DYNAMICS OF A ROTOR-PENDULUM WITH A SMALL, STIFF PROPELLER IN WIND

William Craig, Derrick Yeo, and Derek A. Paley
Department of Aerospace Engineering and
the Institute for Systems Research
University of Maryland
College Park, Maryland 20742
Email: wscraig@umd.edu, dyeo@umd.edu, dpaley@umd.edu

ABSTRACT
As small rotorcraft grow in capability, the possibilities for their application increase dramatically. Many of these new applications require stable outdoor flight, necessitating a closer look at the aerodynamic response of the aircraft in windy environments. This paper develops the equations of motion for a single-propeller test stand by analyzing the blade-flapping response of a small-stiff propeller in wind. The system dynamics are simulated to show behavior under various wind conditions, and stable system equilibria are identified. Experiments with a rotor-pendulum validate the simulations, including system equilibria and gust response.

INTRODUCTION
Small unmanned aerial systems (UAS) are transforming from hobbyist entertainment into utilitarian machines. UAS have been tasked with objectives such as surveying farmland and aiding in natural disasters [1] that require multi-rotor aircraft to fly outdoors in potentially adverse weather. High winds pose a great challenge to small UAS [2–4], and developing an understanding of how they respond to wind and the mechanics behind that response is key to compensating for them. This paper uses a combination of theoretical and experimental work to describe the forces and moments experienced by a single quadrotor-type propeller in a uniform wind. Experimental results are collected with a test stand in wind using a Gemfan 5030 propeller commonly used on quadrotor helicopters. These results promise to improve guidance and control algorithms for small, multi-rotor helicopters.

Although an important part of full-sized helicopter dynamics, blade-flapping is often assumed to be negligible in small quadrotor vehicles [5, 6]. For indoor flight with relatively small advance ratios, this assumption has proved valid even for highly aerobatic flight [7, 8]. However, for outdoor flight in wind, the effect of blade flapping and other aerodynamic phenomena must be re-evaluated [4]. When a helicopter rotor moves forward in air, the advancing side of the rotor produces more lift than the retreating side, which causes a roll moment on the blades [9]. Many studies [10–13] indicate that this moment causes the rotor blades to react with a maximum deflection at 90° phase delay, i.e., above the helicopter’s nose, due either to a gyroscopic effect or the blade frequency response. Others provide the equations for flapping without explicitly indicating the expected phase delay [14, 15]. This paper provides a more comprehensive look at the blade-flap dynamics of a small, stiff propeller commonly used in small UAS.

Hoffmann et al. [12] and Yeo et al. [16] each measured a quadrotor propeller response to wind. Hoffmann et al. [12] tested a single propeller in wind to identify the flap angle, and showed that the hub experiences a force in the direction of the wind. Hoffmann et al. [12] tested a single propeller in wind to identify the flap angle, and showed that the hub experiences a force in the direction of the wind. Yeo et al. [16] tested a single-propeller test stand with two propellers, as well as a fixed, rigid propeller in an edgewise flow, and found that forces and moments scale with free-stream velocity as suggested in [12].

This paper investigates the source of the forces and moments on a single propeller in wind, and describes blade-flapping dy-
Rotor Dynamics based on first-principle analyses. A simplified set of analytically tractable equations predict the phase delay and flap amplitude of a small, stiff propeller, the results of which are compared to experimental data. The experimental testbed consists of a two-degree-of-freedom rotor-pendulum, which is a spherical pendulum affixed with a spinning propeller. The long arm of the spherical pendulum increases the effect of the hub forces, demonstrating the propeller’s response to wind.

The contributions of this paper are (1) a detailed analysis of the blade-flapping response of a small, stiff propeller in uniform wind, yielding the derivation and solution of the equations of motion for blade flapping and the rotor-pendulum system from first-principles; (2) comparison of the first-principles model to existing experimental measurements of forces and moments at the hub of a propeller fixed in a uniform wind; and (3) the design, fabrication, and testing of a rotor-pendulum test stand that demonstrates the effect of wind on a single propeller. This work increases the theoretical and physical understanding of a small, stiff propeller’s response to wind, which has the potential to yield improved flight stability for small multi-rotor helicopters in adverse weather conditions by virtue of an improved feedback response using flow sensing and control [16].

The outline of the paper is as follows. The first section describes the rotor-pendulum system and develops the equations of motion for a static rotor for comparison to pre-existing experimental data. The second section investigates aerodynamic forces acting on the propeller and derives the equations of motion for the full rotor-pendulum system. The third section provides new experimental results for the rotor-pendulum, with a comparison to model predictions. The final section summarizes the paper and ongoing work.

