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ABSTRACT
Quadrotor vehicles show great potential over a range of

tasks, but effective control in windy environments continues to
be a challenge. This paper develops a thrust-saturated con-
troller on the Lie group SO(3) that uses flow sensing in order
to reduce the effect of gusts on the vehicle. Designing the con-
troller on SO(3) establishes almost-global exponential stability,
and avoids the pitfalls of representing rigid-body kinematics us-
ing Euler angles. We prove that exponential stability is retained
in the presence of thrust saturation. Aerodynamics are incor-
porated into the dynamics and control through a model of the
blade-flapping phenomena experienced by rotorcraft. Numerical
examples show that the system control remains effective despite
thrust saturation, and that flow sensing improves both the initial
response and steady-state error of the system in wind.

INTRODUCTION
Quadrotor helicopters have become popular in myriad tasks,

ranging from entertainment to highly utilitarian work. Their abil-
ity to hover and maneuver with great agility provides advantages
over fixed-wing aircraft, and their simplicity makes them prefer-
able over traditional helicopters.

A variety of control methods have been employed in order
to stabilize quadrotors, including PID [1, 2], adaptive [3, 4], ro-
bust [5, 6], feedback linearization [7], and optimal [8] control.
This paper employs a feedback linearization controller on the

∗Address all correspondence to this author.

geometric Lie group SO(3) following [7], with the addition of
saturation of the vehicle’s thrust inputs. Cao and Lynch [1],
and Roza and Maggiore [9] approach thrust saturation using the
nested saturation method from Teel [10], which is designed to
address saturation in the case of a chain of integrators. Cao and
Lynch [1] bound the roll and pitch angles of the system as well as
the thrust by placing limits on system inputs, whereas Roza and
Maggiore [9] place the bound on thrust only. Cutler and How [2]
address saturation by choosing a trajectory that keeps the system
states within the bounds required in order to avoid thrust satura-
tion. This paper uses the method of Pappas et al. [11] to bound
the thrust on the system in order to guarantee stability when the
cost of feedback linearization does not saturate the thrust.

Quadrotors are able to accomplish an array of tasks such
as surveying farmland and aiding in natural disasters [12] that
require multi-rotor aircraft to fly outdoors in potentially adverse
weather. High winds pose a challenge to small UAS [13–15], and
developing an understanding of how they respond to wind and
the mechanics behind that response is key to compensation. This
paper builds on previous work [16] in order to incorporate flow
sensing in the attitude controller of a three-degree-of-freedom
(DOF) quadrotor test stand. In [16], the blade-flapping response
of a quadrotor propeller is analyzed in order to identify the aero-
dynamic moment acting on a propeller in the presence of a wind
gust. This moment is described analytically and may be included
in the model directly, rather than using an uncertainty block char-
acteristic of a robust-control scheme. Using traditional inertial
sensing along with flow sensing to predict the aerodynamic mo-
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ment yields improved results as compared to using inertial feed-
back alone. Flow sensing will be performed with two-port, fore-
and aft-facing probes that measure flow using differential pres-
sure measurements [17].

Flight-dynamics applications often apply Euler angles [18]
due to the intuitive nature of measuring each angle directly. How-
ever, Euler angles kinematics suffer singularities at gimbal lock
and each angle is not necessarily constrained to the unit circle,
which allows for non-physical error representations in the case
of deviations over one rotation. We therefore use a geometric
approach on the Lie group SO(3), which is a compact set repre-
senting the configuration space of the orientation of a rigid body.
Additionally, a geometric description of the rotational kinemat-
ics in SO(3) does not encounter singularities, allowing for poten-
tially global solutions.

The contributions of this paper are (1) the addition of pro-
peller aerodynamics to the quadrotor dynamics, yielding a more
accurate description in the presence of wind disturbances; (2)
a nonlinear, feedback-linearizing controller on SO(3) with satu-
rated thrust inputs; and (3) an assessment of the relative merits of
adding flow sensing to the vehicle controller versus using inertial
feedback alone. We show improved stabilization through the use
of flow sensing, which promises to allow for controlled flight in
unfavorable weather and improved safety when flight is required
in spite of weather concerns.

