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ABSTRACT
During crawling, a caterpillar body stretches and bends,

and a wave repeatedly travels from the tail to the head. Re-
cently, caterpillar locomotion has been modeled using the theory
of planar discrete elastic rods (PDER). This work takes a similar
modeling approach and introduces feedback control laws with
communication between neighboring segments. Caterpillar lo-
comotion is modeled first as a network of spring-mass-dampers
connected through nearest neighbor interactions and then as a
network of linked torsional springs. Feedback laws are designed
to achieve consensus and traveling wave solutions. Simulation
results show the displacement of each segment of a caterpillar
during locomotion. These results show promise for the design
of feedback control laws in a network model of soft robotic sys-
tems.

INTRODUCTION
Caterpillars are soft-bodied animals that can maneuver in

complex three-dimensional environments. Their high deforma-
bility allows them to bend, twist, and stretch: a caterpillar can
cantilever over a gap that is 90% of its body length [1, 2]. Cater-
pillars are a good example of distributed control of movements:
during a crawling cycle, a wave propagates from tail to head
through the coordination of concatenated segments [1, 2]. These
segments are lifted and compressed in a damped motion utilizing
the storage and release of energy [1].

Caterpillar–inspired soft robots should be able to adapt to

small, confined spaces and irregular terrain. They may also be
safe when operated alongside humans because their contact force
is lessened due to their flexibility [3]. In addition, a soft robot
replicating the motion control of a caterpillar should be highly
scalable, because their crawling gait does not change despite the
mass increase during their life cycle [2]. As such, the applica-
tions of a caterpillar-inspired soft robot range from search and
rescue to exploration and medicine [4, 5].

Although soft robots inspired by organisms without a skele-
ton may be easier to design than vertebrate-inspired robots be-
cause of the simplicity of their anatomy [6], their deformability
may translate into high degrees of freedom. Caterpillar-inspired
soft robots have been designed using modular [1, 2, 7, 8], contin-
uum [9, 10, 11], and combined approaches [12]. Wang et al. [7]
used a kinematic approach to design a flexible modular robot
consisting of joints and solenoid-activated sucker vacuum, con-
trolled by pulse width modulation (PWM). Another robot, Soft-
bot [1, 2], is made of highly elastic silicone rubber and displays
a pressurized inside chamber to regulate stiffness. It uses dis-
crete group of shape memory alloy (SMA) springs as actuators,
controlled by a pulsed current source driven by a master oscil-
lator, coupled to a second oscillator to generate square waves.
Umedachi [9] describes embedded SMA coils along the contin-
uous body axis in the design of a caterpillar-inspired soft robot
that employs variation between high and low friction to create
adaptive and versatile motion. The friction resulting from the ra-
dius of curvature of the robot is controlled by retrograde waves
with phase gaps. GoQBot is a SMA-actuated silicone soft robot
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with electric wires embedded in two actuators segments for an-
terior and posterior flexion, and controlled by fixed voltage sig-
nal [12]. Finally, optomechanical liquid crystalline elastomer
(LCE) material was used to generate and control a traveling wave
using spatially modulated light field creating sequential illumina-
tion [10, 11].

Although most soft robots show flexibility, adaptability and,
in some cases, are capable of more than one locomotion gait,
it is difficult to model their dynamics because of the high com-
plexity of their motion and the number of degrees of freedom
required. Additionally, they lack a closed-loop control system
that can add resilience to the system. Such closed-loop control
can be achieved by taking into account sensory feedback.

Prior work on modeling locomotion in a caterpillar-like soft
body used inverse-dynamics to represent a planar extensible-link
model [13], lumped-mass dynamic model coupled with a con-
trol law for gait optimization [14, 15], or electric oscillators dy-
namics model with closed-loop control [16]. Umedachi’s work
proposed autonomous decentralized control as a solution to gen-
erating and controlling local and adaptive locomotion in soft
robots [17,18]. In particular, they applied autonomous decentral-
ized control to modular sections of a 3D printed robot to induce
locomotion through phase gradient [18]. Prior work in the area
of collective motion of a network of oscillators used a spatial
approach [19]. However, more recent work is using a temporal
approach [16, 20].