ROTOR DYNAMICS

This paper utilizes a rotor-pendulum to investigate the effect of wind on a small, stiff propeller. The rotor-pendulum is a variation of the gyro-pendulum, which is a spherical pendulum with a rapidly spinning mass on the mobile end that causes the system to precess and nutate. Figure 1 shows the rotor-pendulum system: a gyro-pendulum with the spinning mass replaced by a propeller. Consider inertial frame $I = (O, e_1, e_2, e_3)$ and intermediate frame $A = (O, a_1, a_2, a_3)$, where $a_3 = e_3$ and $a_1 \cdot e_1 = \cos \theta$. Spherical frame $B = (O, b_1, b_2, b_3)$ satisfies $b_2 = a_2$ and $b_1 = a_1 = \cos \phi$. The hub frame is $C = (O', c_1, c_2, c_3)$, where $c_1 = b_3$, $c_2 = b_1$, and $c_3 = b_2 = \cos \psi$. Let N_k represent the number of propeller blades and the superscript (n), where $n = 1, 2, \ldots$, denote the blade index, so that frame $D = (H^{(n)}, d_1^{(n)}, d_2^{(n)}, d_3^{(n)})$ has origin at the blade hinge, and rotates about c_2 by the flap angle β. (The blade index (n) is included only where needed for clarity.) Let r denote the displacement along the length of the blade of a point P with respect to O', and dr be the differential position. The differential forces, moments, and mass are denoted $Fdr = dF$, $Mdr = dM$, and $mdr = dm$, where the quantities F, M, and m are each measured per unit length.

The blade-flap angle is derived under the assumption that O' is fixed in inertial space and the blade rotates around the hub in the c_1 direction at a constant rate Ω such that $\Omega t = \psi$, where ψ is the blade azimuth. (The assumption that O' is fixed is relaxed in the analysis of the rotor-pendulum system.) Let $r_{P/O'}$ denote the position of blade-element P with respect to O'; $\dot{r}_{P/O'} = \frac{d}{dt} (r_{P/O'})$ and $\ddot{r}_{P/O'} = \frac{d^2}{dt^2} (r_{P/O'})$ denote the inertial kinematics. Figure 2 denotes the hinge offset $e = \|r_{H/O'}\|; R = \|r_{Q/O'}\|$ is the length of the portion of the blade beyond the hinge offset and $r - e = \|r_{P/O'}\|$ is the distance from the hinge offset to point P. Let $S = \sin \beta$ and $C = \cos \beta$. Using the cross product with the angular velocity $\dot{\omega}^c = \Omega c_3$, $\dot{\beta}^c = \theta a_3 + \phi b_2 + \Omega c_3$ where $\theta = \phi = 0$ due to the fixed hub) to differentiate the unit vectors c_1 and c_2, the inertial kinetics are

\[
\begin{align*}
\tau_{P/O'} &= (e + (r-e)C)\beta c_1 + (r-e)S \beta c_3 \\
\dot{\beta}_{P/O'} &= -(r-e) \beta S C c_1 \\
\dot{e} &= -(r-e)C \beta S c_2 + (r-e) \beta C c_3 \\
\ddot{e} &= -2(r-e) \beta S \Omega c_2 + [(r-e) \beta C - (r-e) \beta ^2 S] c_3.
\end{align*}
\]

Figure 2 shows the differential forces on the blade element at P: dF is the tension force; dF_2 is the sum of the lift and drag components in the c_1-c_2 plane; dF_3 is the sum of the lift and drag components in the c_1-c_3 plane; and gdm is the weight. The total differential force acting on a blade element is

\[
\begin{align*}
dF^{(n)}_P &= (dF_1C - dF_3S) c_1 + (dF_2) c_2 \\
&\quad + (dF_1S + dF_3C - gdm) c_3.
\end{align*}
\]
EQUATION OF MOTION

Equating the mass times the acceleration (Eqn. (3)) with the force (Eqn. (4)) in the c_1 direction according to Newton’s second law yields the differential tension force dF_1, which is used in the angular-momentum form of Newton’s second law. The angular momentum of the point P with respect to O' is $\tau_{h_{P/O'}} = r_{P/O'} \times (dm \times v_{P/O'})$, i.e.,

$$\tau_{h_{P/O'}} = dm[-(r-e)se_{P}\Omega - \frac{1}{2}(r-e)^2s_{2P}\Omega]c_1$$

$$+ dm[-(r-e)^2\beta - (r-e)se_{P}\beta]c_2$$

$$+ dm[(e + (r-e)C_{P})\beta^2\Omega]c_3. \tag{5}$$

Blade-Flapping Equations Of Motion

The above equations are now used to derive the blade-flapping equations for a rotor with a fixed hub, using the angular-momentum form of Newton’s second law. The c_2 component of the inertial derivative of the angular momentum is

$$\frac{d}{dt} \left(\tau_{h_{P/O'}} \right) \cdot c_2 = dm[-(r-e)^2 - (r-e)se_{P}\beta]$$

$$+ (r-e)se_{P}\beta^2 + (r-e)se_{P} - \frac{1}{2} (r-e)^2s_{2P}\Omega^2 \tag{6}$$

and the corresponding moment $M_{h_{P/O'}} \cdot c_2$ is

$$c_2 \cdot \int_{0}^{R} r_{F_{P/O'}} \times dF_{P} = - \int_{e}^{R} (eC_{P} + (r-e))dF_{3}$$

$$+ \int_{e}^{R} eS_{P}dF_{1} + \int_{e}^{R} (e + (r-e)C_{P})gdm + k_{P}\beta, \tag{7}$$

where the final term is the torsional spring moment.