The outline of the paper is as follows. The first section de-
scribes the dynamics of the quadrotor vehicle. The second sec-
tion describes the controller and proves stability under bounded
thrust constraints. The third section shows numerical results
comparing the controller with and without thrust saturation, and
with and without flow sensing. The final section summarizes the
paper and discusses ongoing work.

QUADROTOR DYNAMICS
This paper investigates a quadrotor constrained to operate

on an attitude stand, such that the quadrotor is mounted on a ball
joint at its center of mass, allowing for full attitude motion while
constraining the translational degrees of freedom. Let rotation
matrix R ∈ SO(3) represent the orientation of the vehicle’s body
frame with respect to the inertial frame and employ rigid-body
kinematics and Euler’s second law to describe the rotational dy-
namics. We have

Ṙ = RΩ̂

JΩ̇ =−Ω× JΩ+Mthrust +Maero,
(1)

where Ω= [p,q,r]T is the angular velocity of the quadrotor in the
body frame, Mthrust is the moment acting on the system due to the
thrust input, Maero is the aerodynamic moment on the system due
to the interaction between the rotors and the wind, and J is the

moment of inertia of the quadrotor. Here, J is a diagonal matrix
due to the symmetry of the quadrotor; specifically [J1,J2,J3] =
[m``

2/12+2mm`
2,m``

2/12+2mm`
2,m``

2/6+4mm`
2] where m`

is the mass of one cross-beam of the quadrotor, ` is the length of
one cross-beam, and mm is the mass of each motor.

The wedge operator ∧ converts a vector in R3 to a 3×3 skew
symmetric matrix in so(3), which can also be used to represent a
cross product, such that for any vectors x and y in R3, x̂y = x×y.
The inverse of the wedge operator is the vee operator ∨, which
transforms a matrix in so(3) to a vector in R3.
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FIGURE 1. QUADROTOR ATTITUDE CONTROL TEST STAND

The quadrotor vehicle is modeled as two perpendicular uni-
form beams of length ` attached at their centers, with a rotor at
both ends of each beam in a plane orthogonal to b3 as seen in
Fig. 1. Rotors are offset from the beam plane at O by a small
distance d � `/2 that is neglected in calculation. Define rotors
1 and 2 as those on the b1 axis, and rotors 3 and 4 as those on
the b2 axis. Assume that rotors 1 and 2 spin in the positive b3
direction, whereas rotors 3 and 4 spin in the negative b3 direc-
tion, which results in a net zero torque in the b3 direction under
nominal conditions with each rotor operating at the same speed
and no outside aerodynamic forces.

While the equations of motion appear straightforward in (1),
the aerodynamic moment term Maero is a complicated expression
due to the dynamics of each rotor in the wind field. Indeed, we
introduce an additional reference frame in order to describe the
aerodynamic forces, which depend on the magnitude and direc-
tion of the wind. Let IVO represent the inertial velocity of the
wind at O, and BVO represent the velocity of the wind at O ex-
perienced by an observer in the body frame, which in this case
is the same as IVO. Define the wind frame U , (O,u1,u2,u3),
where u3 = b3, and u1 is the direction of the component of BVO
in the plane perpendicular to b3 [16], as seen in Fig. 1.
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The ball-joint constraint at the quadrotor center of mass op-
poses all forces through the center of mass. All other forces and
moments on the vehicle are a result of the spinning rotors. Each
rotor produces a thrust, and has a corresponding torque in the di-
rection opposite its rotation. Aerodynamic forces and moments
due to non-zero external wind are taken from [16]; when a heli-
copter rotor moves forward in air, the advancing side of the rotor
produces more lift than the retreating side, which causes a roll
moment on the blades [19]. We define the azimuthal phase de-
lay φD as the angle between the apparent maximum aerodynamic
force when the advancing blade is moving directly into the wind
and the maximum flapping amplitude of the blade.

