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3D Tracking of Mating Events in Wild Swarms of the Malaria
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Abstract— We describe an automated tracking system that
allows us to reconstruct the 3D kinematics of individual
mosquitoes in swarms of Anopheles gambiae. The inputs to
the tracking system are video streams recorded from a stereo
camera system. The tracker uses a two-pass procedure to
automatically localize and track mosquitoes within the swarm.
A human-in-the-loop step verifies the estimates and connects
broken tracks. The tracker performance is illustrated using
footage of mating events filmed in Mali in August 2010.

I. INTRODUCTION

Observation of wild mosquito swarms present an op-
portunity to study mating behavior [1], [2]. In swarms of
An. gambiae the female enters a swarm composed almost
entirely of males [1]. A three-dimensional reconstruction of
the movement of individual mosquitoes and mating couples
can provide a deeper insight into the basis of mate selection.
Once automated, the procedure can generate large datasets
that enable application of statistical analyses developed for
other animal aggregations [3], [4], [5]. Such analyses can
form the first steps towards strategies of vector control.

Aided by advances in computer vision, high-resolution
and high frame-rate cameras have been used to observe
and quantify position of flying insects in the laboratory
[6], [7], [8], [9], as well as in the field [10]. In the case
of mosquito swarms, previous research has focused on re-
constructing the position of individual mosquitoes within a
swarm at periodic time intervals [2], [11]. Each mosquito
is an identity-less point in space and the analyses have
mainly focused on swarm density and structure [2]. The
task of connecting the points between multiple views and
through time is nontrivial—one that requires automation
and accuracy. Tracking wild mosquitoes poses challenges
such as low lighting, a cluttered background, a variable
number of targets, and a boundary-less environment. A multi-
camera setup with a large baseline [9] reconstructs positions
accurately, but is difficult to implement in the field.

Challenges to tracking mosquitoes and other insects in-
clude: (1) the three-dimensional position of each mosquito is
not directly observable; (2) three-dimensional reconstruction
of a point object using a single camera is not possible, so
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Fig. 1. The pair of images above are magnified and enhanced versions of
raw footage obtained from field experiments in Mali.

at least two cameras must be used; and (3) the location
measurements in pixels are subject to noise, which introduces
uncertainty in the estimates.

In a multi-target, multi-camera system we must also ad-
dress data association, which entails assigning measurements
to targets across multiple views and across time. In [10]
more than a hundred bats are tracked using a Kalman filter
to process each camera view, in conjunction with a multi-
dimensional assignment strategy. Three-dimensional tracks
are reconstructed from individual views. In [7], a swarm of
fruitflies is tracked in an acrylic box frame by setting up the
problem of data association across views and across time in
the form of a global optimization problem that is solved at
every step. In [9] multiple fruit flies are tracked in real time
in a laboratory using an extended Kalman filter and nearest-
neighbor data association.

In this paper we describe an automated tracking system
that allows us to reconstruct the three-dimensional kinemat-
ics of individual mosquitoes in wild swarms of Anopheles
gambiae filmed in a rural village in Mali in August 2010.
We film from two cameras synchronously at 25 frames per
second. (The frame rate is limited by the ambient light.) The
mosquitoes move in an unpredictable fashion and appear as
streaks when not moving towards or away from the camera.
At high speeds, the mosquito streaks fade, making them
hard to detect. Because the swarms are dense, occlusions
are frequent, and appear often in both camera frames. Fig. 1
shows a pair of magnified and enhanced sample frames.

The contributions of the paper are (1) we provide a method
to probabilistically extract mosquito velocity information
from streaks on the camera image plane; (2) we isolate faded
streaks by altering the segmentation threshold in a specific
region; and (3) using the expected orientation of streaks,
we resolve occlusions on the image plane into individual
mosquitoes. Collectively, these contributions enable us to
apply tools from computer vision and estimation theory to



implement a tracking framework that yields unprecedented
data on mating events in malarial mosquitoes.

