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Abstract. This paper formulates a strategy for Driftcam, an ocean-going robot
system, to observe and track the motion of an ocean biological phenomenon
called the pelagic scattering layer, which consists of organisms that migrate ver-
tically in the water column once per day. Driftcam’s horizontal motion is deter-
mined by the flow field and the vertical motion is regulated by onboard buoyancy
control. In order to observe the evolution of the scattering layer, an ensemble
Kalman filter is applied to estimate organism density; the density dynamics are
propagated using the Perron-Frobenius operator. Multiple Driftcam are subject
to depth regulation by open-loop and closed-loop controllers; a control strategy
is proposed to track the peak of the density. Numerical simulations illustrate the
efficacy of this strategy and motivate ongoing and future efforts to design a coor-
dination formation algorithm for multi-agent Driftcam system to track the motion
of the scattering layer, with implications for ocean monitoring.
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1 Introduction

This paper addresses the problem of underwater mapping of a marine biological
system called the pelagic scattering layer. An ocean-going system called Driftcam is
deployed to perform the mapping, ideally in a group. This robotic system is propelled
by ocean currents and is used for counting and measuring organisms in the pelagic scat-
tering layer with a high-definition low-light camera [22]. Depth is regulated through a
piston pump engine, which pumps oil into an external bladder that can change buoyancy
by its expandable volume [1].

The pelagic scattering layer, also referred to as the sound scattering layer, is a bi-
ological layer in the ocean consisting of a variety of marine animals3. An important
feature of the pelagic scattering layer is the daily movement of organisms from the deep
ocean during the day to a shallow depth during the night [20]. This diel vertical migra-
tion represents the largest biology movement on the planet in terms of biomass, number
of individuals, and species4 and plays a key role in structuring ecological and physic-

3 https://en.wikipedia.org/wiki/Deep_scattering_layer
4 https://oceanexplorer.noaa.gov/technology/development-partnerships/21scattering-

layer/features/scattering-layer/scattering-layer.html
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ochemical processes, as well as the biological carbon pump of vast oceanic ecosys-
tems [3].

Despite the importance of the scattering layer, we lack knowledge of its biological
features and biogeochemical processes [10], because the scattering layer is difficult to
sample and observe in real time. Most sampling and sensing systems either cause distur-
bances or collect indirect data, resulting in inaccuracy [2, 16]. The untethered Driftcam
system modeled in this paper provides a direct observation of the organisms living in
the scattering layer [1]. This sampling problem is an example of a dynamic, data-driven
application system in which the collection of measurements is used to update a model,
which in turn is used to guide the collection of subsequent measurements.

Our work seeks a solution for long-endurance and large-scale sampling over
mesopelagic5 ocean space. The design and development of a long-endurance passive
marine sensor system makes it possible to sample large-scale ocean environments for
specified phenomena of interest [11, 12, 21]. Purely passive drifters like the Argo sys-
tem are not able to automatically achieve the configurations that improves sampling
efficiency [19]. Actuated vehicles like autonomous surface vehicles and autonomous
underwater vehicles are used to achieve faster surveys in the dynamic marine environ-
ment [9], but they may rely on prior knowledge of the flow field and require a large
number of vehicles, depending on the scale of the region of interest. Multi-agent au-
tonomous drifters are also deployed in a depth-holding configuration to measure the
internal waves near the shore [12], however, this configuration is more suitable to mon-
itoring ocean dynamics or biological systems occurring at relative limited depth inter-
val. Another ocean sampling method includes using actuated autonomous underwater
vehicles to track a patch of interest tagged by Lagrangian drifters. [4]. An adaptive sam-
pling strategy [5] uses feedback control to redesign paths in response to updated sensor
measurements, such as for sampling ocean features [15, 18].

This paper aims at identifying the depth and vertical distribution of the scattering
layer by sampling the density of organisms using onboard cameras, which use image
processing to measure organism density locally. The vertical depth dynamics of the
scattering layer determines the density propagation over time. An estimator is used to
recover the density field from discrete density measurements by one or more Driftcam.
The goal is to collect data that minimizes the estimation error of scattering layer density,
e.g., by tracking the density peak with a Driftcam using closed-loop control.

The contributions of this paper are (1) a dynamic model of organism density in
the scattering layer using the Perron-Frobenius operator; (2) an estimation framework
that assimilates discrete measurements taken by one or more Driftcam to reconstruct
the density and identify its peak using an ensemble Kalman filter; (3) and an adaptive
sampling strategy based on the recovered density map in which one or more Driftcam
tracks the peak density using closed-loop control.