The following substitutions are made according to convention [17]: I_{P} is the blade moment of inertia, N_{P} is the blade static moment, M'_{P} is the aerodynamic moment on the blade, and $\omega_{P_{0}}$ is the torsional spring natural frequency, i.e.,

$I_{P} = \int_{e}^{R} (r-e)^2 dm, N_{P} = \int_{e}^{R} (r-e) dm, M'_{P} = \int_{e}^{R} (r-e)dF_{3},$ and $\omega_{P_{0}} = \sqrt{k_{P}/I_{P}}$. The flap angle β is expected to remain sufficiently small to permit the small-angle assumption [9, 12]. Set $v_{P} = (1 + N_{P}e/I_{P} + \omega_{P_{0}}^2/\Omega^2)$, and define ρ as the density of air, C_{P} as the lift slope, c as the blade chord, and consider the Lock number $\gamma = \rho C_{P}e R^2/\Omega^2$. We have $M'_{P}/(I_{P} \Omega^2) = \gamma M_{P}$, where $M_{P} = (\gamma C_{P}e R^2 \Omega^2)^{-1} \int_{e}^{R} (r-e)dF_{3}$. Setting Eqn. (6) equal to Eqn. (7) yields the canonical blade-flapping equation (intermediate steps omitted for length), i.e.,

$$** + \rho^2 \beta = \gamma M_{P} - \frac{gN_{P}}{\Omega^2 \Omega^2}, \tag{8}$$

where $\dot{}$ denotes differentiation with respect to ψ, following convention [9].

The following parameters arise in the solution to M_{P}: θ_{f} is the blade pitch at the hinge, θ_{w} is the linear blade twist, and $\lambda_{I} = \lambda_{0}(1 + k_{1}r \cos \psi)$ is the inflow ratio using a linear inflow model [9]. When investigating blade flapping, uniform inflow is often assumed [9, 10, 12, 15]; however, Niemiec and Gandhi [18] showed that using uniform inflow in trim calculations considerably underpredicts pitching moment as compared to linear inflow, so we use a linear inflow model here. The average inflow ratio λ_{0} is calculated implicitly, however a fixed value shows sufficient agreement with the implicit calculation over a range of conditions. The parameter $k_{1} = (15 \pi/23) \tan(\psi/2)$ is taken from the model by Pitt and Peters [9], where $\chi = \tan^{-1}(\mu/\lambda_{0})$ [19], and μ is the advance ratio of the propeller, which is the ratio of wind speed over the hub to the tip speed of the blades. After solving for M_{P} in order to identify the steady-state blade-flapping response (omitted due to length constraint) and defining $e' \triangleq e/R$, Eqn. (8) becomes

$$** \beta + \rho^2 \beta = \gamma M_{P} - \frac{gN_{P}}{\Omega^2 \Omega^2}, \tag{8}$$

where the forcing terms on the right side and the $\dot{\beta}$ term result from the solution to M_{P}, and the second- and higher-order e' terms are not shown due to space limitations.

Although we are primarily interested in the propeller’s behavior in wind, setting the advance ratio μ to zero (as in hover)
allows us to represent the propeller as a damped second-order system in order to gain intuition about the system. Here the forcing function arises from a (virtual) periodic increase in angle of attack analogous to a full-size helicopter’s cyclic pitch input, e.g., the angle of attack is higher on the advancing side, lower on the retreating side, and unchanged over the nose and tail. As we are unable to physically change the angle of attack of each blade on the small propeller, the solution serves only as a theoretical tool for comparison against full-size helicopters. Redefining Eqn. (9) using the normalized derivative with respect to time, i.e., \(\dot{\beta} \equiv \beta/\Omega \) and setting \(\mu = 0 \) yields the aforementioned classical, damped second-order system with natural frequency \(\omega_n \), damping ratio \(\zeta \), and forcing function \(A\Omega^2 \sin(\Omega t) \), where \(A \) is a constant, i.e.,

\[
\ddot{\beta} + 2\zeta\omega_n\dot{\beta} + \omega_n^2 \beta = A\Omega^2 \sin(\Omega t). \tag{10}
\]

Comparing Eqn. (10) to Eqn. (9), the damping ratio is \(\zeta = \gamma/(16\nu_\beta) \left[1 - 8\epsilon'/3 + 2\epsilon'^2 - \epsilon'^3/3 \right] \) and the natural frequency is \(\omega_n = \Omega v_\beta \). Solving Eqn. (10) yields the particular solution

\[
\beta_p = \beta_{\max} \sin(\Omega - \phi_D), \tag{11}
\]

where

\[
\beta_{\max} = \frac{A}{\sqrt{\left(\frac{\omega_n}{\Omega} \right)^2 - 1} \left[2\zeta \frac{\omega_n}{\Omega} \right]^2 + 1},
\]

\[
\phi_D = \tan^{-1}\left(\frac{2\zeta \frac{\omega_n}{\Omega}}{\left(\frac{\omega_n}{\Omega} \right)^2 - 1} \right). \tag{12}
\]

Here, \(\beta_{\max} \) indicates the maximum flapping amplitude variation of the propeller, and \(\phi_D \) represents the angular delay between the maximum aerodynamic force and the maximum flapping amplitude.