The blades are set up in counter-rotating pairs, leading to
cancellation of the aerodynamic moment Maero along the u1-
axis. Assume the wind components in the body frame [BVO]B
are measured by a multi-hole probe [17] and, in order to find the
moment on the rotors from the resulting wind, we must identify
both the phase delay φD and the magnitude βmax of the angle of
maximum flapping. Assume that the moment due to wind on the
rotors is due only to the blade spring moment kβ and the flap
angle βmax, the rotors have negligible offset from the center of
mass in the b3 direction (i.e., d ≈ 0), and βmax is a small angle
such that the thrust aligns with b3. We define the aerodynamic
moment to be [16]

Maero = [4kβ βmaxSφDu2 ·b1,4kβ βmaxSφDu2 ·b2,0]T (2)

and the thrust moment to be

Mthrust =

[
`

2
(T3−T4),

`

2
(T2−T1),cm [(T3 +T4)− (T1 +T2)]

]T
, (3)

where cm is a coefficient relating the thrust produced to the torque
of the motor, found empirically.

ATTITUDE CONTROL DESIGN
By representing the kinematics using rotation matrices in the

Lie group SO(3), we design an attitude controller that achieves
nearly global stabilization while avoiding singularities associated
with Euler angles. We use the configuration error function [20]

Ψ(R,Rd) =
1
2

tr
(
I−RT

d R
)
, (4)

which is locally positive definite when the angle between R and
Rd , defined by θR = arccos((Tr(RT

d R)−1)/2), is less than π [7].
The angle is less than π when Ψ(R,Rd) < 2, which occurs al-
most globally. The attitude tracking error eR is derived from the
configuration error function [7],

eR =
1
2
(
RT

d R−RT Rd
)∨

. (5)

The angular-velocity tracking error is [7]

eΩ = Ω−RT RdΩd . (6)

Note d(RT
d R)/dt = (RT

d R)êΩ, when compared to Eqn. (1), shows
eΩ is to RT

d R as Ω is to R.
In order to minimize the rate and attitude errors, we stabilize

our system using the thrust moment in Eqn. (3). The 3-DOF
quadrotor attitude stand is over actuated, allowing specification
of any desired configuration of three angles. In fact, in order to
avoid redundant controls, three inputs are defined corresponding
to the three degrees of freedom in the system:

ν1 = T3−T4

ν2 = T2−T1

ν3 = (T3 +T4)− (T1 +T2).

(7)

Taking T0 to be the nominal thrust in hover yields

T1 = T0−
ν2

2
− ν3

4

T2 = T0 +
ν2

2
− ν3

4

T3 = T0 +
ν1

2
+

ν3

4

T4 = T0−
ν1

2
+

ν3

4
,

(8)

which implies

Mthrust =

[
`

2
ν1,

`

2
ν2,cmν3

]T

. (9)

Let λind be the induced inflow ratio, and λclimb be the inflow
due to the motion of the vehicle, given by

λclimb = 1/(ω jr) [−q`/2,q`/2, p`/2,−p`/2]T . (10)

Following [19, pp 157], thrust Tj, j = 1, ...,4 is the following
function of rotor angular velocity ω j:

Tj(ω j) = kT (1)ω
2
j − kT (2)(−BVO ·b3/(ω jr)+λclimb j +λind)ω j,

(11)
where the thrust constants kT are found empirically.

Applying the total moment on the system to the error dy-
namics yields

ėR =
1
2
(
tr
(
RT Rd

)
I−RT Rd

)
(12)
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and

ėΩ =J−1 (−Ω× JΩ+Mthrust +Maero)

+ Ω̂RT RdΩd−RT RdΩ̇d .
(13)

Define H = diag{`/2, `/2,cm} and ννν = [ν1,ν2,ν3]
T , then choose

ννν = H−1J
[
− kReR− kΩeΩ− J−1 (−Ω× JΩ+Maero)

− Ω̂RT RdΩd +RT RdΩ̇d
] (14)

such that

Mthrust =− JkReR− JkΩeΩ +Ω× JΩ−Maero

+ J
(
−Ω̂RT RdΩd +RT RdΩ̇d

)
.