The paper is organized as follows. Section 2 gives a brief description of the Perron-
Frobenius operator and the ensemble Kalman filter. Section 3 models the density prop-
agation based on the dynamics of diel vertical migration. The ensemble Kalman filter is
applied to recover the density field from measurements collected by one or more Drift-

5 https://ocean.si.edu/ecosystems/deep-sea/deep-sea
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cam. Numerical simulations in Section 4 illustrate the performance of the sampling
method. Section 5 summarizes the paper and ongoing and future work.

2 Preliminary

2.1 Perron-Frobenius Operator

The Perron-Frobenius (PF) operator is used in ergodic theory to study measure-
theoretic characterization. This is a brief introduction; detailed information can be
found in [6, 8]. Let X be a compact manifold and f : X → X be a smooth time in-
variant vector field. Consider the following time invariant system

ẋ = f(x). (1)

Let ϕf : R×X → X be the solution of system (1), i.e., x = ϕf (t, x0) satisfies (1) with
initial condition x(0) = x0.

Definition 1. A semigroup of operator Pτ : τ > 0 is said to be the PF operator if
Pτ : L1(X) → L1(X) is defined by [6]

Pτρ(·) = ρ ◦ ϕf (−τ, ·)|det(Dxϕf (−τ, ·))|, (2)

where Dx represents the Jacobian matrix with respect to state variable x.

If ρ(·) is a probability density (PDF) with respect to an absolutely continuous prob-
ability measure v, then Pτρ is another PDF with respect to the absolutely continuous
probability measure v ◦ ϕ(−τ, ·). Specifically,∫

B

Pτdv =

∫
ϕf (−τ,B)

ρdv, (3)

for any v-measurable set B [14]. The PF operator transport a density function with time
according to the flow of the system dynamics.

2.2 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is an Monte Carlo approximation of the
Kalman filter that stores, propagates and updates an ensemble of vectors to approxi-
mate the state distribution [13, 17]. Consider a nonlinear dynamic system and a linear
measurement equation,

x(tk+1) = f(xk) + w(tk+1) (4a)
y(tk+1) = Hx(tk+1) + v(tk+1), (4b)

where x(tk), w(tk) ∈ Rn and y(tk), v(tk) ∈ Rm. Assume that w(tk) and v(tk) are
zero-mean white noise with covariance matrices Q(tk) and R(tk), respectively. More-
over, x(t0), w(tk) and v(tk) are uncorrelated. For ensemble Kalman filter, the distribu-
tion is replaced by a collection of realizations called an ensemble. Let

X = [x1, · · · , xN ] = [xi] (5)
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be an n×N matrix, where xi is a sample from prior distribution. Matrix X is the prior
ensemble. In the same way, the distribution of measurement is represented by

Y = [y1, · · · , yN ] = [yi]. (6)

Here we show only the result of ensemble Kalman filter; detailed information can
be found in [7, 13, 17]. The forecast of EnKF is

X̃(tk+1) = f(X̂(tk)) +W (k) (7a)

E(X̃(tk+1)) =
1

N

N∑
i=1

xi, C =
AAT

N − 1
, (7b)

where
A = X̃(tk+1)− E(X̃(tk+1)). (8)

The update is given by

X̂(tk+1) = X̃(tk+1) + CHT (HCHT +R)−1(Y −HX). (9)

The EnKF implemented below has as state vector the density of the scattering layer over
a range of discrete depths; it uses the PF operator to propagate those density estimates
forward in time.

3 Estimation of the scattering layer

The depth ζ of the scattering layer at time t is modeled dynamically as follows:

ζ̇ = −ω(ζ(0)− ζ0) sin(ωt) (10a)

ṫ = 1 (10b)

where ω indicates the frequency of vertical migration (one cycle per 24 hours). To
mimic the width contraction at the surface, assume ζ0 = αζ(0), α ∈ (0.5, 1). The
dynamics (10) translate the organism density vertically. Define ϕ(t, ζ(0)) : R× R+ →
R, as the flow map, where

ϕ(t, ζ(0)) = ζ(0)[α+ (1− α) cosωt]. (11)

The density at a depth ζd ∈ R− can be predicted by the PF operator, i.e.,

ρ(tk, ζd) = ρ(0, ϕ(−tk, ζd))D(tk, 0) (12a)
ρ(tk+1, ζd) = ρ(0, ϕ(−tk+1, ζd))D(tk+1, 0), (12b)

where D(tk, 0) = 1/[α+ (1− α) cosωtk]

D(tk+1, tk) ≜
α+ (1− α) cosωtk

α+ (1− α) cosωtk+1
. (13)
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The density propagation at ζ from tk to tk+1 derived from (12) is

