω denotes the maximum rate of turn that UAVs are allowed to fly with. The constants δi ∈ {−1, 1}
depend on the direction of the turn. Consider the problem of finding the connecting straight path between
two trochoidal segments. The connecting line leaves the first trochoid [xt1(t), yt1(t)]T at point A and arrives
at the second trochoidal segment [xt2(t), yt2(t)]T at point B. The corresponding path parameter values will
be denoted as tA and tB . Let t2π = 2π/ω denote the time required for the air-relative velocity vector to
describe a full circle at the maximum turn rate. We pick the phase angle φt1 and φt2 such that

φt1 = θ0 − θw, φt2 = θf − θw − δ2ωt2π,

i.e., the first trochoid has the desired initial heading θ0 at t = 0, and the second trochoid has the desired
final heading θf at t = t2π. Here θw denotes the direction of motion of the ambient air in the inertial frame.
Similarly we can pick the constants

xt10 = x0 − s0/(δ1ω) sin(φt1)
yt10 = y0 + s0/(δ1ω) cos(φt1)
xt20 = xf − s0/(δ2ω) sin(δ2ωt2π + φt2)− βt2π
yt20 = yf + s0/(δ2ω) cos(δ2ωt2π + φt2),

such that the first trochoid satisfies the initial conditions [xt1(t), yt1(t)]T
∣∣
t=0

= [x0, y0]T , and the second
trochoid satisfies the final condition [xt2(t), yt2(t)]T

∣∣
t=t2π

= [xf , yf ]T . Note that here we assume that the
initial and final conditions are already expressed in the trochoidal frame.

With this definition of the constants, we are looking for tA ∈ [0, 2t2π), tB ∈ (−t2π, t2π]. The conditions
that need to be satisfied can be summarized as follows

• The velocities at point A and point B must be equal:

(ẋt1(tA), ẏt1(tA))T = (ẋt2(tB), ẏt2(tB))T . (26)

• The line segment joining the points A and B must be tangent with the velocity vectors at both points:

tan(α) =
yt2(tB)− yt1(tA)
xt2(tB)− xt1(tA)

=
ẏt2(tB)
ẋt2(tB)

=
ẏt1(tA)
ẋt1(tA)

. (27)

• The path parameters must satisfy

tA ∈ [0, 2t2π), tB ∈ (−t2π, t2π]. (28)

Condition (26) is equivalent to the condition

δ1ωtA + φt1 = δ2ωtB + φt2 + 2kπ, k ∈ Z,

where Z is the set of real integers, and we can express tB as a function of tA:

tB =
δ1
δ2
tA +

φt1 − φt2 + 2kπ
δ2ω

, k ∈ Z.

Using (27) and assuming sign(δ1) = sign(δ2), that is, that the two trochoids have the same sense, one
may obtain analytical solution for the problem:11

tA =
t2π
δ12π

[
sin−1

(
β

s0
sin(α)

)
+ α− φt1

]
, (29)

where

α = tan−1

(
yt20 − yt10

xt20 − xt10 + β
φt1−φt2+2kπ

δ2ω

)
is the tangent angle defining the direction of the connecting straight segment.
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(a) Time-splay coordination.
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(b) Minimum time alert response.
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(c) Returning to patrol.

Figure 4. Simulation of coordinated perimeter coverage with time-optimal alert response around a general ellipsoidal
curve.

Proposition IV.1.11 Define the path γ(t), t ∈ [0, T ], such that

γ(t) =

(
xt1(t)
yt1(t)

)
t ∈ [0, tA]

γ(t) =

(
xt1(tA) + ẋt1(tA)(t− tA)
yt1(tA) + ẏt1(tA)(t− tA)

)
t ∈ [tA, tβ ]

γ(t) =

(
xt2(t− tβ + tB)
yt2(t− tβ + tB)

)
t ∈ [tβ , T ],

where

tβ = tA +

√
(xt2(tB)− xt1(tA))2 + (yt2(tB)− yt1(tA))2√

ẋt2(tB)2 + ẏt2(tB)2
(30)

T = tβ + (t2π − tB), (31)

and

α = tan−1

(
yt20 − yt10

xt20 − xt10 + β
φt1−φt2+2kπ

δ2ω

)
,

tA =
t2π
δ12π

[
sin−1

(
β

s0
sin(α)

)
+ α− φt1

]
,

tB = tA +
φt1 − φt2 + 2kπ

δ2ω
, k ∈ {−3,−2,−1, 0, 1, 2}.

