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ABSTRACT

Flexibility plays an important role in fish behaviors by en-
abling high maneuverability for predator avoidance andrawi
ming in turbulence. In this paper, we present a novel, flexXiish
robot equipped with distributed pressure sensors for flomsse
ing. The body of the robot is made of a soft, hyperelastic mate
rial that provides flexibility. The fish robot features a Jowulski-
foil shape conducive to modeling the fluid analytically. Asj
steady potential-flow model is adopted for real-time flovineast
tion, whereas a discrete-time vortex-shedding flow modedesi
for higher-fidelity simulation. The dynamics for the flegifish
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tery, a micro-controller, navigational sensors, etc., ighe the
back segment serves as the fish tail, usually flapped by a servo
motor to provide thrust [3-5]. Although the multi-segmeet d
sign is able to realize fish-like swimming motion by flappihg t

tail segment, the maneuverability achieved is still faslégan

real fish.

We know that flexibility plays an important role in fish be-
haviors by enabling high maneuverability for predator daoice
and swimming in turbulence. In this work, we describe a novel
flexible fish robot that deforms its body in a continuous waye T
flexibility of the body is achieved by the property of the miatk

robot are presented, and a reduced model for one-dimenkiona of the robot, rather than the rotational links between riggats.

swimming is derived. A recursive Bayesian filter assimilate

In this paper, we choose silicone rubber for the materials@d

pressure measurements for estimating the flow speed, afigle o |ect a Joukowski foil [6] for the shape. This choice of shape i

attack, and foil camber. Simulation and experimental rssate
presented to show the effectiveness of the flow estimatim al
rithm.

INTRODUCTION
Fish have attracted scientific attention for their gracédul
comotion, high maneuverability, and high energy efficieray
spired by nature, engineering researchers have made et e
in designing and developing fish robots [1-5] that mimic fishl
in order to improve the performance of underwater vehicles.
Fish robots are typically designed in two segments. The
front segment holds the electronic components, includibgta

*Address all correspondence to this author.

conducive to modeling the fluid dynamics.

Flow sensing is important for fish to navigate in unknown,
murky, and cluttered environments [7]. However, tradigibsub-
marines do not have this capability. Sonar is unsuitableafor
fish robot due to its large cost, power consumption, and §ike [
Additionally, sonar may not provide accurate measuremants
low speeds. Inertial measurement units (IMUs) accumulate e
rors over time due to dead reckoning [8]. In addition, IMUs do
not provide information pertaining to the flow environment.

The lateral line is a flow-sensing organ that fish use to detect
movement and vibration in the surrounding water [7]. The re-
cent development of artificial lateral-line systems shovespse
for the application of flow sensing to underwater robots (j, 1
In our previous work, we studied rheotaxis (i.e., aligning u
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stream [10]) with a steady, rigid Joukowski-shaped fish tobo
by estimating the flow field using an artificial lateral-lingss
tem made of distributed pressure sensors [9, 10]. In thikwor
we extend the previous research to a flexible Joukowskieshap
fish robot with one-dimensional, free-swimming dynamics.

This paper presents two flow models of a flexible, foil-
shaped fish robot: a quasi-steady potential-flow model and
a higher-fidelity vortex-shedding model. The quasi-steady
potential-flow model is adopted for flow estimation due to its
tractability, whereas the vortex-shedding model is usesirim
ulation to generate the flow field as ground truth for testimgy t
flow estimation algorithm. The deformation of the robot body
is modeled using a time-varying parameter (the camber)ratio
A recursive Bayesian filter assimilates the distributedspuee-
sensor measurements. A testbed consisting of a flow tankygan
system, and air-bearing linear guide is used to demonsirste
dimensional swimming. The experimental results show the ef
fectiveness of the flow-sensing algorithm during flappindioro
of a flexible fish robot.