Figure 3 shows phase-delay solutions to Eqn. (10) for varying natural frequency and damping ratio. For a typical full-size helicopter with \(v_\beta = 1.04 \) and \(\zeta = 0.42 \), the phase delay is 85° [17]. Analysis of a small, stiff propeller is performed using a Gemfan 5x3 propeller rotating at 8000 rpm. The propeller is 2.7 grams and 12.7 centimeters in diameter, with a 1.5 centimeter chord. Assuming \(\epsilon' = 0.1 \) and \(k_\beta = 3 \) Nm/rad based on model and experimental fit below, the values of the characteristic blade-parameters are as follows: scaled natural frequency \(\nu_\beta = 1.9 \), damping ratio \(\zeta = 0.026 \), and Lock number \(\gamma = 1.04 \). Due to the atypical values of these parameters compared to full-scale helicopters, the hover flap response is also atypical; the phase delay is \(\phi_D = 2.2^\circ \) as shown by Fig. 3, with amplitude \(\beta_{\max} = 0.053^\circ \).

When solving Eqn. (9) assuming wind over the hub such that \(\mu \neq 0 \), periodic terms do not allow for a true analytical solution. However, if we take the Fourier series solution and assume first harmonics only, i.e., \(\beta(\psi) = \beta_0 + \beta_1 \cos \psi + \beta_{1s} \sin \psi \), we can harmonically match constant and periodic (sine and cosine) terms on each side of the equation to achieve an approximate solution [9], which (again omitting higher orders of \(\epsilon' \)) yields

\[
\beta_0 = \frac{\gamma}{8v_\beta^3} \left\{ -\epsilon' \mu \beta_1 + \theta_1 \left[1 - \frac{4\epsilon'}{3} + \left(1 - 2\epsilon' \right) \mu^2 \right] \right. \\
+ \left. \theta_w \left[\frac{4}{5} - \epsilon' + \left(\frac{2}{3} - \epsilon' \right) \mu^2 \right] - \lambda_0 \left[\frac{4}{3} - 2\epsilon' \right] \right\}, \tag{13}
\]

\[
\beta_{1c} = \frac{\gamma}{8v_\beta^3} \left\{ -\left[\frac{4}{3} - 2\epsilon' \right] \mu \beta_0 \\
- \left[1 - \frac{8\epsilon'}{3} + \left(\frac{1}{2} - \epsilon' \right) \mu^2 \right] \beta_{1s} - \lambda_0 k\xi \left[\frac{4}{3} - 2\epsilon' \right] \right\}, \tag{14}
\]

\[
\beta_{1s} = \frac{\gamma}{8v_\beta^3} \left\{ \left[1 - \frac{8\epsilon'}{3} - \left(\frac{1}{2} - \epsilon' \right) \mu^2 \right] \beta_{1c} \\
+ \theta_1 \left[\frac{8}{3} - 4\epsilon' \right] \mu + \theta_w \left(2 - \frac{8\epsilon'}{3} \right) - \lambda_0 \left[2 - 4\epsilon' \right] \mu \right\}. \tag{15}
\]

Equations (13–15) yield very different characteristics compared to Eqn. (12), primarily due to the presence of the linear inflow term \(\lambda_0 k\xi \) in Eqn. (14), which changes the azimuth an-
Rotor-Gyropendulum

The hub forces in the plane perpendicular to \(\mathbf{b}_3 \), i.e., \(\mathbf{F}_{\perp}^O \triangleq \mathbf{F}_O - \left(\mathbf{F}_O \cdot \mathbf{b}_3 \right) \mathbf{b}_3 \), are a combination of the tilt of the thrust vector and the drag forces on the blades. Consider the case of two blades. Starting from Eqn. (4), and averaging the force over an impulse of the maximum aerodynamic force. Specifically, the linear inflow model yields a 97\% change in phase delay compared to Eqn. (12), versus assuming uniform inflow in Eqns. (13–15), which yields just a one percent change in phase delay compared to Eqn. (12). In order to identify \(\beta_{\text{max}} \) and \(\phi_D \) with \(\mu \neq 0 \), we apply the sinusoidal relationship \(A \cos(\omega t + \phi) = I \cos \omega t - Q \sin \omega t \) [20], which shows

\[
\beta(\psi) = \beta_0 + \sqrt{\beta_{1c}^2 + \beta_{1s}^2} \sin \left[\psi - \left(\tan^{-1} \left(\frac{\beta_{1s}}{\beta_{1c}} \right) - \frac{\pi}{2} \right) \right].
\]

Comparing Eqn. (16) to Eqn. (11) indicates the maximum flap amplitude variation \(\beta_{\text{max}} = \sqrt{\beta_{1c}^2 + \beta_{1s}^2} \) and phase delay \(\phi_D = \tan^{-1} \left(\frac{\beta_{1s}}{\beta_{1c}} \right) - \pi / 2 \). Assuming the same values as above for \(\epsilon' \), \(k_3 \), and propeller speed, the phase delay and maximum flap of the propeller in 3 m/s wind are \(\phi_D = 81^\circ \) and \(\beta_{\text{max}} = 0.10^\circ \). Using force and moment calculations from the next section, the blade-flapping model is used to compare forces and moments on a fixed hub to those taken in a prior experiment using an ATI Nano 17 six-axis Force-Torque transducer, with flow speed measurements provided by a Thomas Scientific Traceable hotwire anemometer. In order to best fit the model to the experiment, values for \(\epsilon' \) and \(k_3 \) are chosen as \(\epsilon' = 0.1 \) and \(k_3 = 3 \) Nm/rad, yielding the results in Figs. 4 and 5, which show agreement between model and experiment in the magnitude and direction of forces at a propeller speed of 8000 rpm over a range of wind speeds.