(15)

When Eqn. (15) is inserted in Eqn. (13), the angular-velocity er-
ror dynamics become

ėΩ =− kReR− kΩeΩ. (16)

Proposition 1: [7] (Exponential Stability of Attitude Dy-
namics) Consider the control moment Mthrust defined in Eqn. (15)
for any positive constants kR, kΩ. Suppose that the initial condi-
tion satisfies

Ψ(R(0),Rd(0))< 2

||eΩ(0)||2 <
2

λmin(J)
kR(2−Ψ(R(0),Rd(0))),

(17)

where λmin(J) is the minimum eigenvalue of the inertia matrix J.
Then, the zero equilibrium of the attitude tracking error eR, eΩ is
exponentially stable. Furthermore, there exist constants α2, β2 >
0 such that

Ψ(R(t),Rd(t))≤ min{2,α2e−β2t}. (18)

The conditions in Prop. 1 are satisfied almost globally, as
long as R(0) and Rd(0) differ by less than π . Additionally, from
Eqn. (17), the initial bound on the attitude rate error can be in-
creased by increasing kR. Considering the inherent limitations
of the motors and propellers, the thrust of each propeller is sat-
urated above by some maximum thrust Tmax and below by zero,
i.e., 0≤ Tj ≤ Tmax, j = 1, ...,4.

Lemma 1: Let T ′ = min(Tmax−T0,T0) > 0. We have Tj ≤
Tmax, for all j = 1, ...,4, provided that

|2ν2|+ |ν3| ≤ 4T ′

|2ν1|+ |ν3| ≤ 4T ′.
(19)

Proof. Begin with the first inequality in Eqn. (19), which in-
volves T1 and T2 from Eqn. (8). The second inequality follows
similarly using T3 and T4. From (19) it can be shown that

−4T ′ ≤−2ν2−ν3 ≤ 4T ′

−4T ′ ≤2ν2−ν3 ≤ 4T ′.
(20)

Thus,

−T0 ≤−
ν2

2
− ν3

4
≤ Tmax−T0

−T0 ≤
ν2

2
− ν3

4
≤ Tmax−T0. (21)

Rearranging Eqn. (21) yields

0≤ T0−
ν2

2
− ν3

4
≤ Tmax

0≤ T0 +
ν2

2
− ν3

4
≤ Tmax,

(22)

and substituting terms from Eqn. (8) yields

0≤ T1 ≤ Tmax

0≤ T2 ≤ Tmax.
(23)

2

Pappas et al. [11] show that, given a feedback-linearizable
system with bounded input ẋ = f (x)+ g(x)u, |u| ≤ M, stabiliz-
ing control can be achieved if the portion of the input dedi-
cated to feedback linearization is less than the upper bound, i.e.,
|g−1(x) f (x)|< M.

In order to apply the results from [11] to our system,
define δδδ = [δ1,δ2,δ3]

T , H−1J[−J−1(−Ω × JΩ + Maero) −
Ω̂RT RdΩd + RT RdΩ̇d ] and uuu = [u1,u2,u3]

T , H−1J[−kReR −
kΩeΩ], such that ννν = δδδ + uuu. We use δδδ to represent the cost of
feedback linearization of the error dynamics, and uuu to represent
the stabilizing control. The following proposition represents the
control authority available for stabilization by ε > 0.

Proposition 2: If the cost of feedback linearization δδδ satis-
fies

|2δ2|+ |δ3| ≤ 4T ′− ε

|2δ1|+ |δ3| ≤ 4T ′− ε,
(24)

then V(R,Rd ,Ω,Ωd) = 1/2eΩ · JeΩ + kRΨ(R,Rd) + c2eR · eΩ,
where c2 is a positive constant, is a Lyapunov function that
ensures the error dynamics of the input-constrained system
Eqns. (12) and (16) are exponentially stable.
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Proof. Insert ννν = δδδ +uuu into Eqn. (19) to obtain

|2δ2 +2u2|+ |δ3 +u3| ≤ 4T ′

|2δ1 +2u1|+ |δ3 +u3| ≤ 4T ′,
(25)

which is satisfied if

|2δ2|+ |δ3|+ |2u2|+ |u3| ≤ 4T ′

|2δ1|+ |δ3|+ |2u1|+ |u3| ≤ 4T ′.
(26)

Rewriting Eqn. (24), we find

|2δ2|+ |δ3|+ ε ≤ 4T ′

|2δ1|+ |δ3|+ ε ≤ 4T ′.
(27)