The motivation behind the work presented here is the mod-
eling of the locomotion dynamics and the design of closed-
loop control laws for implementing locomotion in a caterpillar-
inspired soft-robot. Recent work by Goldberg et al. [21] applied
discrete elastic rod (DER) theory to model the dynamics of a soft
robot caterpillar as a discrete rod that can stretch and bend with
elastic and stretching energies. The model used planar discrete
elastic rod (PDER) in combination with open-loop control to pre-
dict the motion of a caterpillar-inspired soft robot [21]. One of
the difficulties of designing closed-loop control laws for a soft-
robot is model nonlinearity; another is computational complex-
ity.

This work uses a network approach to model a caterpil-
lar’s locomotion. The first model consists of a collection of N
spring mass damper systems with and without physical coupling.
The second model is a collection of N torsional springs of fixed
lengths also with and without physical coupling. Each agent is
controlled through the rate of change of its rest length (respec-
tively, rate of change of its resting relative angle). The choice of
our control variable is motivated by the PDER model, in which
stretching and bending energies are functions of intrinsic prop-
erties like rest length [21]. The first model exhibits a change
of length as the system stretches and compresses, whereas the
second model exhibits a change in angle (bending) and angular
velocity. In ongoing work, we seek to combine these models and
their control to create closed-loop feedback laws applicable to

the control of simultaneous bending and stretching.
The contributions of this paper are (1) a network approach to

modeling the dynamics of a collection of spring-mass-dampers
and torsional springs controlled by the change in intrinsic length
or curvature, and (2) the design of closed-loop feedback laws to
achieve (a) consensus and (b) traveling wave solution in either
model. Simulation results show that high-gain linear controls
stabilize the consensus and traveling wave solutions regardless
of the initial conditions. However, when applied to the nonlinear
system, the same control laws lead to consensus and traveling
waves only for initial conditions close to the equilibrium point
and for sufficiently large gain values.

The organization of this paper is as follows: Section II of
this paper presents a review of graph theory, consensus theory,
and the wave equation. Section III introduces the mathematical
model and feedback control laws of a network of linked spring-
mass-dampers, with controllers designed for consensus and trav-
eling wave behaviors. Section IV repeats the process for a net-
work of linked torsional springs. Section V summarizes the pa-
per and ongoing work.

BACKGROUND
This paper models the actuators of a caterpillar soft robot as

modular linear or torsional springs. A network of N actuators
is connected in a neighbor-to-neighbor circulant topology. This
section presents an overview of graph theory, consensus control,
and traveling wave control.

Graph Theory
Consider the undirected graph G = (V ,E), where V is the

set of N vertices and E is the set of edges connecting pairs of
vertices. The Laplacian matrix L = D−A defines the commu-
nication topology of the network, where the adjacency matrix
A ∈ RNxN is symmetric, with entries ai j = a ji given by

ai j =

{
1, if i 6= j and (i, j) ∈ E
0, otherwise.

The degree matrix D ∈ RN×N is defined as

di j =

{
∑

N
j=1 ai j, if i = j

0, otherwise.

The Laplacian of an undirected graph is a symmetric, posi-
tive semi-definite matrix with zero row sums [22]. For example,
the Laplacian matrix of an undirected cyclic graph with degree 2
is
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L =



2 −1 0 · · · −1
−1 2 −1 0 · · · 0
0 −1 2 −1 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
. . . −1 2 −1

−1 0 · · · 0 −1 2


∈ RN×N . (1)

Note that Eq. (1) is a circulant matrix, i.e., each row vector is a
cyclic permutation of the preceding row vector.

Consensus Control
Consensus is achieved when multiple systems that are con-

nected by local interactions achieve a common behavior [23].
Given a network of N second-order integrators with informa-
tion states x and ẋ and connected to each other through local
interactions, consensus is achieved if ∀ xi(0), |xi(t)− x j(t)| → 0
as t → ∞,∀ i, j = 1, . . . ,N [23, Chapter 4]. Given the systems’
individual dynamics, a consensus algorithm can be designed to
achieve consensus over the information state through the use of
the Laplacian L matrix of the communication topology associ-
ated with the network of systems.As an example, consider the
double-integrator dynamics given by ẍ =−cAx−bBẋ+u, where
b,c ∈R+. Using the consensus algorithm u = c(A− I)x+b(B−
L)ẋ leads to the closed-loop consensus dynamics ẍ =−cx−bL ẋ
[16, 24]. We need the following theorem for our main results.