Rotor-Pendulum Dynamics

Figure 6 introduces two additional reference frames in order to describe the aerodynamic forces, which depend on the magnitude and direction of the wind as well as the phase delay of the propeller. Let \(\mathbf{V}_\infty \) represent the velocity of the wind in the inertial frame, and \(\mathbf{B} \mathbf{V}_\infty \) represent the velocity of the wind experienced by an observer at point \(O' \) in the spherical frame due to the combination of the wind and the motion of point \(O' \). Define the wind frame \(\mathcal{U} \triangleq (O', \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) \), where \(\mathbf{u}_3 = \mathbf{b}_3 \), and \(\mathbf{u}_1 \) is the direction of the component of \(\mathbf{B} \mathbf{V}_\infty \) in the plane perpendicular to \(\mathbf{b}_3 \). Also consider the phase-delay frame \(\mathcal{V} \triangleq (O', \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \), where \(\mathbf{v}_3 = \mathbf{u}_3 \) and \(\mathbf{v}_1 \cdot \mathbf{u}_1 = \cos \phi_D \). From this definition, \(\mathbf{v}_2 \) will correspond to the direction of maximum flapping.

The hub forces in the plane perpendicular to \(\mathbf{b}_3 \), i.e., \(\mathbf{F}_\perp^O \).
entire revolution, the planar hub force is

\[\mathbf{F}_\Omega = \frac{N_b}{2\pi} \int_0^{2\pi} \left[\int_0^R \left(-dF_2 \mathbf{c}_2 \cdot \mathbf{u}_1 \right) - \int_0^R S_\beta dF_3 \mathbf{c}_1 \right] d\psi, \]

(17)

where \(\mathbf{c}_2 \cdot \mathbf{u}_1 = -S_\psi \). The differential blade force tension forces \(dF_1^{(1)} \) and \(dF_2^{(2)} \) cancel out because \(dF_1^{(1)} = -dF_1^{(2)} \), leaving only the \(dF_2 \) and \(dF_3 \) components. The \(dF_3 \) component is calculated from GemFan 5030 propeller experimental thrust data at a range of speeds; the \(dF_2 \) component arises from induced drag.

The \(dF_3 \) term in Eqn. (17) is converted from the \(\mathcal{C} \) frame to the \(\mathcal{V} \) frame, which does not rotate with \(\psi \). According to Eqn. (16), \(\beta \) responds as a once-per-revolution sinusoid \(\beta(\psi) = \beta_0 + \beta_{\max} S_{(\psi - \phi_d)} \). Making the small-angle assumption based on the calculated magnitude of \(\beta_{\max} \), Eqn. (17) becomes

\[\mathbf{F}_\Omega = \frac{N_b}{2\pi} \int_0^{2\pi} \left[\int_0^R \left(-dF_2 \mathbf{c}_2 \cdot \mathbf{u}_1 \right) - \left(\beta_0 + \beta_{\max} S_{(\psi - \phi_d)} \right) \right] \times \int_0^R \left(C_{(\psi - \phi_d)} \mathbf{v}_1 + S_{(\psi - \phi_d)} \mathbf{v}_2 \right) dF_3 \]

\[\times d\psi. \]

(18)

The force along \(\mathbf{v}_1 \) resulting from \(dF_3 \) in Eqn. (18) as well as all forces due to \(\beta_0 \) integrate to zero over one full rotation due to the sinusoidal term, leaving only the \(\mathbf{v}_2 \) component.

Quadractors experience high induced drag, which results from the lift force and induced angle of attack. Let \(\alpha_{\text{end}} = \arctan(A/0.75) \) denote the induced angle of attack (using for simplicity the average angle, rather than integrating across the blade), which results from the velocity of the wind relative to the rotating blade; \(\alpha_{\text{eff}} = \alpha_{\text{geo}} - \alpha_{\text{end}} \) be the effective angle of attack; and \(\alpha_{\text{geo}} \) be the geometric angle of attack resulting from the blade pitch relative to the \(\mathbf{d}_0 \) axis. Induced drag is the only non-negligible component of differential force \(dF_2 \), thus

\[dF_2 = \frac{1}{2} \rho \left(\Omega r - (\mathbf{c}_2 \cdot \mathbf{u}_1) (\mathbf{V}_\infty \cdot \mathbf{u}_1) \right)^2 c C_{\alpha} \alpha_{\text{eff}} S_{\alpha_{\text{end}}} dr. \]

(19)

