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ABSTRACT
Flexibility plays an important role in fish behaviors by en-

abling high maneuverability for predator avoidance and swim-
ming in turbulence. In this paper, we present a novel, flexible fish
robot equipped with distributed pressure sensors for flow sens-
ing. The body of the robot is made of a soft, hyperelastic mate-
rial that provides flexibility. The fish robot features a Joukowski-
foil shape conducive to modeling the fluid analytically. A quasi-
steady potential-flow model is adopted for real-time flow estima-
tion, whereas a discrete-time vortex-shedding flow model isused
for higher-fidelity simulation. The dynamics for the flexible fish
robot are presented, and a reduced model for one-dimensional
swimming is derived. A recursive Bayesian filter assimilates
pressure measurements for estimating the flow speed, angle of
attack, and foil camber. Simulation and experimental results are
presented to show the effectiveness of the flow estimation algo-
rithm.

INTRODUCTION
Fish have attracted scientific attention for their gracefullo-

comotion, high maneuverability, and high energy efficiency. In-
spired by nature, engineering researchers have made great efforts
in designing and developing fish robots [1–5] that mimic realfish
in order to improve the performance of underwater vehicles.

Fish robots are typically designed in two segments. The
front segment holds the electronic components, including abat-

∗Address all correspondence to this author.

tery, a micro-controller, navigational sensors, etc., whereas the
back segment serves as the fish tail, usually flapped by a servo
motor to provide thrust [3–5]. Although the multi-segment de-
sign is able to realize fish-like swimming motion by flapping the
tail segment, the maneuverability achieved is still far less than
real fish.

We know that flexibility plays an important role in fish be-
haviors by enabling high maneuverability for predator avoidance
and swimming in turbulence. In this work, we describe a novel,
flexible fish robot that deforms its body in a continuous way. The
flexibility of the body is achieved by the property of the material
of the robot, rather than the rotational links between rigidparts.
In this paper, we choose silicone rubber for the material andse-
lect a Joukowski foil [6] for the shape. This choice of shape is
conducive to modeling the fluid dynamics.

Flow sensing is important for fish to navigate in unknown,
murky, and cluttered environments [7]. However, traditional sub-
marines do not have this capability. Sonar is unsuitable fora
fish robot due to its large cost, power consumption, and size [8].
Additionally, sonar may not provide accurate measurementsat
low speeds. Inertial measurement units (IMUs) accumulate er-
rors over time due to dead reckoning [8]. In addition, IMUs do
not provide information pertaining to the flow environment.

The lateral line is a flow-sensing organ that fish use to detect
movement and vibration in the surrounding water [7]. The re-
cent development of artificial lateral-line systems shows promise
for the application of flow sensing to underwater robots [9, 10].
In our previous work, we studied rheotaxis (i.e., aligning up-
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stream [10]) with a steady, rigid Joukowski-shaped fish robot
by estimating the flow field using an artificial lateral-line sys-
tem made of distributed pressure sensors [9, 10]. In this work,
we extend the previous research to a flexible Joukowski-shaped
fish robot with one-dimensional, free-swimming dynamics.

This paper presents two flow models of a flexible, foil-
shaped fish robot: a quasi-steady potential-flow model and
a higher-fidelity vortex-shedding model. The quasi-steady
potential-flow model is adopted for flow estimation due to its
tractability, whereas the vortex-shedding model is used insim-
ulation to generate the flow field as ground truth for testing the
flow estimation algorithm. The deformation of the robot body
is modeled using a time-varying parameter (the camber ratio)
A recursive Bayesian filter assimilates the distributed pressure-
sensor measurements. A testbed consisting of a flow tank, gantry
system, and air-bearing linear guide is used to demonstrateone-
dimensional swimming. The experimental results show the ef-
fectiveness of the flow-sensing algorithm during flapping motion
of a flexible fish robot.

FLOW MODEL FOR A JOUKOWSKI-SHAPED FLEXI-
BLE FISH ROBOT

This paper adopts the shape of a Joukowski foil for the de-
sign of the fish robot in order to utilize potential-flow theory
to model the flow field. In fluid dynamics, potential-flow the-
ory [6] describes the velocity field of incompressible, irrotational
flow as the gradient of a scalar function, the velocity poten-
tial. This section describes the two-dimensional flow past acam-
bered Joukowski foil, first using the quasi-steady potential-flow
method and then using the unsteady vortex-shedding method.