The paper is organized as follows: Section II provides a
background on image-processing, nonlinear estimation, and
data association. Section III presents the likelihood function
that extracts velocity information from streaks on the image.
We also describe a novel procedure to resolve occlusions by
modelling an image blob as a combination of streaks. Section
IV describes the experimental results. Section V summarizes
the paper and provides a description of ongoing work.

II. MULTI-TARGET TRACKING

Our objective fits within the general framework of multi-
target tracking using multiple cameras. We use a stereo-
camera setup to film mosquito swarms in the field and a novel
tracking framework to process the footage offline. There
are three components of our tracking framework: image
processing, nonlinear estimation, and data association.

Image processing: In situ observation of mosquito
swarms prevents us from developing an initial background
model to segment the mosquitoes out of the image stream. A
dynamic background can be created by choosing the highest
intensity point within a sliding window [12]. At time step k

Bu,v[k] = Bu,v[i]7 (1)

max
i€[k—d,k+d]
where B, , is the background image at the pixel position
(u,v) and 2d is the width of the sliding window. The
foreground F' is obtained by subtracting the background B
from the current image I and applying a threshold ¢:

Fo k] = max(Iy k] — Buwl[k], tuv)- 2)

Noise and large insects are removed by applying a threshold
on the area of the blobs obtained from segmentation. Due
to large variation in movement patterns, we are still faced
with faded streaks and missing observations. We address this
problem by adaptively changing the thresholds on a section
of the image as discussed in Section III.

Nonlinear estimation: The state of a mosquito is de-
scribed at time k by a vector X[k] € R?, consisting of
the three-dimensional position, velocity and acceleration.
Measurements are denoted by a vector Z[k] that consists
of a two-dimensional position in pixels in the image plane.
The mapping from a three-dimensional position to a two-
dimensional image on the camera is nonlinear and requires
techniques from nonlinear estimation. The posterior prob-
ability density function (pdf) is a conditional probability
P(X|Z*) of the state estimate X given the measurements
up to k, Z*. Recursive Bayesian estimation uses the mea-
surement(s) at each step to maximize the posterior pdf. The
state X [k + 1] and measurements Z[k + 1] are related to the
state X [k] according to

X[k+1] = F(X[k],w[k+1])
Zk+1]=H(X[k+1],nlk + 1)),
where F' represents the motion model, H represents the

measurement model, and w and m are the instantaneous
disturbance- and measurement-noise values.
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Fig. 2.
functions on a plane parallel to the camera axis.

Position (left), velocity (middle), and combined (right) likelihood

In a nonlinear estimator we use a likelihood function to
represent the measurement model. (A likelihood function is
the conditional probability P(Z|X) of a measurement given
a target state.) Examples of nonlinear estimators include the
extended Kalman filter, the unscented Kalman filter and the
particle filter [13]. In this paper we use a particle filter to
estimate the position of each mosquito in the swarm.

Data association: Common to all multi-target track-
ing systems is the task of associating measurements to
targets, which entails maintaining the same measurement-
target matches through consecutive frames and across camera
views. In an environment with clutter it is typical to obtain
more measurements than the number of targets. A simple
strategy is to assign a measurement to the nearest measure-
ment estimate; this strategy is called the nearest-neighbor
filter [14]. An optimal Bayesian filter in this scenario takes
into account all of the past history of measurement-target
associations and branches out a path from each such pairing
to assign a probability to the latest set of measurements. The
number of paths in such a scenario increases exponentially
with the number of measurements [15]. Strategies to speed
up the process include pruning the paths [15] and using only
a fixed number of previous associations [14].

III. RECONSTRUCTING MOSQUITO KINEMATICS

This section describes the likelihood function and adaptive
thresholding used to segment individual mosquitoes from the
background and reconstruct their 3D movement.