There also exist bluff body drag forces acting in the direction of the wind on the swept area of the rotor and the pendulum rod. The bluff force on each component is

\[\mathbf{F}_{\text{ bluff,ff}} = \frac{1}{2} \rho \left| \mathbf{V}_\infty \right|^2 \left(\mathbf{B} \mathbf{V}_\infty \cdot \mathbf{b}_3 \pi R^2 \right) C_D \mathbf{B} \mathbf{V}_\infty, \]

\[\mathbf{F}_{\text{ bluff,ff}} = \frac{1}{2} \rho \left| \mathbf{V}_\infty \right|^2 \left(\mathbf{B} \mathbf{V}_\infty \cdot \mathbf{u}_1 \right) c D \mathbf{B} \mathbf{V}_\infty, \]

(20)

where \(\mathbf{B} \mathbf{V}_\infty = \mathbf{B} \mathbf{V}_\infty / ||\mathbf{V}_\infty|| \), rod width \(w = 1 \) cm and the drag coefficient \(C_D = 1.28 \) [21] is taken by approximating each component as a three-dimensional flat plate.

The moment on the hub in the plane perpendicular to \(\mathbf{b}_3 \), i.e., \(\mathbf{M}_\Omega = \mathbf{M}_\Omega - (\mathbf{M}_\Omega \cdot \mathbf{b}_3) \mathbf{b}_3 \), is derived from the spring, hinge, and the pitching moment of the airfoil. The lift and weight forces do not transmit a moment to the hub due to the nature of the hinge, leading to their absence in the following moment equation as compared to Eqn. (7) above.

The moment in the plane perpendicular to \(\mathbf{b}_3 \) is

\[\mathbf{M}_\Omega = \frac{N_b}{2\pi} \int_0^{2\pi} \left[\left(k_\beta + 1 \right) \int_0^R dF_1 \right] \mathbf{c}_2 d\psi \]

\[+ \frac{N_b}{2\pi} \int_0^{2\pi} \int_0^R (dM_1 \mathbf{c}_1 \cdot \mathbf{u}_2) \mathbf{u}_2 d\psi, \]

(21)

where \(\mathbf{c}_1 \cdot \mathbf{u}_2 = S_\psi \).

The first half of Eqn. (21) is converted from the rotating \(\mathcal{C} \) frame to the \(\mathcal{V} \) frame as in Eqn. (17), which yields

\[\mathbf{M}_\Omega = \frac{N_b}{2\pi} \int_0^{2\pi} \left[\left(\beta_0 + \beta_{\max} S_{(\psi - \phi_d)} \right) \left(S_{(\psi - \phi_d)} \mathbf{v}_1 - C_{(\psi - \phi_d)} \mathbf{v}_2 \right) \right] d\psi \]

\[+ \frac{N_b}{2\pi} \int_0^{2\pi} \int_0^R (dM_1 \mathbf{c}_1 \cdot \mathbf{u}_2) \mathbf{u}_2 d\psi, \]

(22)

The moment along \(\mathbf{v}_2 \) from the first half of Eqn. (22) and the moment due to \(\beta_0 \) integrate to zero over one full rotation due to the sinusoidal term, leaving only the \(\mathbf{v}_1 \) component.

The centrifugal or tension differential force \(dF_1 = r\Omega^2 dm \) is found by equating the \(\mathbf{c}_1 \) component in Eqns. (3) and (4), applying small-angle simplifications to trigonometric terms involving \(\beta \), and assuming that \(\beta \) and \(\hat{\beta} \) are negligible in comparison to \(\Omega \).

The differential moment \(dM_1 \) on the hub due to the airfoil pitching is calculated by approximating the shape of the Gemfan 5030 airfoil as a 4-digit NACA airfoil, and using the calculation for this shape to determine the coefficient of blade pitching moment according to [22, pp. 275-278], [23, pp. 113-114]. The blade pitching differential moment is

\[dM_1 = \frac{1}{2} \rho \left(\Omega r - (\mathbf{c}_2 \cdot \mathbf{u}_1) (\mathbf{V}_\infty \cdot \mathbf{u}_1) \right)^2 c^2 c_{m,c/2} dr, \]

(23)

where \(c_{m,c/2} \) is the blade pitch moment coefficient per unit span at the half chord.

The forces and moments derived above are applied to the
The position of the point O' with respect to O is $r_{O'}/O = \ell \mathbf{b}_3$ and the corresponding inertial velocity is $\mathbf{v}_{O'/O} = \ell \dot{\mathbf{b}}_1 + \ell \dot{\theta} \mathbf{S}_b \mathbf{b}_2$. The angular velocity of frame B with respect to I is $\Omega_{O'B} = \dot{\theta} \mathbf{a}_3 + \dot{\phi} \mathbf{b}_2 = -\dot{\theta} \mathbf{S}_b \mathbf{b}_1 + \dot{\phi} \mathbf{b}_2 + \dot{\phi} C_\phi \mathbf{b}_3$, and the angular velocity of the rotor is $\Omega = \dot{\theta} \otimes \mathbf{S}_B$. Let ℓ be the length of the rod, m_M and m_R be the mass of the motor and rotor, respectively, and I_I and I_R the moment of inertia matrices for the rod and rotor, respectively. The total angular momentum of the system with respect to origin O is

$$\mathbf{J}_O = I_I \Omega + I_R \omega + (m_M + m_R) \mathbf{v}_{O'/O}$$

and the moment about O is

$$\mathbf{M}_O = \mathbf{M}_{O'} + \frac{\ell}{2} \mathbf{b}_3 \times \left(-m_3 \mathbf{e}_3 + \mathbf{F}_{\text{bluff}} \right) + \ell \mathbf{b}_3 \times \left((m_M + m_R) \mathbf{e}_3 + \mathbf{F}_{O'} + \mathbf{F}_{\text{bluff}} \right).$$