Quasi-steady Potential-flow Model
The fish robot modeled as a Joukowski foil takes the shape

of the output of the Joukowski transformation of a circle. The
Joukowski transformation, which is essentially a conformal map-
ping, is expressed as [6]

z0 = ξ +
a2

ξ
, (1)

where the set of pointsξ represents a circle with radiusR cen-
tered atξ0 in the complexξ -plane, as shown in Fig. 1. The co-
ordinate of the intersection of the circle and thexξ -axis is the
Joukowski transformation parametera, which is approximately
one quarter of the chord length of the foill . The image of the
mapping in thez0-plane defines the boundary of the fish robot
(Fig. 2). The origin of thez0-plane isO0. The x0-axis points
along the chord line from the leading edge to the trailing edge.

Define the body-fixed frame (thez-plane) by translating the
z0-plane from pointO0 to the pointO, about which the fish robot

FIGURE 1: ξ -plane and coordinates.

LE

TE

FIGURE 2: Illustration of reference framesA andO. TE is the
trailing edge and LE is the leading edge.

flaps or rotates. The center of rotation for the flapping motion
is chosen to be the one-quarter point along the camber line, as
measured from the leading edge. Letz0

O be the coordinate of
point O in thez0-plane. The transformation from theξ -plane to
thez-plane is

z= ξ +
a2

ξ
− z0

O. (2)

A two-dimensional fluid with velocityU f flows past the foil-
shaped fish robot. The inertial frame is defined so that the incom-
ing flow velocityU f is aligned with thexI -axis. The flow velocity
relative to the body is denotedU . The angle between thex-axis
and the direction of the relative velocityU is the angle of attack
α, with the nose pitching up chosen to be the positive direction
(Fig. 2).

There are three parameters that define the Joukowski shape
in theξ -plane: the radius of the circleR, the coordinatea of the
intersection point on thexξ -axis, and the center of the circleξ0.
The geometric relationship of the three parameters obeys

R= |a− ξ0|. (3)

Assume that the circle radiusR and the area of the Joukowski
foil are constant during the flapping motion, even when the shape
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changes. (This assumption is based on the incompressibility of
the foil material.) The area of the Joukowski foil is [11]

S= πR2
(

1− a4

(R2−|ξ0|2)2

)

. (4)

Parameterk describes the instantaneous shape of the fish robot,

k=
a2

R2−|ξ0|2
. (5)

Along with the constantR, the shape of the fish robot is deter-
mined by the placement of the circle centerξ0 = [xξ0

,yξ0
], as

described next.
In the foil plane, there are two shape parameters for the

Joukowski foil: the camber ratioH and the thickness ratioT [6].
Intuitively, the camber ratio describes how much the foil bends.
Under the assumption that|ξ0| ≪ a, which is normally true for
a moderately cambered Joukowski foil,H andT are linearly de-
pendent on the vertical and horizontal displacement of the center
of the circle,xξ0

andyξ0
, respectively, i.e.,

H =
yξ0

2a
, and (6)

T =−3
√

3
4

xξ0

a
. (7)

Assume that the flexible fish robot changes its shape while
maintaining a cambered Joukowski foil profile, meaning that
each state of the deformation corresponds to a Joukowski foil
shape with instantaneous camber ratioH. (The camber ratio cap-
tures the degree of bending during the deformation.) Given a
camber ratioH that corresponds to the swimming state of the
fish robot, we calculate the following shape parameters in the
ξ -plane:

yξ0
=

4kRH

((k+1)2+(4kH)2)
1
2

, (8)

xξ0
=

k−1
k+1

(

R2− y2
ξ0

) 1
2
, and (9)

a=
2k

k+1

(

R2− y2
ξ0

) 1
2
. (10)

According to potential-flow theory [6], the flow in the cir-
cle plane (ξ -plane) generates the flow in the corresponding foil
plane (z-plane), according to a conformal map. In an inviscid,
incompressible, and irrotational fluid, the quasi-steady complex
potential of the flow in theξ -plane is a function of the relative

flow speedU , the angle of attackα, the radiusR, and the center
ξ0. The complex potential [6]