Likelihood function: The position u¢ € R? of the
centroid of a blob in camera ¢ is a function of the
mosquito position  and camera focal length f¢: u®(r) =
fe [7‘1 /rs T2/ 7“3} T Probabilistically, we represent the like-
lihood of u(r) as

P;os (uf(r)|r) = N(u®(r); uf, Epos)a €]
where N(u(7);u,X) denotes a normal distribution function
with mean u and noise covariance matrix X.

The trajectory of a mosquito during the exposure appears
on the image plane in the form of a streak. Velocity informa-
tion is extracted from a streak by assuming that a mosquito
travels at constant velocity during the exposure. Given the
velocity, r = [7’“1 T ’f‘3]T, and the time of exposure
te, the start and end points during exposure with r as the
midpoint are given by [r — 7%, 7 + 7% ]. Projecting these



points on camera ¢ we get image plane velocity v¢ € R?

rir3—rirs

7‘2 —7:32t2/4

7‘32 T3 —’I";T’g (5)
T‘g 77“321‘45/4

UC:]L"C

Since the streak itself does not provide a sense of direction
there is a forward-backward ambiguity that is represented
by computing the likelihood function of both positive and
negative values of the velocity. Using (5) the likelihood
function can be written as

Pl =P(@°|r,7) + P(=v"|r,7)

¢ 6
=N(v%v(r,7), Zper) + N(—v (7, 7), Syer)- ©)

The combined position and velocity likelihood function is

2
P(Z|X) = H P;gos 1?@[5 (7)
c=1

as depicted in Fig 2.

Adaptive thresholding: We use the probability of the
nearest measurement assignment to determine if the region
near the target estimate should be explored for faded streaks.
We vary the background subtraction parameters: the thresh-
old on intensity ¢; and the size of the sliding window d.
For each frame, we project the estimate X onto camera
c to get Ze. A gating volume generated as a chi-square
distribution on innovation with two degrees of freedom [14]
is searched for possible measurements. In the absence of a
measurement, we change the intensity threshold followed by
the size of sliding window until a measurement is found. The
area threshold is maintained to avoid picking up noise. All
measurements are then weighted based on (2) to get the best
association. We have

Atu,v = tu,v(Kc - 1)7 (8)

where 0 < K. < 1. In conjunction with the change in
threshold, the sliding window d is increased by 1.

Resolving occlusions: An occlusion is detected if a blob
on the image plane is assigned to multiple targets on the
basis of proximity. We compute an objective function based
on candidate positions and velocities of the mosquitoes in an
occlusion by projecting the streaks onto the image plane. The
best fit is defined in terms of the orthogonal distance of all
points on the blob to the streaks from occluding mosquitoes.
This process is formalized as follows:

Let the targets involved in an occlusion O be indexed by
o=1{1,...,N,}, where N, is the number of targets in the
occlusion. Collectively, the state of all such targets is Xp =
[Xl X5 XNO}T. X, is estimated by solving

X = argmin

g q;, where
Xo 5

(€))

g; = minju; — a(s)].

u; is a point on the blob indexed by i and u is the combina-
tion of projected streaks for all targets in the occlusion. The
initial values for velocity and position are based most recent
estimates. The tracking algorithm is given below.

Mosquito swarm tracking algorithm

Input: Sequence of synced images from a stereo camera setup,
I;, I, and camera calibration matrices P;, P,
Initialize: = Find measurement pairs that satisfy the epipolar constraint

[16] and compute 3D estimates
For each time step k:

1: Associate measurements: For each target estimate, compute the likeli-
hood function (7) for each measurement within the gating volume. If
no measurement is found, change the threshold until a measurement is
detected or the minimum threshold is reached.

2: Resolve occlusions: If two targets associate to the same measurement,

use (9) to update the target estimates.

Update the state estimate of each target not in an occlusion.

4: Initiate/terminate: For measurement pairs that satisfy the epipolar con-
straint and are not associated to any target, create a tentative target.
Terminate an existing target if no measurement is found within a gating
volume. Terminate duplicate tracks based on successive occlusions.