FLOW MODEL FOR A JOUKOWSKI-SHAPED FLEXI-
BLE FISH ROBOT

This paper adopts the shape of a Joukowski foil for the de-
sign of the fish robot in order to utilize potential-flow thgor
to model the flow field. In fluid dynamics, potential-flow the-
ory [6] describes the velocity field of incompressible, fational
flow as the gradient of a scalar function, the velocity poten-
tial. This section describes the two-dimensional flow pastra-
bered Joukowski foil, first using the quasi-steady potéfithay
method and then using the unsteady vortex-shedding method.

Quasi-steady Potential-flow Model

The fish robot modeled as a Joukowski foil takes the shape
of the output of the Joukowski transformation of a circle.eTh
Joukowski transformation, which is essentially a confdnmap-
ping, is expressed as [6]

a2

ZOZE'F?, (1)

where the set of pointé represents a circle with radil&scen-
tered atéy in the complexé -plane, as shown in Fig. 1. The co-
ordinate of the intersection of the circle and theaxis is the
Joukowski transformation parameggrwhich is approximately
one quarter of the chord length of the fbil The image of the
mapping in the’-plane defines the boundary of the fish robot
(Fig. 2). The origin of the®-plane isQ°. The xP-axis points
along the chord line from the leading edge to the trailingeedg
Define the body-fixed frame (theplane) by translating the
Z-plane from poinOP to the pointO, about which the fish robot

2

FIGURE 1: &-plane and coordinates.

FIGURE 2: lllustration of reference frame& andO. TE is the
trailing edge and LE is the leading edge.

flaps or rotates. The center of rotation for the flapping nrotio
is chosen to be the one-quarter point along the camber line, a
measured from the leading edge. lz%t be the coordinate of
pointO in the 2-plane. The transformation from ttfeplane to
thez-plane is

2
a
z2=¢+——

EZ%'

(@)

A two-dimensional fluid with velocity; flows past the foil-
shaped fish robot. The inertial frame is defined so that thenmc
ing flow velocityUs is aligned with thed -axis. The flow velocity
relative to the body is denotédl. The angle between theaxis
and the direction of the relative velocity is the angle of attack
a, with the nose pitching up chosen to be the positive directio
(Fig. 2).

There are three parameters that define the Joukowski shape
in the & -plane: the radius of the circlg, the coordinata of the
intersection point on theg-axis, and the center of the circlg.
The geometric relationship of the three parameters obeys

R=la— &l- ©)

Assume that the circle radiu® and the area of the Joukowski
foil are constant during the flapping motion, even when tfzgsh
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changes. (This assumption is based on the incompressitilit
the foil material.) The area of the Joukowski foil is [11]

a4
- (R— |€o|2)2) '

Parametek describes the instantaneous shape of the fish robot,

S=nR? (1 (4)

a2

R & ©
Along with the constanR, the shape of the fish robot is deter-
mined by the placement of the circle cenfgr= [xg,,ys,], as
described next.

In the foil plane, there are two shape parameters for the
Joukowski foil: the camber ratid and the thickness ratib [6].
Intuitively, the camber ratio describes how much the foide
Under the assumption thifs| < a, which is normally true for
a moderately cambered Joukowski féil,andT are linearly de-
pendent on the vertical and horizontal displacement of ¢émees
of the circle xg, andyg,, respectively, i.e.,

- Y&

H= a and (6)
_ 3\/§ Xg,

=== Q)

Assume that the flexible fish robot changes its shape while
maintaining a cambered Joukowski foil profile, meaning that
each state of the deformation corresponds to a Joukowdki foi
shape with instantaneous camber r&tio( The camber ratio cap-
tures the degree of bending during the deformation.) Given a
camber ratioH that corresponds to the swimming state of the
fish robot, we calculate the following shape parameters én th
é-plane:

4kRH

Ve = 1 8)
((k+1)2+ (4kH)2)2
k—1 3

X = 1 (Rz—ygo) 2 and (9)
a= 2 (R-x) (10

According to potential-flow theory [6], the flow in the cir-
cle plane £-plane) generates the flow in the corresponding foil
plane g-plane), according to a conformal map. In an inviscid,
incompressible, and irrotational fluid, the quasi-steaaiynlex
potential of the flow in the -plane is a function of the relative

3

flow speedJ, the angle of attackr, the radiusR, and the center
&o. The complex potential [6]

ela

IG+U
E

U(& —&o)e -

'— —In(& —%). (11)

W(&) =

represents the sum of three elementary flow fields: a uniform
flow, a doublet, and a point vortex located at the center o€the
cle. The vortex circulatiofi is evaluated by enforcing the Kutta
condition [6], which requires the trailing edge to be a s&tgm
point. The vortex circulation is [6]

I = 4nRUsin(a + B). (12)

Here B = arcsin(xg,/R) ~ 2H is the phase angle of the center
point&y. Under the assumption thifp| < a, B is approximated
by 2H.

The conjugate flow velocity (z) = u— iv in thez-plane (the
overline notatiorr denotes the conjugate operator) is calculated
using the complex potential in th&-plane and the Joukowski
transform function, which yields

) *1

(

whereé is obtained using the inverse Joukowski transform

g W

9E

0z

El (13)

E=8(2) =05(z+2)+/0.25(z+ )2 —a2.  (14)

(The root outside thé€ -plane circle is used.) With the quasi-
steady potential-flow model (13) and the shape-parameter re
tionship in the Joukowski transformation (8)—(10), we cédte
the flow field around the fish robot foil, given any parametér se
(U,a,H).

Vortex-shedding Flow Model

The quasi-steady potential-flow model (13) does not de-
scribe the unsteady or transient effects caused by the figppi
motion of a flexible fish robot. This subsection presents arsgc
flow model, used for simulation, that features discreteetirar-
tex shedding. In this model, a new vortex is shed into the flow
from the trailing edge of the foil at every discrete time st€pe
shed vortices convect with the flow according to the locabflui
velocity. The net circulation around the robot body conités
to drag, which is not predicted by the quasi-steady potefitia
theory. The accuracy of the vortex-shedding method hasibeen
vestigated and validated [11, 12]. However, the system ¢exap
ity increases with time and grows too fast for real-time UAke.
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instead use the vortex-shedding method for simulating thve fl
field and to test the effectiveness of the quasi-steady fiaten
flow model for flow-parameter estimation.

Let Q be the angular velocity of the fish robot with counter-
clockwise rotation about the pivot poi@chosen to be the posi-
tive direction @ = —Q). In the vortex-shedding model, the com-
plex flow potential with respect to thie-plane is

é&—¢&o
f—f + QWo +|2—In R

0T R )
X {InE = I _
+k§:l|2n ( (& =& =M€ —fo—=—)

W =U(—&)e '

(15)

The corresponding complex potential is denoted\gy g rep-
resents the vortex circulation at the center of the circle lgn
represents the circulation of th& vortex located at positioéy.

From the boundary condition, the unit complex potential for
the rotation motion has the constraint [11]

Im{Wo} — m{_iZ_ZZ}. (16)
The unit complex potential is
R =
R 2, 0255 %
Wo <R2+2505 2 +|&o|* + 22 i
+2zg +24( Eo+ +zgzg+ 5 EET))). (17)

The complex velocity in thezplane using the vortex-
shedding method is

@5 (%)

The above equation describes the entire flow field, excepieat t
vortex locations, which are singular points and thus uneeifin
Using Routh’s rule [13], th&™" vortex conjugate velocity(z) =

Uy, — Vg IS

(18)

(19)

The circulation strengtii, of the vortex shed into the flow at
the pointéy is evaluated by enforcing the Kutta condition at the
trailing edge, which requires

ow

— =0.
(95 =a

(20)

The position of the shed vortexgmay be modeled using one
of several existing approaches. This paper adopts the 1t/3 a
length” method introduced by Streitlien and Triantafylldu],
which places the shed vortex at the one-third point of theaare
gent to the camber line at the trailing edge and passing gfrou
the previous vortex point. Thus,

1-¢%3

_ZTE) 1_69 =

Z— 1—ZTE
1468+

%= (%1 % +zre. (21)

Here the trailing-edge coordinatezg: = 2a — z% and@ is the
arc angle satisfying

d0 _ gi2(-28) (1~ zre)?