Theorem 1. Consider the second-order system

ẍ =−cAx−bFẋ+ cAx̄ (2a)
˙̄x = u, (2b)

where matrix A is invertible. Let L be the Laplacian matrix as-
sociated with the desired communication topology, such that L
has a simple zero eigenvalue and all other eigenvalues are pos-
itive. The feedback control law u = γ((I−A−1)x+b/cA−1(F−
L)ẋ− x̄), drives the network to achieve consensus over time in
position and velocity.

Proof. We know that second-order consensus is achieved by ẍ =
−cx− bL ẋ [16, 24]. Setting our second-order dynamics (2a) to
equal the desired dynamics, we solve for x̄des = (I − A−1)x +
b/cA−1(F −L)ẋ. Define a high-gain controller u = γ(x̄des− x̄).
For γ� 1, x̄→ x̄des. In addition, there is a time-scale separation
such that the dynamics of x and ẋ are slower than that of x̄. As
a result, our network reduces to the closed-loop form ẍ =−cx−
bL ẋ, which achieves consensus [16, 24].

Traveling Wave Control
A wave equation is a second-order hyperbolic partial differ-

ential equation that can be used to model the displacement of a
wave, such as a compressive stress wave in a finite system of
spring-mass models [25]. Given the displacement vector u(x, t)
of the set of masses where x is the spatial displacement and t is
the time, the wave propagation subject to the boundary condi-
tions can be modeled as utt + c∆u = 0, where utt is the second
partial derivative of u with respect to t, c is the speed of prop-
agation, and ∆ is the Laplace operator [25]. When approximat-
ing the infinite length of a thin elastic rod by a set of discrete
points such as spring-mass or torsional spring models, ∆ is ap-
proximated by the Laplacian L such that the wave propagation
dynamics is ẍ+cLx = 0. We need the following theorem for our
main results.

Theorem 2. Consider the second-order system described in
Eq. (2) with associated Laplacian matrix L , such that L has
a simple zero eigenvalue and all other eigenvalues are positive.
The feedback control law u = γ((I−A−1L)x+ b/cA−1Fẋ− x̄),
drives the network to exhibit a traveling wave solution.

Proof. We know that a second-order discretized wave equation
is given by ẍ = −cLx [16]. Setting the second-order dynamics
(2a) to equal the desired dynamics yields x̄des = ((I−A−1L)x+
b/cA−1Fẋ. Similar to the proof of Theorem 1, define a high
gain controller u = γ(x̄des− x̄) and use time-scale separation so
that the network’s dynamics reduce to the closed-loop form ẍ =
−cLx, which has a stable traveling wave solution for sufficiently
large N [16].

FEEDBACK CONTROL OF LINEAR SPRINGS
This section considers a system of N identical linear damped

springs with adjustable rest length connected to masses, first in
parallel without physical coupling, then in series with alternat-
ing masses and springs connected in a chain. Each spring has
a spring constant ci, damping coefficient bi, and rest length x̄i,
with attached mass mi, for i = 1, . . . ,N. Each spring is controlled
through its rate of change of rest length ˙̄xi = ui. We derive the
mathematical model and later assume m = 1. We then design
control laws to achieve consensus and a wave equation.

Consider N spring-mass-damper connected in parallel to a
fixed surface as in Fig. 1. The individual dynamics of the spring-
mass dampers are ẍi =−c(xi− x̄i)−bẋi, ˙̄xi = ui∀ i= 1, . . . ,N. Let
x = (x1, . . . ,xN)

T be the vector of all the positions. In addition,
let u = (u1, . . . ,uN)

T be the vector of control inputs. We have

d
dt

 x
ẋ
x̄

=

 0 I 0
−cI −bI cI

0 0 0


︸ ︷︷ ︸

,A0
s

 x
ẋ
x̄

+
0

0
I


︸︷︷︸
,Bs

u, (3)
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Figure 1. NETWORK OF N SPRING-MASS-DAMPER WITH NO
PHYSICAL COUPLING

where I is the N ×N identity matrix. The set of equilibrium
points of the autonomous system described in Eq. (3) is con-
tinuous, {x, ẋ, x̄ ∈ RN | x = x̄, ẋ = 0}.The system is controllable
because the controllability matrix C = [Bs A0

s Bs . . .(A0
s )

