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Abstract—This paper is concerned with synchronization of
UAVs, modeled as particles, moving along convex curves in the
plane, in the presence of a steady wind. The method presented
here integrates previous results on synchronization along convex
loops, in still air, and synchronization on circles in an external
flow field. The method is applied to a control-volume sampling
problem, in which UAVs travel along a closed, convex curve
in ambient winds in order to sample the air along a surface
that bounds the control-volume. The periodic flight pattern of
the UAVs is divided into a semi-circular sampling path and a
near-minimum-time re-initialization path. To ensure consistent
measurements, the vehicles coordinate their motion to arrive at
the beginning of the sampling arcs simultaneously.

I. INTRODUCTION
In recent years, unmanned vehicles have played an in-

creasing role in scientific research. Autonomous underwater
gliders have collected physical oceanographic measurements
over unprecedented spatial and temporal scales [6], [14].
Maturing artificial intelligence techniques and improvements
in automatic command and control systems allowed truly
autonomous robotic mission capability on spacecraft like
NASA DS1, and increased the quantity of scientific data
returned from the Mars Exploration Rovers Opportunity and
Spirit [1]. Unmanned aerial vehicles (UAVs) have made
successful flights in Antarctica carrying miniaturized turbu-
lence probes that measure the detailed structure of wind and
temperature along the flight path [12]. The measurements
can be used to estimate the heat exchange between the
lower atmosphere and sea ice. UAVs have demonstrated their
effectiveness in aerobiological research to monitor the move-
ment of plant pathogens in the lower atmosphere [8]. Using
autonomous vehicles as individual agents offers some advan-
tages in addressing tasks which are “dirty, dull, or dangerous”
but they provide even greater utility when networked to
accomplish tasks more quickly and efficiently. Accordingly,
the problem of coordinating multiple autonomous vehicles to
address scientific and other missions has enjoyed increased
attention from researchers.
Here we consider a specific vehicle-coordination problem:

the temporal synchronization of multiple, identical flight ve-
hicles (e.g., UAVs) along convex curves in a steady, uniform
current. We assume that a suitable path has been planned,
corresponding to some desired mission objective. In the
application that we consider, for example, the path comprises
a semi-circular arc, along which the vehicle samples the
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atmosphere for some constituent, and a near time-optimal
arc which allows the vehicle to re-initialize for the next
semicircular sampling leg. Time-optimal paths for UAVs in
winds are discussed in [3], [11]. The contribution of this
paper is an algorithm for coordinating the motion of multiple
vehicles, modeled as constant-speed particles with steering
control, along a convex path in a steady wind. A variety of
coordination strategies have been proposed for such models.
The papers most relevant to this work include [2] and
a subsequent series of papers starting with [9], in which
decentralized Lyapunov-based control laws are designed to
drive a collective of vehicles to some desired, symmetric
distribution along a circular orbit. The results presented in [9]
are extended to motion along convex curves [5] and motion
along circles in winds [4], [7]. Although we focus on the
case of all-to-all communication here, the entire framework
extends directly to UAV networks in which communication
is time-varying and/or directed [10].
In this paper, previous results on motion coordination are

extended to enable synchronization along a convex loop in
the presence of a steady, uniform flow-field. A motivating
application is described in which UAVs travel along convex
curves designed to address an atmospheric sampling prob-
lem. Although these curves contain a zero-curvature segment,
which is problematic for the proposed algorithm, we show
that this segment can be replaced by a circular arc that
approximates the linear segment to arbitrary precision.
The paper is organized as follows. In Section II, we

describe the particle motion model and convex curves. In
Section III, we describe synchronization of particle forma-
tions along closed, convex curves in the presence of a steady,
uniform wind. In Section IV, we describe the control-volume
sampling problem. Section V presents simulation results and
Section VI summarizes and provides conclusions.