5 (22)
|Z—1— ZrE]

wherep = arcsin(yg,/R) as before.

When the fish robot rotates about the panthezreference
frame also rotates with it, whereas the shed vortices mopesas
dicted by Routh’s rule in the inertial frame. Therefore, Woetex
coordinates with respect to tlzeplane are

Z(N+1) = (z(N) + f (z)T)eA, (23)

wherez(N) is thek™ vortex coordinate in the-plane at theN™
time step,T is the time step, anda is the change in the angle
of attack from theN™ time step to théN + 1)™ time step.

DYNAMIC MODEL OF A FLEXIBLE FISH ROBOT

This section presents a dynamic model of a flexible fish
robot with hydrodynamic and thrust forces. Udt= Jw and
P =Myv denote the total angular and linear momenta of the robot-
fluid system, respectively, wheteis the angular velocity of the
body-fixed frame with respect to the inertial frame exprdsae
the body-fixed framey is the corresponding translational veloc-
ity, J is the inertia matrix, and/ is the mass matrix. Both
andM include the added-mass effect from water acting on the
fish robot during acceleration or deceleration. Assume ffie o
diagonal terms in the inertial matrix are negligible andadeed
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FIGURE 3: Schematic of hydrodynamic forces and moments.

mass and added inertia do not vary significantly during the fla
ping motion. The dynamics of the fish robot are governed by
Kirchhoff’s equations [14], i.e.,

NM=Nxw+Pxv+T
P=Pxw+F,

(24)
(25)

whereT is the external moment vector aRds the external force
vector.

For the planar motion of the fish robot, which is the focus of
this paper, we have

w=[0,00]", v=[,v»0", N=[00J9,
P=[mvi,mpv,,0",  T=1[0,0,T)",
and F=[—(R —Fycosa +F sina),F cosa + Fysina,0]".

HereJ is the sum of the inertia of the robot and the added in-
ertia in the pitching direction, andy andn, are the sum of

directions, respectively. Figure 3 illustrates the hygmaimic
pitching torqueTy, the thrust forcdy, generated by the flapping
motion of the foil with the—x-axis direction as positive, the drag
forceFy, in the opposite direction of the motion of the robot rela-
tive to the fluid, and the lift forc&, perpendicular to the relative-
flow direction.

The hydrodynamic forces and moment are modeled follow-
ing aerospace engineering conventions [15], i.e.,

Tp=Cp(a +2H)U? —KpQ (26)
Fa = (C§+Cy(a +2H)?)U? (27)
R =G (a+2H)uU? (28)

whereC, Cg, C4, andC; are hydrodynamic coefficients that can
be identified using flow-tunnel experiments, &fglis the pitch
damping coefficient.

Selecting a sinusoidal waveform for the angle-of-attack im
plies

a = Asing= Asin(2rft), (29)

where ¢ is the phase angle of the angle of attack, @nend

f represent the amplitude and frequency of the periodic obntr
inputa, respectively. The thrust force generated by the periodic
actuation (29) is approximated as [3]

R=FR+(R-R)sin2g), (30)

whereR andR, are the mean and maximum thrust force in one
flapping period, respectively. The mean and maximum thrust
force depend on the product of the amplitude and frequency of
the flapping motion [3], i.e.,

(31)
(32)

The parameterky, kp, k3, andk, are identified by force-sensing
experimentsK, andk, are approximately equal to 2 [3]).