W(ξ ) =U(ξ − ξ0)e
−iα +U

R2

ξ − ξ0
eiα + i

Γ
2π

ln(ξ − ξ0), (11)

represents the sum of three elementary flow fields: a uniform
flow, a doublet, and a point vortex located at the center of thecir-
cle. The vortex circulationΓ is evaluated by enforcing the Kutta
condition [6], which requires the trailing edge to be a stagnation
point. The vortex circulation is [6]

Γ = 4πRUsin(α +β ). (12)

Hereβ = arcsin(xξ0
/R) ≈ 2H is the phase angle of the center

pointξ0. Under the assumption that|ξ0| ≪ a, β is approximated
by 2H.

The conjugate flow velocityf (z) = u− iv in thez-plane (the
overline notation· denotes the conjugate operator) is calculated
using the complex potential in theξ -plane and the Joukowski
transform function, which yields

f (z) =
∂W
∂ξ

(

∂z
∂ξ

)−1

, (13)

whereξ is obtained using the inverse Joukowski transform

ξ = ξ (z) = 0.5(z+ z0
O)±

√

0.25(z+ z0
O)

2−a2. (14)

(The root outside theξ -plane circle is used.) With the quasi-
steady potential-flow model (13) and the shape-parameter rela-
tionship in the Joukowski transformation (8)–(10), we calculate
the flow field around the fish robot foil, given any parameter set
(U,α,H).

Vortex-shedding Flow Model
The quasi-steady potential-flow model (13) does not de-

scribe the unsteady or transient effects caused by the flapping
motion of a flexible fish robot. This subsection presents a second
flow model, used for simulation, that features discrete-time vor-
tex shedding. In this model, a new vortex is shed into the flow
from the trailing edge of the foil at every discrete time step. The
shed vortices convect with the flow according to the local fluid
velocity. The net circulation around the robot body contributes
to drag, which is not predicted by the quasi-steady potential-flow
theory. The accuracy of the vortex-shedding method has beenin-
vestigated and validated [11,12]. However, the system complex-
ity increases with time and grows too fast for real-time use.We
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instead use the vortex-shedding method for simulating the flow
field and to test the effectiveness of the quasi-steady potential-
flow model for flow-parameter estimation.

Let Ω be the angular velocity of the fish robot with counter-
clockwise rotation about the pivot pointO chosen to be the posi-
tive direction (̇α =−Ω). In the vortex-shedding model, the com-
plex flow potential with respect to theξ -plane is

W =U(ξ − ξ0)e
−iα +U

R2

ξ − ξ0
eiα +ΩWΩ + i

Γ0

2π
ln

ξ − ξ0

R

+
n

∑
k=1

i
Γk

2π

(

ln(ξ − ξk)− ln(ξ − ξ0−
R2

ξk− ξ0
)

)

, (15)

The corresponding complex potential is denoted byWΩ. Γ0 rep-
resents the vortex circulation at the center of the circle and Γk

represents the circulation of thekth vortex located at positionξk.
From the boundary condition, the unit complex potential for

the rotation motion has the constraint [11]

Im{WΩ}= Im

{

−i
zz̄
2

}

. (16)

The unit complex potential is

WΩ =− i
2



R2+2ξ0
R2

ξ − ξ0
+ |ξ0|2+2a2

R2

ξ−ξ0
+ ξ0

ξ

+2z0
O

R2

ξ
+2z0

O(ξ0+
a2

ξ
)+ z0

Oz0
O+

a4(ξ −2ξ0)

ξ (R2−|ξ0|2)

)

. (17)

The complex velocity in thez-plane using the vortex-
shedding method is

f (z) =
∂W
∂ξ

(

∂z
∂ξ

)−1

. (18)

The above equation describes the entire flow field, except at the
vortex locations, which are singular points and thus undefined.
Using Routh’s rule [13], thekth vortex conjugate velocityf (zk)=
uzk − ivzk is

f (zk) =
dzk

dt
=

d
dz

(

W− i
Γk

2π
ln(z− zk)

)∣

∣

∣

∣

z=zk

=

(

dz
dξ

)−1 d
dξ

(

W(ξ )− i
Γk

2π
ln(ξ − ξk)

)

−i
Γk

4π
d2z
dξ 2

(

dz
dξ

)−2
∣

∣

∣

∣

∣

ξ=ξk

. (19)