II. MODELING

A. Particle Motion in External Flow

Following previous work an control of planar formations,
[4], [9], we use a particle model to describe the motion
of UAVs in ambient winds. Without loss of generality we
will assume that the particles are traveling at unit speed
in the plane relative to a steady, uniform flow-field. To
ensure forward progress of each particle in inertial space,
we assume that the ambient flow speed is strictly less than
one. Identifying the complex plane with the plane of motion,
C ∼ R2, we express the position of each particle by the
vector rk = xk + iyk, and the flow-relative velocity of each



particle by eiθk , where θk ∈ S1 is the orientation of the flow-
relative velocity. Without loss of generality, we assume that
the ambient flow is aligned with the real axis so that the
equations of motion are

ṙk = eiθk +β (1)
θ̇k = uk.

Here uk is the turn-rate control signal for the kth particle and
β ∈ R is the external flow speed, satisfying |β | < 1.
It is convenient to express the equations in terms of the

inertial speed and course angle, as opposed to the air-relative
speed and heading angle. Following [4] we define the course
angle as

γk = arctan
(

sinθk
cosθk +β

)

.

Using this definition one can obtain expressions for the
inertial speed and course rate of change as follows [4]

sk = β cosγk +
√

1−β 2 sin2 γk

γ̇k =
1+β (sk cosγk−β )

s2k
θ̇k ! νk.

Then equations (1) can be written as

ṙk = skeiγk (2)
γ̇k = νk.

Equations (2) will be the model used in the following
sections. Notice that, after the change in coordinates, the
inertial speed of the particles is heading dependent and the
new control signal is the course-rate-of-change as opposed
to the heading-rate-of-change. In practice, the control uk is
calculated from νk. Note the mapping νk $→ uk is invertible
under the assumption |β | < 1, which implies sk > 0 [4].

B. Curve Model
a) Circle: If νk =ω0sk, ω0 &= 0, particle k orbits a circle

with radius ω−1
0 and fixed center

ck = rk +ω−1
0 ieiγk , (3)

since, along solutions of (2),

ċk = (sk−ω−1
0 νk)eiγk ≡ 0. (4)

b) Convex loop: If νk = κksk, where κk = κ(γk) &= 0 is
the curvature of a strictly convex loop C then particle k orbits
C and the center ck of C is fixed. Let ρk = ρ(φ(γk)) = rk−ck,
where ρ : φ $→ ρ(φ) and φ : γk $→ φ(γk) are smooth maps. If
the inertial velocity of particle k is tangent to C, then [5]

eiγk =

∣

∣

∣

∣

dρ
dφ

∣

∣

∣

∣

−1 dρ
dφ

, (5)

and
κ(γk) =

dγk
dσ

, (6)

where
σ(φ) =

∫ φ

0

∣

∣

∣

∣

dρ
dφ̄

∣

∣

∣

∣

dφ̄ (7)

is arc length. Using (5)–(7), we find

κ−1
k =

dσ
dγk

=
dσ
dφ

dφ
dγk

=

∣

∣

∣

∣

dρ
dφ

∣

∣

∣

∣

dφ
dγk

, (8)

and
dρ
dγk

=
dρ
dφ

dφ
dγk

= eiγkκ−1
k . (9)

Therefore, along solutions of (2) with νk = κksk, we have

ċk = ṙk−
dρ
dγk

γ̇k = (sk−κ−1
k νk)eiγk ≡ 0. (10)

Fig. 1. The curve notation for the kth particle: the position and course
angle of the particle are rk and γk , respectively. The curve is centered at ck .

III. PARTICLE SYNCHRONIZATION
A. Decoupled Curve Control
Lemma 3.1: For the model (2) with control input

νk = κksk,

particle k travels along the curve C with the curve center
fixed in inertial space.
The proof follows immediately from (10) (Also see [5]).