DefineV as the speed of the fish robot with respect to the in-
ertial frame, with the-x'-axis direction as positive. The inertial
flow speed along the -axis isU;. Therefore, the relative speed
of the flow with respect to the robotlis = U; +V. We also have
vi1 = =V cosa andv, = -V sina.

This paper focuses on one-dimensional swimming. The
robot moves only along the'-axis and the angle of attack is

the mass of the robot and the added mass in the surge and sway!i'ectly controlled, so the dynamics become

—mympU = (mé — m3) (U — U¢)Qsina cosa
— (R — Fgcosa + F sina)mp cosa

+ (R cosa + Fysina)my sina. (33)

Modeling camber dynamics is a challenging fluid-structure-
interaction problem that may involve continuum mechanius a
boundary-value partial differential equations. However,use a
tractable model to capture the camber motion for the purpbse
real-time control. The camber kinematics are a linear fionaif
the second derivative of the angle of attack with respedtrie,t
ie.,

H = —Knd = KqnQ, (34)

wherekKy, is the camber-dynamics coefficient.
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FLOW ESTIMATION USING BAYESIAN FILTER WITH
DISTRIBUTED PRESSURE SENSORS
Flow estimation for underwater robots is a challenging prob
lem, especially for low-speed operations. This sectiorcidess
a distributed flow-sensing algorithm using a Bayesian filiére
algorithm assimilates distributed pressure measurene etsti-
mate the relative flow spedd for real-time use. The Bayesian
filter also estimates the angle of attazland the camber ratid
for the flexible foil, unlike our previous paper [10], whicimlg
estimated relative flow speed and angle of attack for a rigjid f
Consider a flexible fish robot equipped witlg pressure sen-
sors located at positiorg,,i = 1,...,Np. Each pressure sensor
measures the local static pressure modeled by the Bersoulli
equations forinviscid, incompressible flow along a stréae(b]

00(zp) 1

o~ = 2
pi =C—p—5 —5pIf(z)I", (35)

wherep; is the predicted static pressure at locatign f(z,) is

the local flow velocityp is the water density, ar@dis a constant.

©= (W +W)/2is the time-dependent velocity potential.
Inspired by the lateral-line system in fish [7], the pressure

differences between each sensor pair form the individual flo

measurement of the fish robot. The flow measurement equation

is [9,10]

Apij = Pi — Pj

7] . F) ‘
:%P(|f(2pj)|2_|f(zpi)|2)+%p( Qogpj)_ qo(gipl)).

(36)

There areNy = (Np)!/2!/(Np — 2)! possible measurements in
total, i.e., the combinatorial number of sensor pairs. Véelae
a quasi-steady flow for estimation purposes, meaning tkare i
unsteady effect, i.e.,

L <aqo(zpj) B 040(Zpi)> _0 37)

2 at at

Define = [z and Ap =

[Aplz,...,Aple,Ang,...,ApZNp,...,Aprlep]T as the vec-

tors representing sensor locations and flow measurements,

respectively. Assuming the flow measurements of the fishtrobo
Ap are corrupted with Gaussian noise, then the adctn@lement
of the measurement vector is

Ap(i) = Ap(i) + i, (38)

wheren; ~ N(0,¢?) is drawn from a zero-mean Gaussian dis-
tribution with variances;. Here the Gaussian distribution of the
flow measurement is based on the assumption that the pressure
sensor output is corrupted with Gaussian noise and theHatt t

the summation of two Gaussian variables is also Gaussian.

Given the pressure-difference measurements, we need a flow
model for the flapping fish robot to reconstruct the flow field.
Although the vortex-shedding model (18) is a reliable mddel
describing flow field, the discrete-time vortex additiond suit-
able for real-time estimation. A more tractable model isdeek
to approximate the flow field and to help estimate the motion
of the robot, so we adopt the quasi-steady potential-flowehod
(13). LetA = [U,a,H]" represent the flow parameter vector. We
use the Bayesian filter to estimafebased on distributed flow
measurements.