N−1Bs]
has full rank. Using Theorem 1, consensus is achieved on
the position x and the velocity ẋ by choosing the control u =
γ( b

c (I−L)ẋ− x̄), where L is the circulant Laplacian defined in
Section II. The closed-loop consensus system is

d
dt

 x
ẋ
x̄

=

 0 I 0
−cI −bI cI

0 γ
b
c (I−L) −γI

 x
ẋ
x̄

 . (4)

Figure 2 shows the consensus dynamics for a network of 4
spring-mass-dampers with no physical coupling.

Following Theorem 2, applying the control u= γ((I−L)x+
b
c ẋ− x̄) yields a closed-loop system with traveling wave solution

d
dt

 x
ẋ
x̄

=

 0 I 0
−cI −bI cI

γ(I−L) γ
b
c I −γI

 x
ẋ
x̄

 . (5)

Figure 3 shows the traveling wave solution for a network of 10
spring-mass-dampers with no physical coupling, and Gaussian
initial position and initial velocity as derivative of the Gaussian
distribution.

Next, consider a system of N+1 identical masses connected
in series to their nearest neighbors via a set of N controlled
damped springs. Mass mi−1 and mi are connected via spring i
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Figure 2. CONSENSUS DYNAMICS FOR SYSTEM OF MASS-
SPRING-DAMPERS WITH NO PHYSICAL COUPLING, COLORED BY
SPRING INDEX. N = 10, γ = 105, b = 2, c = 1.
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Figure 3. SNAPSHOTS OF TRAVELING WAVE CONTROL FOR A
NETWORK OF SPRING-MASS-DAMPERS WITH NO PHYSICAL COU-
PLING. N = 10, γ = 105, b = 2, c = 1

for i = 1, . . . ,N. Let zi = xi− xi−1 for i = 1, . . . ,N be the spring
lengths, and let z̄i be the controlled natural length of each spring,
with ˙̄zi = ui. Setting all mi = 1, the dynamics are now described
by

ẍ0 = k1(x1− x0− z̄1)+b1(ẋ1− ẋ0),

ẍi =−ki(x1− xi−1− z̄i)−bi(ẋi− ẋi−1)

+ ki+1(xi+1− xi− z̄i+1)+bi+1(ẋi+1− ẋi), i = 1, . . . ,N−1
ẍN =−kN(x1− xN−1− z̄N)−bN(ẋN− ẋN−1). (6)

There are no external forces, thus momentum is conserved and
there is no net movement of the center of mass. We can write the
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Figure 4. SYSTEM OF N MASS-SPRING-DAMPERS WITH PHYSICAL
COUPLING BETWEEN NEIGHBORS.

reduced system of spring length dynamics as

d
dt

 z
ż
z̄

=

 0 I 0
−cQ −bQ cQ

0 0 0

 z
ż
z̄

+
0

0
I

u, (7)

where Q is the N-by-N invertible matrix

Q =



2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . .

...
. . . . . . . . . 0

0 · · · −1 2 −1
0 · · · 0 −1 2


.

As in the previous case, we have a continuum of equilibria, z =
z̄ = z∗, ż = 0, ∀z∗ ∈ RN . Using Theorem 1, choosing the control
input u = γ((I−Q−1)z+b/c(I−Q−1L)ż− z̄) with γ� 0 leads
to consensus between all the spring lengths via the closed loop
dynamics

d
dt

 z
ż
z̄

=

 0 I 0
−cQ −bQ cQ

γ(I−Q−1) γ
b
c (I−Q−1L) −γI

 z
ż
z̄

 . (8)

Figure 5 shows the consensus dynamics in a network of 4 spring-
mass-dampers with neighbor-to-neighbor physical coupling.