B. Translation Invariant Control
We derive decentralized control laws that drive particle k

around a strictly convex loop C with a center c0 fixed in
inertial space. Define the potential function

S(r,γ) =
1
2
〈c,Pc〉 ,

where P is [9]

P= diag{1}− 1
N
11T ,

and c is the vector of curve centers ck. Note that S(r,γ) ≥ 0
and S(r,γ) = 0 if and only if c = c01, which implies that
all the curve centers coincide. The time derivative of S(r,γ)
along the solutions of (2) is

Ṡ(r,γ) =
N

∑
j=1

〈

ċ j,Pjc
〉

=
N

∑
j=1

〈

eiγ j ,Pjc
〉

(s j−κ−1
j ν j), (11)

where Pj denotes the jth row of P.
Lemma 3.2: The trajectories of the system (2) with the

control
νk = κk(sk +K0

〈

eiγk ,Pkc
〉

) (12)



converge to a state where all particles orbit around the strictly
convex curve C with a common center.
Proof: The function S(r,γ) is positive definite, and its rate
can be computed using (11) and control (12)

Ṡ(r,γ) = −K0
N

∑
j=1

〈

eiγ j ,Pjc
〉2

.

Ṡ(r,γ) = 0 if and only if
〈

eiγk ,Pkc
〉

≡ 0 k = 1, . . . ,N

By LaSalle’s invariance principle all trajectories converge to
a set Λ where

〈

eiγk ,Pkc
〉

= 0. In this set γ̇k = κ−1
k sk and

ċk = 0, therefore all solutions in Λ must satisfy Pc = 0.
Since the nullspace of P is the space spanned by 1 we
have that in order to satisfy the invariance principle, c= c01,
which is equivalent to the condition that the centers coincide.
Application of Lemma 3.1 completes the proof. "

C. Time-splay Synchronization
In this section we extend the control law to enforce

convergence to the critical set of a phase potential, such that
the particles are equally separated along the curve. In [4] it is
argued that the spatial separation between particles moving
in external flow is not conserved in general and, instead, the
temporal separation is a means for spatiotemporal regulation.
Integrating the closed-loop phase dynamics

γ̇k = κksk, (13)

yields
t =

∫ γk

0

dγ
κ(γ)s(γ)

. (14)

The time-phase is [7]

ψk = ψ(γk) =
2π
T

∫ γk

0

dγ
κ(γ)s(γ)

, (15)

where T > 0 is the period of a single revolution,

T =
∫ 2π

0

dγ
κ(γ)s(γ)

. (16)

Along solutions of (2) we have

ψ̇k =
2π
T

(κksk)−1νk. (17)

Consider the composite potential

V (r,γ) = S(r,γ)+
T
2π
U(ψ), (18)

where S(r,γ) = (1/2)〈c,Pc〉 and U(ψ) is a rotationally
symmetric phase potential. Rotational symmetry ofU implies
∑Nj=1

∂U
∂ψ j

= 0. Along solutions of (2) we have

V̇ =
N

∑
j=1

〈eiγ j ,Pjc〉(s j−κ−1
j ν j)+

T
2π

∂U
∂ψ j

ψ̇ j

=
N

∑
j=1

(

s j〈eiγ j ,Pjc〉−
∂U
∂ψ j

)

(1− (κ js j)−1ν j). (19)

Choosing the control law

νk = κksk
(

1+K
(

sk〈eiγk ,Pkc〉−
∂U
∂ψk

))

, K > 0, (20)

enforces convergence of all particles to C with a phase
arrangement in the critical set of U .
Theorem 3.3: Consider the particle dynamics (2) with a

smooth rotationally symmetric phase potential U(ψ). The
control law (20) enforces convergence of solutions to the
set where all particles travel around the same convex curve,
and the curve centers stay fixed in inertial space. The phase
arrangement is in the critical set of U(ψ).
Proof: See [9] Theorem 3.
We coordinate the time-phase on C by choosing U(ψ) to

be an (M,N)-pattern potential [9]. An (M,N)-pattern is a
symmetric arrangement of phases consisting of M clusters
uniformly spaced around the curve. In each cluster there are
N/M particles. As an example (M,N) = (2,2) drives two
particles into two clusters that are uniformly separated along
the curve. The (N,N)-pattern is the so-called splay pattern,
in which the phases are uniformly separated.