The Bayesian filter, also known as recursive Bayesian esti-
mation [16], is a general probabilistic approach for estintp
an unknown probability density function (pdf) recursivelyer
time using incoming measurements and a mathematical goces
model. In this work, the flow measuremei{s are assimilated
recursively at each step to infer the most likely paramegetor
A. The Bayesian formula for calculating the posterior pralitstb
of the flow parameters from the acquired measurements is [16]

PIA(L)[D()) = kp(APIA)P(A(t)D(t - AL)),  (39)

where p(AP|A) is the likelihood function of the new mea-
surementsApP given the parameters\, p(A(t)|D(t)) and
p(A(t)|D(t — At)) are the posterior and prior pdf for tintere-
spectively,D(t) = {AP(t),AP(t — At),...,Ap(0)} represents all
pressure difference measurements up to tir@dk is the co-
efficient that ensures the total probability of the posteaeer

the parameter space is equal to 1. This paper uses a grid-base
Bayesian filter to discretize the parameter space, because i
easier to implement than a particle filter.

The assumption of Gaussian noise in the flow measurements
leads to a Gaussian likelihood function,

p(AB(I)IA) exp(—%@p(i)—mo))z), (40)

1
B V/ 2T10;

wherei = 1,...,Nn, is the index for théth element of the pressure
measurement vectdp.

The prior pdfp(A(t)|D(t — At)) is generated from the pos-
terior p(A(t — At)|D(t — At)) calculated at timé— At; the initial
condition of the prior probability(A(0)|D(—At)) is a uniform
distribution. The prior updated by the Chapman-Kolmogorov
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TABLE 1: Parameters used in simulation for the flexible fish
robot.

Parameter|  Value Parameter Value
my 1.0kg mp 1.5kg
Cbo 30 kgm1 Co 100 kgm~1
CL 10 kgm™1 Kh 0.1
kg 49.6 kgm ko 2
k3 87.6 kgm kg 2

equation [16] is

P(AM®)ID(t - At))
| PINOIA -~ 80) PIAE — 80[D(t — 40)) dA(t - &),
' (41)

where p(A(t)|A(t—At)) represents the time evolution of the
probability density function of the motion. In this papee wse
a normal distribution to model the probability density d#fon
over time, i.e.,

PAMIA(t—At)) ~ N(g(A(t - At)), 2p), (42)
whereg(A) is the time-evolution function of estimation param-

eters governed by the dynamic model (33)—-(34) apds the
process variance matrix.

SIMULATION OF FLOW ESTIMATION

Simulations are used to evaluate the distributed flow-sgnsi
algorithm. We simulate flow estimation during a sinusoidai-c
trol input with constant amplitude. The simulated flow fiedd i
generated from the vortex-shedding model (18). The fish dy-
namics are simulated using the motion model (33)—(34). a&lu
for the coefficients of the hydrodynamic model were obtained
experimentally using the setup described in the experirsect
tion. Six pressure sensors are distributed on each side difstin
robot, which measures 20 cm in total, with a distance aloeg th
center line of 2.5 cm, 7.5 cm, and 10 cm from the leading edge.
The inertial flow speed is set to 20 cm/s. The flapping actua-
tion frequency and amplitude in simulation are 0.75 Hz arfg 15
respectively. The remaining parameters used in simulatieg
flexible fish robot are shown in Table 1.

Figure 4 shows snapshots of the flapping fish robot in a uni-
form flow field. A vortex is introduced at each time step to

SO0 S
40 20 0 20 40 60 80 40 20 0 20 40 60 80
@ (b)
cx\# .3 o ;
40 -20 o 20 40 60 80 40 20 0 20 40 60 80
(c) (d)
¢:.*>-) ‘;r oo ¥
- -
40 -20 0 20 40 60 80 40 -20 0 20 40 60 80
(e) )
P S S n
NS . T r e,
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FIGURE 4: Snapshots of unidirectional swimming of the fish
robot using the vortex-shedding method. (a) t = Os; (b) t 0.2
(c)t=0.4s;(d)t=0.6s;(e)t=0.8s; (f)t=1s; (g)t=2s; (h) t =
3s.V is the the swimming speed of the robot with respect to the
inertial frame andJ; is the uniform flow speed with respect to
the inertial frame.