ρ(tk+1, ζ(tk+1)) = ∆(tk+1, tk)ρ(tk, ζ(tk)). (14)

where

∆(tk+1, tk) = D(tk+1, tk)
ρ(0, ϕ(−tk+1, ζd))

ρ(0, ϕ(−tk, ζd))
. (15)

Consider M Driftcam at depths [zD1
, · · · , zDM

]T ; each collects a noisy measure-
ment at a constant time step τm > tk+1 − tk; the measurement is y(tk) ∈ RM . Dis-
cretizing the full ocean depth into no levels, let Rno ∋ x(tk) ≜ [ρ(tk, ζi(tk))]. Based
on density propagation model (14), the density state-space model is

x(tk+1) = ∆(tk+1, tk)x(tk) + w(tk+1), w(tk+1) ∼ N (0, Q(tk+1)) (16a)
tk+1 = tk + τp (16b)

y(tk+1) = H(tk+1)x(tk+1) + v(tk+1), v(tk+1) ∼ N (0, R(tk+1)), (16c)

where

Hlj(tk) =

{
1 if zDl

(tk) = ζj(tk)

0 otherwise.

We design an unbiased estimator following the steps from (5)–(9). The result is

X̂(k) = [x̂1(k), x̂2(k), · · · , x̂N (k)] ∈ Rno×N .

The EnKF forecast step obtains

x̃i(tk+1) = ∆(tk+1, tk)x̂i(tk) + wi(tk+1), wi(tk+1) ∼ N (0, Q(tk+1)).

Forecast covariance is calculated from (7b). The observation y(k + 1) here forms a
matrix, Ỹ ∈ RM×N , given by

Ỹ(tk+1) = [ỹ1(tk+1), · · · , ỹN (tk+1)],

where ỹi(tk+1) = yi(tk+1) + v(tk+1). The updated ensemble X̂ is calculated as fol-
lows [13],

X̂(tk+1) = X̃(tk+1) +K[Ỹ(tk+1)−H(tk)X̃(tk+1)],

where

K = CHT (tk+1)[H(tk+1)CHT (tk+1) +R(tk+1)]
−1.

The following section illustrates the scattering layer modeling and estimation frame-
work.
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4 Numerical Results

(a) Density over time estimated by a single Driftcam.

(b) Density over time estimated by two Driftcam.

(c) Density over time estimated by two Driftcam; one is equipped with a closed-loop controller
that tracks the peak of the estimate, when the ensemble covariance is sufficiently low.

Fig. 1. Estimation of scattering layer density over time, with one or two Driftcam
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Fig. 2. Performance evaluation for open- and closed-loop Driftcam control. All the data is nor-
malized by that from the single Driftcam case.

This section presents three cases of scattering layer sampling: a single Driftcam, two
Driftcam, and two Driftcam with a closed-loop tracking controller. All the cases share
the same period of diel migration (24 hours), the same number of ensemble members
N = 100, and depth resolution no = 100.

In the first case, one Driftcam is commanded to perform sinusoidal motion from
-800m to 0m with frequency 0.15/hour. The Driftcam collects a density measurement
every 30min, shown as red dots on Fig 1(a). The average vertical speed is 7 cm/s.
Fig 1(a) shows that a single Dirftcam is able to map the density field and identify the
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density peak as indicated by the white line in Fig 1(a). However, performance improves
with a second Driftcam as shown next.

The second sampling result is for the case with two Driftcam. The second Drift-
cam is commanded to perform sinusoidal motion from -800m to 0m. From Fig 1(b),
the quality of mapping is improved compared to a single Driftcam, especially when the
organisms are sparsely distributed at the bottom. In the last case, after being deployed
for a certain time (10 hours), a feedback controller is activated when the trace of ensem-
ble covariance is below a threshold (20). This controller drives one Driftcam to track
the estimated density peak. Fig 2(a) and Fig 2(b) suggest that more Driftcam deployed
in the region of interest can reduce estimation error and its covariance. The estimation
error is the smallest in the closed-loop control case; however, the trace of the ensemble
covariance becomes higher.

5 Conclusion

This work presents an ocean-sampling strategy for a buoyancy-driven underwater
vehicle designed to observe the density field of the pelagic scattering layer. The strategy
is designed based on modeling the density dynamics by the Perron-Frobenius operator.
Samples of the density field are assimilated by an ensemble Kalman filter. This paper
reveals two strategies to improve the estimation performance either by deploying more
Driftcam or by closed-loop control. In ongoing work, the strategy will be extended to
multiple Driftcam for higher spatial dimensions. Additionally, a coordinated controller
may be incorporated into the sampling strategy to regulate the Driftcam motion relative
to one another.
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