In a similar use of Theorem (2), the control u = γ((I −
Q−1L)z + b

c ż− z̄) yields a closed-loop system with traveling
wave behavior:

d
dt

 z
ż
z̄

=

 0 I 0
−cQ −bQ cQ

γ
(
I−Q−1L

)
γ

b
c I −γI

 z
ż
z̄

 , (9)

Figure 6 shows the traveling wave solution for a network of 10
controlled damped springs coupled in series, using a Gaussian
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Figure 5. CONSENSUS DYNAMICS FOR LINEAR SYSTEM OF N =
10 INPUTS FOR MASS-SPRING-DAMPER SYSTEM WITH PHYSICAL
COUPLING BETWEEN NEIGHBORS, COLORED BY SPRING INDEX.
γ = 105, b = 2, c = 1.
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Figure 6. SNAPSHOTS OF TRAVELING WAVE CONTROL FOR
SPRING MASS DAMPER WITH PHYSICAL COUPLING. N = 10, γ =
105, b = 2, c = 1.

initial position and initial velocity as derivative of the Gaussian
distribution.

FEEDBACK CONTROL OF TORSIONAL SPRINGS
This section applies the framework defined in the previous

section to damped torsional springs with control of the rate of
change of the resting angle. We first consider a system of N
springs each attached at one end to a fixed surface and at the
other end to a massless rod of length l tipped with a point mass
m, illustrated in Fig. 7. Next we consider a coupled chain of
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Figure 7. SYSTEM OF N TORSIONAL SPRINGS WITH NO PHYSICAL
COUPLING.

N+2 masses and N+1 rods alternating in a series, with N of the
torsional springs attached at each mass except the ends, shown
in Fig. 8. We define the displacement angles of the springs as
ψi, the controlled resting angles as ψ̄i, with velocity inputs ˙̄ψi =
ui for i = 1, . . . ,N. Additionally, each spring is damped with
damping coefficient ζ. The system is not subject to gravitational
energy.

We define the elastic energy contained in the torsional
springs based on the planar discrete elastic rod model of [21],
where the bending energy in each node of a discrete rod is pro-
portional to the square of the change in discrete curvature, de-
fined κi = 2tan(ψi/2). For the torsional spring system, the bend-
ing energy for spring i is

Espring,i =
EI
l

(
2tan

(
ψi

2

)
−2tan

(
ψ̄i

2

))2

, (10)

where EI is the bending stiffness, or flexural rigidity, of the rod
[26]. In the non-coupled configuration, the kinetic energy of each
mass is Ti = ml2ψ̇2

i . Using the Euler-Lagrange equations [27],
and setting m = 1, the dynamics of each damped torsional spring
is

ψ̈i =−
2EI
l3 (tan

ψi

2
− tan

ψ̄i

2
)(tan2 ψi

2
+1)− ζ

l2 ψ̇i, (11)

defined for ψi ∈ (−π,π). The continuous range of equilibria of
the system are in the form ψ = ψ̄ = ψ∗, ψ̇ = 0, ∀ψ∗ ∈ RN . The
dynamics of N torsional springs, linearized about an arbitrary
equilibrium point yields the 3N×1 state space system

d
dt

ψ′

ψ̇

ψ̄′

=

 0 I 0
−cG −bI cG

0 0 0

ψ′

ψ̇

ψ̄′

+
0

0
I

u, (12)

Figure 8. SYSTEM OF N TORSIONAL SPRINGS WITH PHYSICAL
COUPLING BETWEEN NEIGHBORS.

where c = EI
l3 , b = ζ

l2 , I is the N×N identity matrix,

G =


ξ0 0 · · · 0

0 ξ1 0
...

...
. . . . . .

0 · · · ξN−1

 ∈ RN×N ,

and ξi = tan2 ψ∗i
2 +1, with ψ′ = ψ−ψ∗, ψ̄′ = ψ̄−ψ∗ defining the

equilibrium.
In particular, when the equilibrium point is at the origin

ψ∗ = 0, the system’s dynamics become

d
dt

ψ

ψ̇

ψ̄

=

 0 I 0
−cI −bI cI

0 0 0

ψ

ψ̇

ψ̄

+
0

0
I

u. (13)

This system is equivalent to the linear spring-mass-damper net-
work with no physical coupling and control laws for this partic-
ular case are identical.