The circulation strengthΓk of the vortex shed into the flow at
the pointξk is evaluated by enforcing the Kutta condition at the
trailing edge, which requires

∂W
∂ξ

∣

∣

∣

∣

ξ=a
= 0. (20)

The position of the shed vortexzk may be modeled using one
of several existing approaches. This paper adopts the “1/3 arc-
length” method introduced by Streitlien and Triantafyllou[13],
which places the shed vortex at the one-third point of the arctan-
gent to the camber line at the trailing edge and passing through
the previous vortex point. Thus,

zk = (zk−1− zTE)
1−eiθ/3

1−eiθ =
zk−1− zTE

1+ei θ
3 +ei 2θ

3

+ zTE. (21)

Here the trailing-edge coordinate iszTE = 2a− z0
O andθ is the

arc angle satisfying

eiθ = e−i2(−2β ) (zk−1− zTE)
2

|zk−1− zTE|2
, (22)

whereβ = arcsin(yξ0
/R) as before.

When the fish robot rotates about the pointO, thez-reference
frame also rotates with it, whereas the shed vortices move aspre-
dicted by Routh’s rule in the inertial frame. Therefore, thevortex
coordinates with respect to thez-plane are

zk(N+1) = (zk(N)+ f (zk)T)e
i∆α , (23)

wherezk(N) is thekth vortex coordinate in thez-plane at theNth

time step,T is the time step, and∆α is the change in the angle
of attack from theNth time step to the(N+1)th time step.

DYNAMIC MODEL OF A FLEXIBLE FISH ROBOT
This section presents a dynamic model of a flexible fish

robot with hydrodynamic and thrust forces. LetΠΠΠ = Jω and
P=Mv denote the total angular and linear momenta of the robot-
fluid system, respectively, whereω is the angular velocity of the
body-fixed frame with respect to the inertial frame expressed in
the body-fixed frame,v is the corresponding translational veloc-
ity, J is the inertia matrix, andM is the mass matrix. BothJ
andM include the added-mass effect from water acting on the
fish robot during acceleration or deceleration. Assume the off-
diagonal terms in the inertial matrix are negligible and theadded
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FIGURE 3: Schematic of hydrodynamic forces and moments.

mass and added inertia do not vary significantly during the flap-
ping motion. The dynamics of the fish robot are governed by
Kirchhoff’s equations [14], i.e.,

Π̇ΠΠ = ΠΠΠ×ω +P× v+T (24)

Ṗ = P×ω +F, (25)

whereT is the external moment vector andF is the external force
vector.

For the planar motion of the fish robot, which is the focus of
this paper, we have

ω = [0,0,Ω]T , v = [v1,v2,0]
T , ΠΠΠ = [0,0,JΩ]T ,

P = [m1v1,m2v2,0]
T , T = [0,0,Tp]

T ,

and F = [−(Ft −Fd cosα +Fl sinα),Fl cosα +Fd sinα,0]T .

HereJ is the sum of the inertia of the robot and the added in-
ertia in the pitching direction, andm1 and m2 are the sum of
the mass of the robot and the added mass in the surge and sway
directions, respectively. Figure 3 illustrates the hydrodynamic
pitching torqueTp, the thrust forceFt , generated by the flapping
motion of the foil with the−x-axis direction as positive, the drag
forceFd, in the opposite direction of the motion of the robot rela-
tive to the fluid, and the lift forceFl , perpendicular to the relative-
flow direction.

The hydrodynamic forces and moment are modeled follow-
ing aerospace engineering conventions [15], i.e.,

Tp =Cp(α +2H)U2−KpΩ (26)

Fd = (C0
d +Cd(α +2H)2)U2 (27)

Fl =Cl (α +2H)U2, (28)

whereCp, C0
d, Cd, andCl are hydrodynamic coefficients that can

be identified using flow-tunnel experiments, andKp is the pitch
damping coefficient.