the actual waveform. Also, the amplitude of the camber riatio
overestimated, perhaps from using a simplified flow modéién t
Bayesian estimation. However, for the purpose of swimming-
profile control, such as rheotaxis or speed regulation, vezlne
the “mean” motion of the fish robot, or the average of the angle
of attack and relative flow speed over one period of flappirg ac
tuation. Based on the simulation results, the quasi-stéady
model used in the Bayesian filter provides a satisfactoignese

of the flow field despite its simplicity.

EXPERIMENTAL RESULTS FOR FLOW ESTIMATION

This section presents the experimental design and results f
evaluating the flow-sensing algorithm for a flexible fish rbbo
We first discuss the fabrication of a flexible fish robot, anehth
introduce the design of the experimental testbed. The exper
mental results for flow sensing are presented to demonstrate
effectiveness of the flow estimation algorithm.

Experimental Setup
We chose silicone rubber (Ecoflex 00-30 from Smooth-On)

capture the unsteady effect of the flow. The Bayesian estima- as the flexible material for the fish robot. Cured rubber i¢ sof

tion results are shown in Fig. 5. The speed estimate is accu-

rate, whereas the angle-of-attack estimate has a phasevead

7

and strong with Shore 00-30 hardness. We first designed a mold
of the fish robot in SolidWorks, as shown in Figs. 6a and 6b, and
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FIGURE 6: lllustration of the molding design for the fish robot:
(a) mold interior; (b) mold assembly; and (c) the fish robo¢iaf

- molding.
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FIGURE 7: Schematic of the testbed.

Camber Ratio H
Marginal Probability Density

ing the motion was designed to facilitate the flow-sensing ex
” periment; a schematic is shown in Fig. 7. A double-rail Iinea
Time guide is mounted to a 80/20 frame. We used two linear motion
© air bearings (NEWWAY porous air bearing) to allow for low-
friction horizontal motion. A gantry platform was mounted o
those bearings to support the fish robot. Two load cell sensor
(300 g measurement range) mounted vertically at equalndista
from the center detect the force and torque in the surge acia-pi
ing directions, respectively. A DC servo (Savox 0235MG3 sit
between the two load cells. The servo arm s bolted to an psha
MakerBeam rigidly attached to the fish to control the anglatef
tack. This setup was used for water-tunnel experimentseo-id
tify the hydrodynamic coefficients in Table 1, and to invgate
the thrust-force generation from the periodic flapping mo{3].
When the air bearing is turned on, the fish robot moves freely

sure sensor ports, holes of radius 1 mm were placed on eaeh sid along the guiding rail. The entire test platform is placeerov
ports, P a Loligo 185 L flow tank, which generates a uniform flow field

of the mold at a distance along the center line of 2.5cm, 7.5cm .7~ .
: X . within an enclosed test section that measures 25x 87.5 cm,
and 10 cm behind the leading edge. We packaged six pressure

sensors (Servoflo MS5401-BM) with appropriately sizedrigbi as shown in Fig. 8.
and fixed the sensors to the center shaft. Each pressurersenso

FIGURE 5: Marginal probability densities for the states of the
Bayesian filter in the flow-sensing simulation: (a) the re&at
flow speedJ; (b) the angle of attack; and (c) the camber ratio
H.

then manufactured the mold using a high-precision 3D printe
We poured the mixed silicone rubber compound into the mold
and then kept it in a vacuum chamber during curing to avoid
bubbles. For actuation of the angle of attack, a mini shafnfr
MakerBeam was inserted before the molding process at the one
quarter-point of the chord, behind the leading edge. Foptks-

outputs analog voltage in proportion to the local pressiitee Flow-sensing Experiments
whole fish robot measures 20 cm long, 3.6 cm wide, and 12 cm This subsection presents results from testing the reairsiv
tall as shown in Fig. 6c¢. Bayesian estimation algorithm during one-dimensionalnswi