IV. AN ENVIRONMENTAL SAMPLING PROBLEM
In this section we give an overview of an environmental

sampling problem that can be addressed using Theorem 3.3.
Consider the autonomous flight of two UAVs engaged in
an environmental sampling mission in which each vehicle
measures some atmospheric constituent (particles, sporangia,
volatile organic compounds, etc.). Suppose the area enclosed
by the vehicles’ flight pattern is suspected to host a source
of this constituent.

Fig. 2. Illustration of a control-volume and control surface in a flow.

Of particular interest is the control-volume sampling sce-
nario, in which one wishes to quantify the rate of release
of the measured quantity within the control-volume. The
control-volume equation for the rate of change of an ex-
tensive (scalar or vector) quantity Q in a fixed volume of
interest is [13]

dQ
dt

=
∫ ∫

CS

dQ
dm

ρ V ·dA+
∂
∂ t

∫ ∫ ∫

CV

dQ
dm

ρ dV−

where dQ
dm represents the intensive value of the quantity (i.e.,

the quantity per unit mass) at a point in the control-volume
and V− represents volume. The total time-rate-of-change, on
the left, is determined by physical principles. The first term
on the right accounts for the flow of the quantity across the



control surface (the control-volume boundary) and the second
term accounts for the rate of change of the property within
the control-volume (see Figure 2). If Q represents mass, for
example, the left-hand side is zero and the equation implies
that the rate of increase of mass within the control-volume
equals the net rate of inflow.

Fig. 3. Particle flow in an aerobiological sampling problem.

Suppose Q represents the number of particles (e.g., plant
pathogen spores) in the control-volume. Suppose also that, on
the spatial scale of interest, the fluid density remains constant
so that dm= ρdV−. We may then write a “particle continuity
equation”

0=
∫ ∫

CS

dQ
dV−
V ·dA+

∂
∂ t

∫ ∫ ∫

CV

dQ
dV−

dV−.

The first term on the right represents the net flux of particles
out of the control-volume and the second represents the
rate at which particles are released within the volume (see
Figure 3).
If one could measure the net outflow across the boundaries

of the control-volume, that would, in turn, yield the net
rate of release within the control-volume. In the framework
described in this paper, the outflow across the boundaries of
the control-volume is measured using two UAVs equipped
with spore collection devices. The samplers may be opened
in flight so that they are exposed to the incoming airflow
to allow the pathogen spores to be “caught”. Based on the
sample time and the measured airspeed one may assess the
average spore concentration. Imagine the closed flight path
to be separated into two equal length portions (e.g. two
halves of a circle) with an imaginary dividing line: one that
lies downwind from the source and one that lies upwind
from the source. The difference in the average concentration
measurements along these two arcs characterizes the net
outflow across the boundaries, or equivalently the net rate
of spore release. If the UAVs can be equipped with multiple
sampling devices that can be opened and closed in flight,
then the control-volume sampling may be preformed by one
vehicle that opens one set of samplers on the downwind
sampling arc and another set of samplers on the upwind arc.
However, if only one sampling device can be fitted onboard
the UAVs, then two vehicles are necessary. The vehicles in
that case modulate their sampling activity such that one of the
vehicles samples upwind of the source and the other vehicle
samples downwind of the source.
When the vehicles are not sampling, they re-initialize to

begin the next sampling leg. Since the vehicles are not
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Fig. 4. Two UAVs flying in the control-volume sampling mission. UAV1
(UAV2) samples only during the upwind (downwind) path segment. The
endpoints of the sampling arc are connected with a time-optimal path [11].

sampling during this period, they should re-initialize as
quickly as possible to save time and fuel, increasing the
total volume of air that is sampled. The idea is illustrated
in Figure 4, where the semi-circular sampling arcs and
connecting re-initialization paths are shown for both vehicles.
In [11] an optimal path generation algorithm is described
that generates minimum-time trajectories for vehicles fly-
ing in a constant ambient wind under turn-rate constraints.
The path-generation algorithm provides a general method
for constructing extremal trajectories between (sufficiently
distant) initial and final points. In particular, it can be used
to construct the time-optimal path from the end of the semi-
circular sample leg to the beginning. We refer to the closed,
convex curve that results as a “D-curve” due to its shape.
We note that the re-initialization interval assumes maxi-

mum control effort (maximum turn-rate), which constrains
one’s ability to enforce convergence to the path. In practice,
the re-initialization path is generated with an artificial turn-
rate limit that is strictly less than the true maximum turn-rate.
This ensures that the UAV is able to track the desired path
even in the presence of disturbances.