Selecting a sinusoidal waveform for the angle-of-attack im-
plies

α = Asinφ = Asin(2π f t), (29)

whereφ is the phase angle of the angle of attack, andA and
f represent the amplitude and frequency of the periodic control
input α, respectively. The thrust force generated by the periodic
actuation (29) is approximated as [3]

Ft = F̄t +(F̂t − F̄t)sin(2φ), (30)

whereF̄t andF̂t are the mean and maximum thrust force in one
flapping period, respectively. The mean and maximum thrust
force depend on the product of the amplitude and frequency of
the flapping motion [3], i.e.,

F̄t = k1(A f)k2 (31)

F̂t = k3(A f)k4. (32)

The parametersk1, k2, k3, andk4 are identified by force-sensing
experiments (k2 andk4 are approximately equal to 2 [3]).

DefineV as the speed of the fish robot with respect to the in-
ertial frame, with the−xI -axis direction as positive. The inertial
flow speed along thexI -axis isU f . Therefore, the relative speed
of the flow with respect to the robot isU =U f +V. We also have
v1 =−V cosα andv2 =−V sinα.

This paper focuses on one-dimensional swimming. The
robot moves only along thexI -axis and the angle of attack is
directly controlled, so the dynamics become

−m1m2U̇ = (m2
1−m2

2)(U −U f )Ωsinα cosα
− (Ft −Fd cosα +Fl sinα)m2cosα
+(Fl cosα +Fd sinα)m1 sinα. (33)

Modeling camber dynamics is a challenging fluid-structure-
interaction problem that may involve continuum mechanics and
boundary-value partial differential equations. However,we use a
tractable model to capture the camber motion for the purposeof
real-time control. The camber kinematics are a linear function of
the second derivative of the angle of attack with respect to time,
i.e.,

Ḣ =−Khα̈ = KhΩ̇, (34)

whereKh is the camber-dynamics coefficient.
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FLOW ESTIMATION USING BAYESIAN FILTER WITH
DISTRIBUTED PRESSURE SENSORS

Flow estimation for underwater robots is a challenging prob-
lem, especially for low-speed operations. This section describes
a distributed flow-sensing algorithm using a Bayesian filter. The
algorithm assimilates distributed pressure measurementsto esti-
mate the relative flow speedU for real-time use. The Bayesian
filter also estimates the angle of attackα and the camber ratioH
for the flexible foil, unlike our previous paper [10], which only
estimated relative flow speed and angle of attack for a rigid foil.

Consider a flexible fish robot equipped withNp pressure sen-
sors located at positionszpi , i = 1, ...,Np. Each pressure sensor
measures the local static pressure modeled by the Bernoulli’s
equations for inviscid, incompressible flow along a streamline [6]

pi =C−ρ
∂φ(zpi )

∂ t
− 1

2
ρ | f (zpi )|2, (35)

wherepi is the predicted static pressure at locationzpi , f (zpi ) is
the local flow velocity,ρ is the water density, andC is a constant.
φ = (W+W)/2 is the time-dependent velocity potential.

Inspired by the lateral-line system in fish [7], the pressure
differences between each sensor pair form the individual flow
measurement of the fish robot. The flow measurement equation
is [9,10]

∆pi j = pi − p j

=
1
2

ρ
(

| f (zp j )|2−| f (zpi )|2
)

+
1
2

ρ
(∂φ(zp j )

∂ t
− ∂φ(zpi )

∂ t

)

.

(36)

There areNm = (Np)!/2!/(Np− 2)! possible measurements in
total, i.e., the combinatorial number of sensor pairs. We assume
a quasi-steady flow for estimation purposes, meaning there is no
unsteady effect, i.e.,

1
2

ρ
(∂φ(zp j )

∂ t
− ∂φ(zpi )

∂ t

)

= 0 (37)

Define zp = [z1, ...,zNp]
T and ∆p =

[∆p12, ...,∆p1Np,∆p23, ...,∆p2Np, ...,∆pNp−1Np]
T as the vec-

tors representing sensor locations and flow measurements,
respectively. Assuming the flow measurements of the fish robot
∆p are corrupted with Gaussian noise, then the actualith element
of the measurement vector is

∆p̃(i) = ∆p(i)+ηi, (38)

whereηi ∼ N(0,σ2
i ) is drawn from a zero-mean Gaussian dis-

tribution with varianceσi . Here the Gaussian distribution of the
flow measurement is based on the assumption that the pressure
sensor output is corrupted with Gaussian noise and the fact that
the summation of two Gaussian variables is also Gaussian.