Next, consider a system of N + 2 point masses (labeled 0
through N + 1) in the plane connected to the nearest neighbor
masss via N + 1 massless rods of length l (labeled 0 through
N) (see Fig. 8). The configuration of the system is given by
q = (x0,y0,θ0, ...,θn)

T , where x0 and y0 are the location of mass
m0 in an inertial coordinate system, and θi is the absolute orien-
tation of edge i connecting mass i to mass i+1 measured coun-
terclockwise from the x-axis. We affix a torsional spring to each
mass (excluding the ends) such that the elastic stored energy is
given by Eq. (10) with spring displacement defined as the turn-
ing angles ψi = θi−θi−1 for i = 1, ...,N.
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The inertial locations of the masses are

xi = x0 + l
i−1

∑
j=0

cosθ j, i = 1, ...,N +1

yi = y0 + l
i−1

∑
j=0

sinθ j, i = 1, ...,N +1

and their velocities are

ẋi = ẋ0− l
i−1

∑
j=0

θ̇ j sinθ j, i = 1, ...,N +1

ẏi = ẏ0 + l
i−1

∑
j=0

θ̇ j cosθ j, i = 1, ...,N +1

We derive equations of motion via the Euler-Lagrange equations,
with Lagrangian L = 1

2 m∑
N+1
i=0 (ẋ2

i + ẏ2
i )−∑

N
j=1 E j.

∂L
∂ẋ

= m
N+1

∑
i=0

ẋi
∂ẋi

∂ẋ
= m(N +2)ẋ−ml

N+1

∑
i=1

i−1

∑
j=0

θ̇ j sinθ j (14)

∂L
∂ẏ

= m
N+1

∑
i=0

ẏi
∂ẏi

∂ẏ
= m(N +2)ẏ+ml

N+1

∑
i=1

i−1

∑
j=0

θ̇ j cosθ j (15)

Variables x and y are cyclic, associated with the conservation of
the total linear momentum of the system. Defining px and py as
the constant linear momenta along the x and y axes, we have

ẋ0 =
1

m(N +2)

(
px +ml

N+1

∑
i=1

i−1

∑
j=0

θ̇ j sinθ j

)
,

ẏ0 =
1

m(N +2)

(
py−ml

N+1

∑
i=1

i−1

∑
j=0

θ̇ j cosθ j

)
,

(16)

Since we are primarily concerned with controlling the shape
of the rod, we substitute for ẋ0 and ẏ0 in the Langrangian to form
a reduced Lagrangian for the angle dynamics: Lr = Lr(θ, θ̇, ψ̄).
The equations of motion for the reduced system are

d
dt

(
∂Lr

∂θ̇i

)
− ∂Lr

∂θ
= 0, i = 0, ...,N, (17)

which take the standard form

M(θ)θ̈+C(θ, θ̇)+V (θ) = 0. (18)

For convenience, define a matrix of coefficients with entries

ai j =(k+1)(N+1−k−|i− j|), where k=min{i, j,N−i,N− j},
(19)

for i, j ∈ {0, ...,N}. Then entries of the mass matrix M(θ) are

Mi j = ai j
ml2

N +2
cos(θi−θ j), (20)

and entries of the gyroscopic term C(θ, θ̇) are

Ci =
ml2

N +2

N

∑
j=0

ai jθ̇ j(θ̇i− θ̇ j)sin(θ j−θi). (21)

Finally, the terms due to spring forces V (θ, ψ̄) are

Vi = (22)

− 2EI
l sec2

(
θ1−θ0

2

)(
tan
(

θ1−θ0
2

)
− tan(ψ̄1/2)

)
, i = 0

2EI
l sec2

(
θi−θi−1

2

)(
tan
(

θi−θi−1
2

)
− tan(ψ̄i/2)

)
− 2EI

l sec2
(

θi+1−θi
2

)(
tan
(

θi+1−θi
2

)
− tan(ψ̄i+1/2)

)
,

∀ 0 < i < N,
2EI

l sec2
(

θN−θN−1
2

)(
tan
(

θN−θN−1
2

)
− tan(ψ̄N/2)

)
,

i = N.