5: Predict: Use a white noise acceleration motion model [17] to predict the
target state for the next time-step.

[95]
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Fig. 3. Track integrity. The above plot shows the length and number of

tracks generated from the automated tracker. The average (resp. max) actual
swarm size for this sequence was 18 (resp. 21). The average (resp. max)
track length was 21 frames (resp. 292). Vertical lines show the number of
tracks at given frame. The tracks are linked by hand in post-processing.

After automated tracking, the tracks are displayed on a
custom graphical user interface (GUI) developed in MAT-
LAB that allows manual verification and linking of tracks.
The final tracks are smoothed using a Kalman filter.

IV. EXPERIMENTAL METHODS & RESULTS

We used a pair of phase locked Hitachi KP-F120CL
cameras in a stereo configuration. The video streams were
recorded onto a 2.8 Ghz quad core laptop through an Imperx
FrameLink Express frame grabber and Streampix software.
Each camera was calibrated onsite using a checkerboard
and the MATLAB Calibration Toolbox [18]. Reprojection
error, which is a measure of calibration accuracy, was in
sub-pixels for each camera. Relative camera orientation and
position was determined by extrinsic calibration before film-
ing. During filming, the camera azimuth and elevation were
recorded to create a ground-fixed reference frame. Other
environmental factors such as wind speed and direction and
humidity were sampled once every 10 seconds.

We tested the automated tracker for position accuracy
and identity maintenance by two methods: (1) quantifying
the agreement on tracks of the same mosquito with two
independent camera setups and (2) tracking an object with
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Fig. 4. Male-female tracks from a filming sequence in August 2010. The
tracks show three different stages of coupling where the male and female
mosquito are far apart (light blue and red), close (dark blue and red), couple
(magenta). A section of the male track is magnified to show the 1o error
ellipsoids in three dimensions. See video of other tracking sequences at
http://youtu.be/kuaMcVf501Y

known dimensions such as a checkerboard. We simultane-
ously tracked a single swarming event using two independent
stereo camera rigs to validate accuracy in field. A common
reference frame was created using the azimuth and elevation
readings. The videos were time-synced between camera
setups using a laser pointer. The mean distance between
independent tracks of the same mosquito (200 data points)
was 4.4 cm and the standard deviation was 1.3 cm. (Up to 3
cm error can be attributed to the inter-frame time difference
between the camera systems.) Tracking a known target (a
calibration checkerboard) yielded less than 2 cm error.

We also compared automated tracks with manually gen-
erated tracks. We randomly selected a mosquito swarming
sequence and identified occlusions based on data association.
Each of these occlusions were then presented to a human
user who resolved them manually. We achieved 68 percent
accuracy in resolving occlusions automatically as compared
to 72 percent in tracking bats [10]. Track initiation and
termination resulted in more tracks than the number of
mosquitoes (Fig. 3); tracks are linked in post-processing. The
average track length of 21 frames corresponds to 0.84 s as
compared to 0.3 s in [7].

Tracking position and velocity of every mosquito in a
swarm allows us to automatically detect mating events (Fig.
4). A mosquito couple flies in a distinct manner and speed.
The speed of a target can be used in conjunction with the size
and intensity of the blob in the image stream to automatically
detect a slow, large couple.

V. CONCLUSION

In this paper we describe a tracking framework that is
currently being used to reconstruct the three-dimensional
trajectories of wild mosquito swarms. We use a proba-
bilistic framework to recursively estimate the position of

each mosquito and a robust data association method to find
a mosquito if it is not segmented properly. The tracking
system is a two-part process involving automated generation
followed by human verification. Using position and velocity
estimates allow us to automatically detect coupling events
and analyze them. We are currently using this tracking
system to generate high volumes of tracked data, which can
be subject to statistical analyses for a deeper understanding
of mosquito swarming and mating behavior.
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