Given the pressure-difference measurements, we need a flow
model for the flapping fish robot to reconstruct the flow field.
Although the vortex-shedding model (18) is a reliable modelfor
describing flow field, the discrete-time vortex addition is not suit-
able for real-time estimation. A more tractable model is needed
to approximate the flow field and to help estimate the motion
of the robot, so we adopt the quasi-steady potential-flow model
(13). LetΛΛΛ = [U,α,H]T represent the flow parameter vector. We
use the Bayesian filter to estimateΛΛΛ based on distributed flow
measurements.

The Bayesian filter, also known as recursive Bayesian esti-
mation [16], is a general probabilistic approach for estimating
an unknown probability density function (pdf) recursivelyover
time using incoming measurements and a mathematical process
model. In this work, the flow measurements∆p̃ are assimilated
recursively at each step to infer the most likely parameter vector
Λ̂ΛΛ. The Bayesian formula for calculating the posterior probability
of the flow parameters from the acquired measurements is [16]

p(ΛΛΛ(t)|D(t)) = κ p(∆p̃|ΛΛΛ)p(ΛΛΛ(t)|D(t −∆t)), (39)

where p(∆p̃|ΛΛΛ) is the likelihood function of the new mea-
surements∆p̃ given the parametersΛΛΛ, p(ΛΛΛ(t)|D(t)) and
p(ΛΛΛ(t)|D(t −∆t)) are the posterior and prior pdf for timet, re-
spectively,D(t) = {∆p̃(t),∆p̃(t −∆t), . . . ,∆p̃(0)} represents all
pressure difference measurements up to timet, andκ is the co-
efficient that ensures the total probability of the posterior over
the parameter space is equal to 1. This paper uses a grid-based
Bayesian filter to discretize the parameter space, because it is
easier to implement than a particle filter.

The assumption of Gaussian noise in the flow measurements
leads to a Gaussian likelihood function,

p(∆p̃(i)|ΛΛΛ) = 1√
2πσi

exp

(

− 1
2σi

2 (∆p(i)−∆p̃(i))2
)

, (40)

wherei = 1, ...,Nm is the index for theith element of the pressure
measurement vector∆p̃.

The prior pdfp(ΛΛΛ(t)|D(t −∆t)) is generated from the pos-
terior p(ΛΛΛ(t −∆t)|D(t−∆t)) calculated at timet −∆t; the initial
condition of the prior probabilityp(ΛΛΛ(0)|D(−∆t)) is a uniform
distribution. The prior updated by the Chapman-Kolmogorov
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TABLE 1 : Parameters used in simulation for the flexible fish
robot.

Parameter Value Parameter Value

m1 1.0 kg m2 1.5 kg

CD0 30 kg·m−1 CD 100 kg·m−1

CL 10 kg·m−1 KH 0.1

k1 49.6 kg·m k2 2

k3 87.6 kg·m k4 2

equation [16] is

p(ΛΛΛ(t)|D(t −∆t))

=

∫

p(ΛΛΛ(t)|ΛΛΛ(t −∆t))p(ΛΛΛ(t −∆t)|D(t−∆t))dΛΛΛ(t −∆t),

(41)

where p(ΛΛΛ(t)|ΛΛΛ(t −∆t)) represents the time evolution of the
probability density function of the motion. In this paper, we use
a normal distribution to model the probability density diffusion
over time, i.e.,

p(ΛΛΛ(t)|ΛΛΛ(t −∆t))∼ N(g(ΛΛΛ(t −∆t)),Σp), (42)

whereg(ΛΛΛ) is the time-evolution function of estimation param-
eters governed by the dynamic model (33)–(34) andΣp is the
process variance matrix.

SIMULATION OF FLOW ESTIMATION
Simulations are used to evaluate the distributed flow-sensing

algorithm. We simulate flow estimation during a sinusoidal con-
trol input with constant amplitude. The simulated flow field is
generated from the vortex-shedding model (18). The fish dy-
namics are simulated using the motion model (33)–(34). Values
for the coefficients of the hydrodynamic model were obtained
experimentally using the setup described in the experimentsec-
tion. Six pressure sensors are distributed on each side of the fish
robot, which measures 20 cm in total, with a distance along the
center line of 2.5 cm, 7.5 cm, and 10 cm from the leading edge.
The inertial flow speed is set to 20 cm/s. The flapping actua-
tion frequency and amplitude in simulation are 0.75 Hz and 15◦,
respectively. The remaining parameters used in simulatingthe
flexible fish robot are shown in Table 1.