Assuming that the angular velocity of the rotor Ω is sufficiently large such that the angular velocity \mathbf{J}_O may be ignored in the calculation of \mathbf{J}_O, and defining $\mathbf{M}_{O'} = m_M + m_R$, the equations of motion of the system resulting from Euler’s second law are

$$\dot{\theta} = \frac{1}{(m_M + m_R) \ell^2} \left[-\mathbf{M}_{O'} \cdot \mathbf{b}_1 + \frac{m_R}{3} \ell^2 \dot{\phi} (\dot{\theta} C_\phi + \Omega) \right.
- \left. 2 \left(m_M + \frac{m_R}{3} \right) \ell^2 \dot{\phi} (\dot{\theta} C_\phi) \right] - \zeta_{RP} \dot{\theta},$$

$$\dot{\phi} = \frac{1}{(m_M + m_R) \ell^2} \left[\mathbf{M}_{O'} \cdot \mathbf{b}_2 + \left(m_M + \frac{m_R}{3} \right) \ell^2 \dot{\phi} (\dot{\theta} C_\phi) \right.
+ \left. \left(m_M + \frac{m_R}{2} \right) g \ell \mathbf{S}_B \mathbf{e}_3 - \frac{mg e_3}{3} R^2 \dot{\theta} (\dot{\theta} C_\phi + \Omega) \right] - \zeta_{RP} \dot{\phi},$$

which includes rotor-pendulum damping term ζ_{RP}, representing the natural damping of the bearings, wires, and other components of the physical system. When aerodynamic forces and rotor-pendulum damping are ignored, Eqs. (26) and (27) reduce to the standard gyro-pendulum equations [24, pp. 469-471].

In order to simulate the forces and moments in MATLAB, the wind vector is used to identify $\mu = ||\mathbf{V}_w||/(\Omega R)$, β, and the U and V frames, which are used with the above calculations to produce \mathbf{M}_O.

Equilibrium analysis is performed by setting $[\dot{\theta}, \dot{\phi}, \phi, \dot{\phi}]^T = 0$ in Eqs. (26) and (27), assuming small angles such that the norm of the wind velocity in the plane of the rotor is constant, and assuming the parameters listed in Tab. 1. In the case with $\mathbf{V}_w = 0$ m/s, $[\theta, \phi, \dot{\phi}] = [0^\circ, 180^\circ]$, whereas $\mathbf{V}_w = -3 \mathbf{e}_1$ m/s yields $[\theta, \phi, \dot{\phi}] = [15^\circ, 186^\circ]$. Using state vector $[\theta, \dot{\theta}, \phi, \dot{\phi}]^T$ and solving numerically for the Jacobian matrix, the linearized equations of motion are

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \\ \phi \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -45.6 & -1.39 & -3.99 & -14.6 \\ 0 & 0 & 0 & 1 \\ -0.0306 & 0.150 & -44.1 & -0.991 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ \phi \\ \dot{\phi} \end{bmatrix},$$

with $\mathbf{V}_w = -3 \mathbf{e}_1$ m/s and $\Omega = 8000$ rpm. The eigenvalues of this system are $(-0.528 + 5.98i, -0.528 - 5.98i, -0.664 + 7.45i, -0.664 - 7.45i)$, showing exponential stability with moderate oscillation, which is consistent with simulation. The matrix values differ when varying wind speed with constant Ω, however, the eigenvalues remain in similar locations. Thus the rotor-pendulum without wind settles to the downward vertical, whereas the rotor-pendulum with wind converges to an off-vertical angle approximately 15° from the wind direction.