Comparing Eqn. (27) to Eqn. (26), if we choose kR and kΩ such
that

|2u2|+ |u3| ≤ ε

|2u1|+ |u3| ≤ ε,
(28)

then the inputs will satisfy Eqn. (19) and, by Lemma 1, the thrusts
will not saturate. If Eqn. (17) is also satisfied, then with positive
gains kR and kΩ chosen to satisfy Eqn. (28), Prop. 1 is satisfied.
The zero equilibrium of the tracking error is exponentially stable
[7] with V̇ ≤ −zTWz, z = [||eR||, ||eΩ||] and

W =

[
c2kR

λmax(J)
− c2kΩ

λmin(J)

− c2kΩ

λmin(J)
kΩ− c2

]
. (29)

. 2

PERFORMANCE EVALUATION
We now investigate conditions under which Eqn. (24) is sat-

isfied. Consider a station-keeping scenario, such that Ωd ≡ 0,
which leads to δδδ , H−1(Ω× JΩ−Maero). When represented in
matrix components,

δδδ =

 2
` [(J2− J3)qr−4kβ βmaxSφDu2 ·b1]
2
` [(J3− J1)pr−4kβ βmaxSφDu2 ·b2]

1
cm
(J1− J2)pq

 . (30)

From the symmetry of the quadrotor, note J1 = J2 and J3 = 2J1,
such that

δδδ =

 2
` [2J1qr−4kβ βmaxSφDu2 ·b1]
2
` [2J1 pr−4kβ βmaxSφDu2 ·b2]

0

 . (31)
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FIGURE 2. MAXIMUM FLAP ANGLE DEPENDENCY ON WIND

When applied to Eqn. (24), we have∣∣∣∣1` [2J1 pr−4kβ βmaxSφD u2 ·b2]

∣∣∣∣≤ ∣∣∣∣2J1

`
pr
∣∣∣∣+ ∣∣∣∣4` kβ βmax

∣∣∣∣≤ T ′− ε

4∣∣∣∣1` [2J1qr−4kβ βmaxSφD u2 ·b1]

∣∣∣∣≤ ∣∣∣∣2J1

`
qr
∣∣∣∣+ ∣∣∣∣4` kβ βmax

∣∣∣∣≤ T ′− ε

4
.

(32)

Thus, when the system experiences zero angular velocity,
we require flapping angle βmax <`T ′/(4kβ )≈ 1.1◦ using the sys-
tem parameters listed in Tab. 1. The equations to find βmax are
implicit and require iteration, so we present Fig. 2 to show the re-
lationship between flap angle βmax and the in-plane wind speed.
Our system is expected to reach the bound on βmax in a 35 m/s
gust. From the condition on angular velocity in Eqn. (32), when
the system experiences zero wind, we require pr <`T ′/(2J1) and
pr < `T ′/(2J1), which correspond to pr < 50 rad/s2 and qr < 50
rad/s2 for our parameters. Attitude bounds are satisfied when p,
q, and r are each less than 7 rad/s, or alternatively, when p and q
are less than 50 rad/s and r, which is not critical for station hold-
ing, is less than 1 rad/s. In practice, we can reasonably expect
conditions on both wind and angular rates to be met. However,
we do anticipate aerodynamic model breakdown in the case of
extremely high winds as much of the retreating blade will be in
reverse flow.

In order to show the effectiveness of the controller, we
test it with and without saturation under the same conditions.
(Note that the system model used here for testing is the full
aerodynamic model from [16] rather than the simplified model
used to design the controller.) Using the parameters in Tab. 1,
we insert a repeated edgewise 20 m/s 1-cosine gust, shown in
Fig. 3. The quadrotor’s initial attitude is R(0) = I and rates are
Ω(0) = [0,0,0]T , with Rd = I and Ωd = [0,0,0]T . The response
is shown in Fig. 4, with the corresponding control effort in Fig. 5.
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TABLE 1. Model parameters

Parameter Name Value Units

Clα airfoil lift slope 2π [ ]

λ0 avg. inflow ratio 0.075 [ ]

` beam length 0.21 m

m` beam mass 0.03 kg

ζ blade damping coef. 0.026 [ ]

Iβ blade inertia 1.8×10−6 kgm2

νβ blade scaled nat. freq. 1.5 [ ]