Figure 4 shows snapshots of the flapping fish robot in a uni-
form flow field. A vortex is introduced at each time step to
capture the unsteady effect of the flow. The Bayesian estima-
tion results are shown in Fig. 5. The speed estimate is accu-
rate, whereas the angle-of-attack estimate has a phase leadover
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FIGURE 4: Snapshots of unidirectional swimming of the fish
robot using the vortex-shedding method. (a) t = 0s; (b) t = 0.2s;
(c) t = 0.4s; (d) t = 0.6s; (e) t = 0.8s; (f) t = 1s; (g) t = 2s; (h) t =
3s.V is the the swimming speed of the robot with respect to the
inertial frame andU f is the uniform flow speed with respect to
the inertial frame.

the actual waveform. Also, the amplitude of the camber ratiois
overestimated, perhaps from using a simplified flow model in the
Bayesian estimation. However, for the purpose of swimming-
profile control, such as rheotaxis or speed regulation, we need
the “mean” motion of the fish robot, or the average of the angle
of attack and relative flow speed over one period of flapping ac-
tuation. Based on the simulation results, the quasi-steadyflow
model used in the Bayesian filter provides a satisfactory estimate
of the flow field despite its simplicity.

EXPERIMENTAL RESULTS FOR FLOW ESTIMATION
This section presents the experimental design and results for

evaluating the flow-sensing algorithm for a flexible fish robot.
We first discuss the fabrication of a flexible fish robot, and then
introduce the design of the experimental testbed. The experi-
mental results for flow sensing are presented to demonstratethe
effectiveness of the flow estimation algorithm.

Experimental Setup
We chose silicone rubber (Ecoflex 00-30 from Smooth-On)

as the flexible material for the fish robot. Cured rubber is soft
and strong with Shore 00-30 hardness. We first designed a mold
of the fish robot in SolidWorks, as shown in Figs. 6a and 6b, and
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(c)

FIGURE 5: Marginal probability densities for the states of the
Bayesian filter in the flow-sensing simulation: (a) the relative
flow speedU ; (b) the angle of attackα; and (c) the camber ratio
H.

then manufactured the mold using a high-precision 3D printer.
We poured the mixed silicone rubber compound into the mold
and then kept it in a vacuum chamber during curing to avoid
bubbles. For actuation of the angle of attack, a mini shaft from
MakerBeam was inserted before the molding process at the one-
quarter-point of the chord, behind the leading edge. For thepres-
sure sensor ports, holes of radius 1 mm were placed on each side
of the mold at a distance along the center line of 2.5 cm, 7.5 cm,
and 10 cm behind the leading edge. We packaged six pressure
sensors (Servoflo MS5401-BM) with appropriately sized tubing,
and fixed the sensors to the center shaft. Each pressure sensor
outputs analog voltage in proportion to the local pressure.The
whole fish robot measures 20 cm long, 3.6 cm wide, and 12 cm
tall as shown in Fig. 6c.

The experimental testbed for holding the fish robot and guid-

Shaft mount

Base mold

Joukowski curve

Half top

mold

Pressure

sensor

outlets

Alternative shaft mount

(a) (b) (c)

FIGURE 6: Illustration of the molding design for the fish robot:
(a) mold interior; (b) mold assembly; and (c) the fish robot after
molding.

Computer 

Arduino

NI DAQ

Data acquisition

Servo control

FIGURE 7: Schematic of the testbed.

ing the motion was designed to facilitate the flow-sensing ex-
periment; a schematic is shown in Fig. 7. A double-rail linear
guide is mounted to a 80/20 frame. We used two linear motion
air bearings (NEWWAY porous air bearing) to allow for low-
friction horizontal motion. A gantry platform was mounted on
those bearings to support the fish robot. Two load cell sensors
(300 g measurement range) mounted vertically at equal distance
from the center detect the force and torque in the surge and pitch-
ing directions, respectively. A DC servo (Savox 0235MG) sits
between the two load cells. The servo arm is bolted to an L-shape
MakerBeam rigidly attached to the fish to control the angle ofat-
tack. This setup was used for water-tunnel experiments to iden-
tify the hydrodynamic coefficients in Table 1, and to investigate
the thrust-force generation from the periodic flapping motion [3].
When the air bearing is turned on, the fish robot moves freely
along the guiding rail. The entire test platform is placed over
a Loligo 185 L flow tank, which generates a uniform flow field
within an enclosed test section that measures 25×25×87.5 cm,
as shown in Fig. 8.