A. Parametrization of D-curves
Let x(t) ∈ R2 represent a C2 curve parameterized by the

path parameter t. A C2 curve in the plane can be uniquely
described by specifying its curvature at any instant along the
curve. The parametrization of the D-curves can be written as

κ(t) =
1+β (s(t)cosγ(t)−β )

s(t)3
|umax| t ∈ [0, tA]

κ(t) = 0 t ∈ [tA, tB]

κ(t) =
1+β (s(t)cosγ(t)−β )

s(t)3
|umax| t ∈ [tB, tC]

κ(t) =
1
R

t ∈ [tC,T ],

where umax is the turn-rate limit used by the path generation
algorithm to determine the time-optimal trajectory, and the



inertial speed s(t) and course angle γ(t) implicitly depend
on the path parameter (time, in this case). In the above
definition, the first and third entries correspond to the maxi-
mum turn-rate segments, the second entry corresponds to the
straight segment, and the last entry corresponds to a circular
segment with radius R. (Note that “turn-rate” here refers to
the vehicle heading rate, which is constrained by structural
limits, etc., as opposed to course rate, which depends on
the ambient flow.) The first three entries correspond to the
time-optimal reset path, and the last entry corresponds to
the sampling interval, where the radius of curvature is held
constant for the duration of a semi-circle. Notice that the
time-optimal reset path has a zero curvature segment. To
make the setting amenable to the synchronization algorithm
described in Section III we will approximate the zero cur-
vature segment with a circular arc of radius R0 + R. In the
limit as R0 → ∞ we obtain the straight segment.

B. Strictly Convex Approximation of the Linear Segment
Consider a smooth convex curve parameterized by t that

contains a segment where the curvature is zero. To be
consistent with notation in [11], let us define the path
parameter where such straight segment begins by tA and the
path parameter value where it ends by tB. Let us denote the
spatial points corresponding to the these values by x(tA) and
x(tB) and the corresponding normal vectors by n(tA) and
n(tB) (Figure 5). Then the lines defined by the normal vectors
at these points are parallel:

x(tA)+RAn(tA) ‖ x(tB)+RBn(tB), (21)

for RA,RB ∈R. Moreover, as shown in the following lemma,
for any specified R0 ∈ R large enough, there exist small
parameters tεA and t

ε
B such that the lines normal to x(tA− tεA)

and x(tB+ tεB) intersect at a single point

c= x(tA−tεA)+R0n(tA−tεA)= x(tB+tεB)+R0n(tB+tεB). (22)

Fig. 5. Approximating the zero curvature segment with a circular arc.

Lemma 4.1: Consider a smooth, closed, convex curve
x(t) ∈ C2, t ∈

[

t0, t f
]

, x(t0) = x(t f ), t f = t0 + T that has
a zero curvature segment, where

κ(t) = 0, t ∈ (tA, tB),

for t0 < tA < tB < t f , and nonzero curvature segments, where

κ(t) &= 0, t ∈
{

[t0, tA], [tB, t f ]
}

,

and the curvature along the curved segments has the same
sign. There exists a circle of radius R0 that is tangent to curve
x(t) at points x(tA− tεA) and at x(tB+ tεB), for some values of
tεA ∈ (0, tA− t0], tεB ∈ (0, t f − tB]. The radius R0 can be chosen
arbitrarily large.
Proof: At the points x(tA) and x(tB) the normals are parallel
by (21). Pick small tεA > 0 (leave tεB = 0) such that the normals
intersect at point c, and |c−x(tB)| < |c−x(tA− tεA)|. Such a
choice is always possible by continuity of x(t) and n(t). Now
pick tεB(tεA) such that

RB(tεB) = |c−x(tB+ tεB)|≡ |c−x(tA− tεA)| = RA(tεB) = R0.