The rotor-pendulum is simulated using Eqs. (26) and (27) in the presence of a step wind input. Figure 8 shows the simulated trajectory of the tip of the rotor-pendulum projected on the horizontal plane, from the perspective of looking down at the hanging pendulum. As expected, with no wind at all, the rotor-pendulum hangs downward. As the magnitude of the gust
TABLE 1: MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_R</td>
<td>rotor mass</td>
<td>0.0027</td>
<td>kg</td>
</tr>
<tr>
<td>m_M</td>
<td>motor mass</td>
<td>0.018</td>
<td>kg</td>
</tr>
<tr>
<td>m_L</td>
<td>rod mass</td>
<td>0.043</td>
<td>kg</td>
</tr>
<tr>
<td>R</td>
<td>rotor radius</td>
<td>0.0635</td>
<td>m</td>
</tr>
<tr>
<td>c</td>
<td>chord length</td>
<td>0.015</td>
<td>m</td>
</tr>
<tr>
<td>N_b</td>
<td>number of blades</td>
<td>2</td>
<td>[]</td>
</tr>
<tr>
<td>e</td>
<td>effective hinge offset</td>
<td>0.1</td>
<td>[]</td>
</tr>
<tr>
<td>k_v</td>
<td>hinge spring const.</td>
<td>3</td>
<td>Nm/rad</td>
</tr>
<tr>
<td>$I_β$</td>
<td>blade inertia</td>
<td>1.81×10^{-6}</td>
<td>kgm2</td>
</tr>
<tr>
<td>$ρ$</td>
<td>density of air</td>
<td>1.225</td>
<td>kg/m3</td>
</tr>
<tr>
<td>$C_{lα}$</td>
<td>airfoil lift slope</td>
<td>2π</td>
<td>[]</td>
</tr>
<tr>
<td>$γ$</td>
<td>Lock number</td>
<td>1.04</td>
<td>[]</td>
</tr>
<tr>
<td>$λ_0$</td>
<td>avg. inflow ratio</td>
<td>0.075</td>
<td>[]</td>
</tr>
<tr>
<td>$θ_0$</td>
<td>root angle of attack</td>
<td>16</td>
<td>deg</td>
</tr>
<tr>
<td>$θ_{tw}$</td>
<td>blade twist</td>
<td>-6.6</td>
<td>deg</td>
</tr>
<tr>
<td>$ω_{β0}$</td>
<td>spring nat. freq.</td>
<td>1290</td>
<td>rad/s</td>
</tr>
<tr>
<td>$ν_β$</td>
<td>blade scaled nat. freq.</td>
<td>1.9</td>
<td>[]</td>
</tr>
<tr>
<td>$ζ$</td>
<td>blade damping coef.</td>
<td>0.026</td>
<td>[]</td>
</tr>
<tr>
<td>$ζ_{RP}$</td>
<td>pendulum damp. coef.</td>
<td>1</td>
<td>[]</td>
</tr>
</tbody>
</table>

increases, the vertical offset angle and magnitude of oscillation increase, with the rotor-pendulum settling over time to the equilibrium value in the center of the oscillation. As the wind increases, the angle $θ$ about the e_3 axis reduces slightly due to the bluff body force, more closely aligning the pendulum to the wind direction.

EXPERIMENT

In order to validate the rotor-pendulum model, an experimental stand (Fig. 9) was built and tested in a known wind field produced by a set of blower-style Dyson fans (Fig. 10), with the system response identified using 18 OptiTrack motion-capture cameras. The rotor-pendulum test stand was initiated in the downward position.

Tests were performed with a rotor speed of 8000 rpm and wind velocities of 0 m/s and $-3e_1$ m/s. In order to verify the aerodynamic effects on the rotor, a disk with equal moment of inertia was constructed using a 3D printer and also tested at both wind speeds to investigate possible confounding variables. As expected, when testing without wind, both the rotor and disk exhibit stable equilibria at $φ = 180°$ and arbitrary $θ$. Under a constant $-3e_1$ m/s wind, the stable equilibrium point for the experimental stand with the rotor is $[θ_{eq}, φ_{eq}] = [20°, 190°]$, and with the disk $[θ_{eq}, φ_{eq}] = [6°, 182°]$. This result indicates that even in the case of the disk without lifting surfaces, the bluff body aerodynamic drag of the system causes a change in the equilibrium
A step input for wind from 0 to $-3e_1$ m/s was generated by quickly changing the angle of the blinds between the fans and the test stand in Fig. 10 in order to maintain a smooth wind flow (as opposed to suddenly opening the blinds). Figure 11 shows the result of this test, as well as a comparison to theoretical results under the same conditions. Without the lifting surfaces of a rotor, bluff body drag moves the disk only slightly, and in the direction approximately parallel to the wind direction as expected. The propeller also moves primarily in the direction of the wind, but at a much greater offset angle ϕ, and progresses in a spiral pattern as it reaches its equilibrium point. Theoretical and experimental results show strong agreement, indicating the importance of linear inflow calculations in blade flapping analysis, which dramatically change the flap characteristics compared to hover. Slight inaccuracy between the model and experiment is most likely due to the aerodynamic complexity of the system.

CONCLUSION

This paper presents a dynamic model of a rotor-pendulum based on the aerodynamic response of a small, stiff propeller in wind. The model includes the blade-flapping response of the propeller and the resulting forces and moments. When simplified, the equations-of-motion reduce to those of a gyro-pendulum. State matrices and equilibrium points for the system under particular conditions are numerically identified, showing a stable system with moderate oscillation in the presence of wind. Experimental results show strong agreement with theoretical predictions. Ongoing work includes analysis of the contributions of each of the forces and moments on the system in order to create a tractable model that can be implemented in real time for control. Ongoing work resulting from this paper includes the development of a controllable quadrotor test stand that leverages the blade-flapping response, forces, and moments here to yield feedback controllers capable of stabilizing the quadrotor in response to a gust.

ACKNOWLEDGEMENT

This work was supported by the University of Maryland Vertical Lift Rotorcraft Center of Excellence Army Grant No. W911W61120012. The authors would like to thank Dan Escobar and Elena Shrestha for providing parts and machining, as well as Bharath Govindarajan and Andrew Lind for their blade-flapping and aerodynamics expertise.

REFERENCES