Flow-sensing Experiments
This subsection presents results from testing the recursive

Bayesian estimation algorithm during one-dimensional swim-
ming. The fish robot is still for the first 5 seconds, and then
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FIGURE 8: The experimental setup. (a) Side view; (b) front view.

flaps for 10 seconds. The angle-of-attack actuation signal is si-
nusoidal with a frequency of 0.75 Hz and a constant amplitude
of 10◦. The uniform flow speed is 18.74 cm/s, which is cali-
brated using a OTT MF-Pro flow meter. The air bearing operates
throughout the experiment to allow the fish to move forward and
backward. The measurement data is acquired from the pressure
sensors using DAQ 6225 from National Instruments. The data is
then transmitted via USB to a laptop that runs the Bayesian filter
for data assimilation in Matlab 2013b. The control commands
for the angle of attack are sent out via serial communicationto
an Arduino UNO that drives the servo. The system parameters
identified before the experiments have the same values as listed
in Table 1. Figure 7 shows the data stream for the flow-sensing
experiment.

Figure 9 presents the measurement data from all six pres-
sure sensors. The data for each sensor has been processed by
subtracting the still-water pressure measurement taken before the
experiment, in order to eliminate the influence of nonuniform and
possibly time-varying bias from the pressure sensors.

Figure 10 shows the time evolution of the marginal prob-
ability densities. Observe that the estimated angle of attack α
(Fig. 10b) has the same oscillation frequency as the actual angle
of attack, with a slightly larger amplitude and a negative phase
shift. The estimated camber ratioH (Fig. 10c) has a sinusoidal-
like waveform, as predicted in simulation. The estimated rela-
tive speedU (Fig. 10a) oscillates around a constant value at dou-
ble the actuation frequency. The speed oscillation arises from
the periodic thrust generated by the flapping motion. The fish
robot has the same inertial speed as the uniform flow and conse-
quently exhibits station-holding behavior. (The gantry air tubing
and electrical wiring restrict motion of the robot to withinthe test
section.) The average estimated relative flow speed 18.74 cm/s
is equal to the incoming uniform flow speed, as observed in
Fig. 10a.

Figure 11 shows the moving average of the estimated rela-
tive flow speedU . The moving-average window size is equal to
one flapping time period. The shaded area shows the standard
deviation of the estimate over the corresponding average time
window. Note the estimation of the flow speed is more accurate
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FIGURE 9: The distributed pressure-sensor measurements in the
open-loop flow-sensing experiment.

during fish flapping (5 s–15 s) than during fish resting (0 s–5 s),
with significant difference in terms of estimation error (5%ver-
sus 60%). This observation is contrary to our knowledge of real
fish, which may sense the flow better with less turbulence. It is
explained by checking the observability Gramian of the robot’s
dynamic model with pressure measurements as the system out-
put, which suggests that the flow speed at zero angle of attackis
unobservable [9,10].

CONCLUSION
This paper presents a flow-sensing algorithm using dis-

tributed pressure sensors in a flexible fish robot. We design and
model a fish robot utilizing the Joukowski transformation tofa-
cilitate fluid modeling. We introduce two flow models for the
cambered Joukowski-foil-shaped robot, including a quasi-steady
potential-flow model for real-time flow estimation and a discrete-
time vortex-shedding model for simulating the flow. A recur-
sive Bayesian filter assimilates pressure measurements foresti-
mation of flow parameters. We derive the dynamics of a flexible
fish robot and present a reduced model for one-dimensional free
swimming. We also present the fabrication of a flexible fish robot
and the design of the experimental testbed. The flow-sensingal-
gorithm was tested and validated in both simulation and experi-
ments. In ongoing work, we are investigating a closed-loop con-
trol strategy for speed regulation of a flexible fish robot utilizing
the estimated flow.
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