θtw blade twist -6.6 deg

c chord length 0.015 m

ρ density of air 1.225 kg/m3

e effective hinge offset 0.1 [ ]

kβ hinge spring const. 3 Nm/rad

γ Lock number 1.04 [ ]

mM motor mass 0.018 kg

cm motor torque coefficient 0.0085 [ ]

Nb number of blades 2 [ ]

T0 propeller nom. thrust 1.3 N

Ωp propeller nom. ang. vel. 12,000 rpm

θ0 root angle of attack 16 deg

mr rotor mass 0.0027 kg

r rotor radius 0.0635 m

ωβ0 spring nat. freq. 1290 rad/s

We also show the quadrotor response to nonzero attitude rates in
Fig. 6 with no wind, R(0) = I, with Rd = I and Ωd = [0,0,0]T ,
using initial rates of Ω(0) = [5,5,5]T , with the corresponding
control effort in Fig. 7. Attitude response figures use a loga-
rithmic vertical axis to more effectively show differences in the
configuration error function.

Attitude and control plots show the system with and with-
out saturation, and with and without flow sensing. Flow sensing
will be performed experimentally using custom multi-hole pres-
sure probes that provide data through differential pressure mea-
surements [17]. Figure 4 shows lower error in the system with
flow sensing, and no difference between saturated and unsatu-
rated thrusts. The controller is able to effectively reject the gust
without saturating the thrusts, so the saturated and unsaturated
systems show identical results. Figure 4 shows that the system
in the presence of repeated gusts exhibits predictable deviations
and returns to the equilibrium value with no destabilizing effect
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FIGURE 3. 20 M/S 1-COSINE WIND GUST PROFILE
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FIGURE 4. 20 M/S WIND GUST RESPONSE, Ω(0) = [0,0,0]T
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FIGURE 5. 20 M/S WIND CONTROL EFFORT, Ω(0) = [0,0,0]T
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FIGURE 6. RESPONSE TO Ω(0) = [5,5,5]T , NO WIND
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FIGURE 7. CONTROL EFFORT FOR Ω(0) = [5,5,5]T , NO WIND

due to repetition. The value of the configuration error function is
very low with and without flow sensing, and when converted us-
ing the angle from the Euler axis, corresponds to approximately
0.3 degree error in the case with flow sensing versus 2 degree
error in the case without flow sensing. While both attitude errors
are small, we anticipate greater gains when applying the control
scheme to a free-flight vehicle, where small deviations in atti-
tude lead to increasing deviations in position. Figure 5 shows
very similar control efforts between different conditions, chang-
ing only based on flow sensing. Without flow sensing the actua-
tors respond marginally later and with slightly higher magnitude;
a small change in actuation that causes nearly an order of mag-
nitude difference in peak angular error. While the steady state
error can be mitigated with an integrator in the controller, both
systems will experience a similar initial error, thus the controller

with flow sensing will continue to show improved performance.
In Fig. 6, nonzero initial rates cause initial deviation, then

gradual return to equilibrium. In the cases without thrust satu-
ration, the result is identical due to the absence of external flow
over the vehicle, and the system quickly settles to a very low er-
ror. The rapid settling is due to an initial actuator response over
five times greater than what is physically realizable, shown in
Fig. 7. In the case with saturation, although the cost to feedback
linearize the system does not saturate the inputs, the controller
is unable to achieve the same control authority as the unsatu-
rated cases. Input saturation effectively reduces the gains and
results in larger initial deviations and a longer settling time, but
nonetheless returns the system to equilibrium, showing that we
can expect successful stabilization for the physical system under
actuator limitations.

CONCLUSION
This paper develops the dynamics for a quadrotor vehicle on

the group SO(3) and includes the moment on the propellers due
to aerodynamics from wind gusts. We prove exponential stabil-
ity of the equilibrium point defined by desired attitude and rate
in the presence of thrust saturation. Simulation studies are car-
ried out to show the system performance, comparing cases with
and without flow sensing. An experimental testbed has been de-
veloped in order to verify our controller on a physical system.
In ongoing work, tests will compare performance with and with-
out flow sensing, and will corroborate the bounds placed on our
controller due to thrust saturation. As this work continues, we
plan to implement our controller on a full 6-DOF system. We
anticipate that station-holding and other tasks will show stability
improvements through the use of flow feedback.
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