Linearizing about the equilibrium (θ = 0, θ̇ = 0, ψ̄ = 0), we
find that the system matrices have a banded structure, i.e.,

θ̈ =
EI
ml3 Aθ+

EI
ml3 Bψ̄, (23)

where

A =



−3 4 −1 0
3 −6 4 −1
−1 4 −6 4 −1

. . . . . . . . . . . . . . .
−1 4 −6 4 −1
−1 4 −6 3

0 −1 4 −3


, (24)
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and

B =



−3 1 0
3 −3 1
−1 3 −3 1

. . . . . . . . . . . .
−1 3 −3 1
−1 3 −3

0 −1 3


(25)

There remains an uncontrollable mode in the linearized system,
which is associated with the rotational symmetry of the rod. We
introduce the following coordinate transformation to isolate the
controllable states, the relative angles between edges, ψi:

[
θ0
ψ

]
=


1 0
−1 1

. . . . . .
0 −1 1

θ. (26)

The reduced, controllable linearized system is

ψ̈ =
EI
ml3 H(ψ̄−ψ). (27)

with the banded matrix

H =



6 −4 1 0

−4
. . . . . . . . .

1
. . . . . . . . . 1
. . . . . . . . . −4

0 1 −4 6


(28)

Applying Theorem 1, the input control to the linearized sys-
tem u = γ((I−H−1)ψ− b

c H−1Lψ̇− ψ̄) leads to the linear con-
sensus form with c = EI

ml3 . The linearized closed-loop consensus
system is

d
dt

ψ

ψ̇

ψ̄

=

 0 I 0
−cH 0 cH

γ(I−H−1) −γ
b
c H−1L −γI

ψ

ψ̇

ψ̄

 , (29)

and the nonlinear closed-loop consensus system is

d
dt

 θ

θ̇

ψ̄

=

 θ̇

−M(θ)−1
(
V (θ)+C(θ, θ̇)

)
γ
(
(I−H−1)ψ− b

c H−1Lψ̇− γψ̄
)
 . (30)

0 5 10 15 20 25 30
-0.1

0

0.1

0 5 10 15 20 25 30
-0.04

-0.02

0

0.02

0 5 10 15 20 25 30

Time (s)

-0.1

0

0.1

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

S
p
ri

n
g
 i

n
d
ex

Figure 9. LINEAR CONSENSUS CONTROL APPLIED TO NONLIN-
EAR SYSTEM OF N TORSIONAL SPRINGS WITH PHYSICAL COU-
PLING. N = 10 INPUTS, γ = 105, b = 2, c = 1.

Figure 9 shows consensus dynamics for a system of un-
damped torsional springs with 4 inputs and nonlinear dynamics,
controlled by a linear feedback and with initial conditions ψ(0)
chosen randomly between the range (−0.2,0.2).

In a similar way, using Theorem 2 and applying the linear
control u = γ((I−H−1L)ψ− ψ̄) to the linearized system yields
the closed-loop system that achieves a traveling wave solution:

d
dt

ψ

ψ̇

ψ̄

=

 0 I 0
−cH 0 cH

γ(I−H−1L) 0 −γI

ψ

ψ̇

ψ̄

 . (31)

The nonlinear closed-loop traveling wave system is

d
dt

 θ

θ̇

ψ̄

=

 θ̇

−M(θ)−1
(
V (θ)+C(θ, θ̇)

)
γ
(
(I−H−1L)ψ− ψ̄

)
 , (32)

where M, C, and V are given by Eqs. (20)-(22).
Figure 10 shows the traveling wave solution for the nonlin-

ear system of 10 torsional springs and initial angle as Gaussian
distribution and velocity set as derivative of the Gaussian.

CONCLUSION
A caterpillar’s crawling gait exhibits traveling wave propa-

gating from tail to head. We modeled a caterpillar soft robot us-
ing a network of linear and torsional springs. Using the change in
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Figure 10. LINEAR TRAVELING WAVE CONTROL APPLIED TO NON-
LINEAR SYSTEM OF N TORSIONAL SPRINGS WITH PHYSICAL COU-
PLING. N = 10 INPUTS, γ = 100000, c = 1.

the intrinsic length and curvature as input, we designed closed-
loop feedback control laws stabilize consensus and traveling
wave solutions. Ongoing work combines linear and torsional
spring models and their control laws to achieve account for bend-
ing and stretching in a caterpillar-inspired soft-robot.
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