Then the points x(tA− tεA), x(tB+ tεB) and c form an isosceles
triangle with c at the corner of equilateral edges, q.e.d.
To show that such a tεB = tεB(tεA) exists, assume that it

doesn’t. The continuous function f (tεB) =RA(tεB)−RB(tεB) > 0
at tεB = 0. By convexity of x(t) there exists a value tεBmax
where points c(tεBmax) and x(tA−tεA) coincide, thus f (tεBmax) =
−RB(tεBmax) < 0. By continuity of f (·) there has to be a tεB
value where f (tεB) = 0. "

In practice, one specifies a large value of the radius R0
and executes a numerical root-finding algorithm to determine
tεA and the corresponding value t

ε
B (roots of equation (22)).

Having done so, the definition of the D-curve becomes

κ(t) =
1+β (s(t)cosγ(t)−β )

s(t)3
|umax| t ∈ [0, tA− tεA]

κ(t) =
1
R0

t ∈ [tA− tεA, tB+ tεB]

κ(t) =
1+β (s(t)cosγ(t)−β )

s(t)3
|umax| t ∈ [tB+ tεB, tC]

κ(t) =
1
R

t ∈ [tC,T ].

V. SIMULATION RESULTS
In the previous section we described the control-volume

sampling problem performed by two autonomous vehicles.
In this setting the vehicles are sampling at the same altitude
and ideally begin their sampling turn simultaneously. We
employ a synchronization technique described in Section III
to properly phase the vehicles. Notice that in the setting
of Section III the vehicles share the same closed curve,
and in the control-volume sampling problem the curves are
different. However, due to the symmetry in the problem
the time it takes for the vehicles to complete a full period
is the same for the upwind sampler as for the downwind
sampler (i.e. T in equation (16) is the same for both vehicles).
This will ensure rotational symmetry in the time-phase (14).
Initializing t = 0 in equation (14) for both vehicles at the
instant they start their sampling interval ensures that the
synchronized (M,N) = (1,2) pattern corresponds to a setting
where both vehicles start and finish their sampling turn at
the same time. The synchronization algorithm (20) for the
model (2) has been simulated and the results can be seen in
Figures 6–8. The figures show three different cases: β = 0,
β = 0.25 and β = 0.75. In all three cases the two UAVs
converge to equal temporal separation, and this separation is
conserved during the entire loop.
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Fig. 6. Stabilization of the time-splay formation with no wind β = 0.
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Fig. 7. Stabilization of the time-splay formation with wind speed β = 0.25
from the South.

The analysis of Section III considers unit speed particles,
but the simulations presented here have been performed with
dimensional parameters of a realistic aerial sampling mission.
The results demonstrate that the algorithm is immediately
applicable for implementation. The UAV speed has been
chosen as Va = 20m/s, the wind speed then is Vw = βVa from
the South. The desired radius for the sampling mission has
been chosen as R= 200m. The path has been designed with
a maximum steady turn-rate |umax|= 0.2832rad/s that comes
from a technical limitation of φmax = 30◦ on the aircraft bank
angle.

VI. CONCLUSIONS
In this paper we describe a decentralized method to

synchronize particle motion on general convex curves in the
presence of constant ambient winds. The synchronization
algorithm controls an arbitrary number of particles to a syn-
chronized state where all particles orbit the same convex loop
such that the temporal separation between them is invariant to
a time shift. We described a particular application of the syn-
chronization method for control-volume sampling using two
autonomous vehicles. We show that any closed convex curve
can be approximated with a strictly convex curve making the
nonzero curvature assumption not restrictive for applications
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Fig. 8. Stabilization of the time-splay formation with wind speed β = 0.75
from the South.

of practical importance. We demonstrate the effectiveness of
the proposed methods in simulations. Ongoing work focuses
on the implementation of the described methods to be used
in field experiments to monitor the spread of plant pathogen
spores in the lower atmosphere.
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