The experimental testbed for holding the fish robot and guid- ming. The fish robot is still for the first 5 seconds, and then

8 Copyright © 2015 by ASME
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FIGURE 9: The distributed pressure-sensor measurements in the
FIGURE 8: The experimental setup. (a) Side view; (b) front view. open-loop flow-sensing experiment.
during fish flapping (5 s—15 s) than during fish resting (0 s+5 s)
with significant difference in terms of estimation error (%-

sus 60%). This observation is contrary to our knowledge alf re
fish, which may sense the flow better with less turbulences It i
explained by checking the observability Gramian of the tsbo
dynamic model with pressure measurements as the system out-
put, which suggests that the flow speed at zero angle of agack
unobservable [9, 10].

flaps for 10 seconds. The angle-of-attack actuation signsit i
nusoidal with a frequency of 0.75 Hz and a constant amplitude
of 10°. The uniform flow speed is 18.74 cm/s, which is cali-
brated using a OTT MF-Pro flow meter. The air bearing operates
throughout the experiment to allow the fish to move forward an
backward. The measurement data is acquired from the peessur
sensors using DAQ 6225 from National Instruments. The data i
then transmitted via USB to a laptop that runs the Bayesitan fil
for data assimilation in Matlab 2013b. The control commands
for the angle of attack are sent out via serial communication
an Arduino UNO that drives the servo. The system parameters CONC!-USDN ) ) ) )
identified before the experiments have the same valuestad lis This paper presents a flow-sensing algorithm using dis-

in Table 1. Figure 7 shows the data stream for the flow-sensing tributed pressure sensors in a flexible fish robot. We design a
experiment. model a fish robot utilizing the Joukowski transformatiorfde

cilitate fluid modeling. We introduce two flow models for the
mbered Joukowski-foil-shaped robot, including a qetesidy

otential-flow model for real-time flow estimation and a die-
time vortex-shedding model for simulating the flow. A recur-
sive Bayesian filter assimilates pressure measuremenesfior
mation of flow parameters. We derive the dynamics of a flexible
fish robot and present a reduced model for one-dimensioe&l fr
swimming. We also present the fabrication of a flexible fidhoto
and the design of the experimental testbed. The flow-sefing
gorithm was tested and validated in both simulation and ixpe
ments. In ongoing work, we are investigating a closed-lcap ¢
trol strategy for speed regulation of a flexible fish robalizitig
the estimated flow.

Figure 9 presents the measurement data from all six pres-
sure sensors. The data for each sensor has been processed
subtracting the still-water pressure measurement takiendone
experiment, in order to eliminate the influence of nonumifand
possibly time-varying bias from the pressure sensors.

Figure 10 shows the time evolution of the marginal prob-
ability densities. Observe that the estimated angle otltta
(Fig. 10b) has the same oscillation frequency as the achgdéa
of attack, with a slightly larger amplitude and a negativagsh
shift. The estimated camber ratib (Fig. 10c) has a sinusoidal-
like waveform, as predicted in simulation. The estimatdd-re
tive speedJ (Fig. 10a) oscillates around a constant value at dou-
ble the actuation frequency. The speed oscillation aris@s f
the periodic thrust generated by the flapping motion. The fish
robot has the same inertial speed as the uniform flow and eonse
quently exhibits station-holding behavior. (The gantmytabing ACKNOWLEDGMENT
and electrical wiring restrict motion of the robot to withire test This work was supported by the Office of Naval Research
section.) The average estimated relative flow speed 18.7¢ cm under Grant PECASE (No. N000141410249).
is equal to the incoming uniform flow speed, as observed in
Fig. 10a.
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