The path γ(t) satisfies the necessary conditions for time-optimality. �

V. Simulation Results

The proposed framework has been tested in simulations. Two separate cases are considered. In the first
case we assume an ellipsoidal base perimeter with semi-major axis a = 400m and semi-minor axis b = 200m
that is to be patrolled by N = 6 UAVs. In the second case we select the patrol perimeter of Wright-Patterson
Air Force Base (WPAFB). The base perimeter is defined by the convex hull of a finite set of waypoints that
were selected at landmarks around WPAFB. The base perimeter was then patrolled by N = 4 UAVs.

V.A. Ellipsoidal Base Perimeter

For this case the wind speed was chosen to be Vw = 5 m/s from the South, the airspeed of the UAVs
was Va = 20 m/s. The initial condition for the UAVs was chosen such that all UAVs were heading North
along a straight line (yEk = 0, k = 1, ..., N) when the simulation began. After all UAVs converged to
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(a) Satellite map of WPAFB.
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(b) Strictly convex curve around WPAFB.

Figure 5. Seven points were selected around WPAFB to define a closed convex curve. The curve then serves as the
perimeter to be patrolled by a team of UAVs. The straight segments are approximated by arcs of circles of radius
R0 = 50km.

the (M,N) = (6, 6) time-splay formation, an intrusion alert was simulated outside of the perimeter (at
location [xN , yE ]T = [230m,−200m]T ), see Figure 4(a). After the intrusion was detected, the next UAV in
line left the original patrol perimeter to fly to the intrusion point in minimum time (which for the present
simulation was T = 16.9s), as illustrated in Figure 4(b). While the UAV was following the minimum time
path to the intrusion location, the virtual coordinates were shared with the rest of the group to make sure
the investigation does not brake the formation. After the prosecutor UAV reached the intruder location, it
started the coordination algorithm again (equation (19)) to converge back to the formation (Figure 4(c)).

If the prosecutor UAV had detected the intrusion again, it would have reported it to the rest of the group,
and the next UAV in line could then begin to follow the minimum time path to the new intrusion location.
If the intruder is not detected again (which was the case in the present simulation), the UAVs resume the
coordinated perimeter patrol.

V.B. Wright-Patterson Air Force Base

For this case the wind speed was chosen to be Vw = 10 m/s from the South, the airspeed of the UAVs
was Va = 20 m/s. Seven points were selected arbitrarily around the “perimeter” of WPAFB. Time-optimal
trajectories between the corner-points with the defined initial and final headings were designed using the
algorithm described in Section IV.B. The resulting closed path is a convex curve in the plane with maximum
rate turns at the curve corners.

The synchronization algorithm (19) requires the curvature to be non-zero everywhere along the closed
convex curves. To transform the closed convex path to a strictly convex path with nonzero curvature, the
straight segments were approximated with a circle of radius R0 = 50km.9 Figure 5(a) shows a satellite map
of WPAFB with the seven selected GPS coordinates around the base, and Figure 5(b) shows the resulting
closed, strictly convex curve in the plane.

In this case the base perimeter was patrolled by N = 4 vehicles. Similarly to the previous case, an
intrusion alert was simulated after all UAVs have converged to the desired time-phase arrangement, (M,N) =
(4, 4). The location of the intrusion point was at [xN , yE ]T = [1300m,−1250m]T ), see Figure 6(a). After the
intrusion was detected, the next UAV in line left the original patrol perimeter to fly to the intrusion point
in minimum time (which for the present simulation was T ≈ 129s), as illustrated in Figure 6(b). While the
UAV was following the minimum time path to the intrusion location, the virtual coordinates were shared
with the rest of the group to make sure the investigation does not disrupt the patrol. After the prosecutor
UAV reached the intruder location, it started the coordination algorithm again (equation (19)) to converge
back to the formation (Figure 6(c)).
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(b) Minimum time alert response.
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(c) Returning to patrol.

Figure 6. Simulation of coordinated perimeter coverage with time-optimal alert response around WPAFB.

VI. Conclusion

The paper presents a decentralized feedback framework for coordinated base defense with multiple UAVs
in steady, uniform wind. Using this framework, a base-defense algorithm is proposed to achieve (1) coor-
dinated motion on convex perimeters; and (2) minimum-time alert response. Theoretical justification for
the algorithm is provided. We illustrate the base-defense algorithm using two sets of numerical simulations:
first on a simple ellipse boundary and secondly on the boundary of the Wright-Patterson Air Force Base. In
ongoing work, we seek to integrate a more detailed model of the intruder spatiotemporal dynamics.
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