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The recent development of mobile robots has dramatically extended the sce-

narios where robots can be deployed to complete tasks autonomously. One of the

tasks is monitoring and controlling large-scale spatiotemporal processes, e.g., oil

spills and forest fires, which is mainly conducted by human operators. These tasks

can pose health threats, cause severe environmental issues, and incur substantial

financial costs. Autonomous robots can free human operators from danger and

complete tasks in a timely and economically efficient manner. In this dissertation,

estimation and control of spatiotemporal processes using mobile sensors and actu-

ators are studied. Spatiotemporal processes vary in both space and time, whose

dynamics can be characterized by partial differential equations (PDEs). Since the

state space of a PDE is infinite-dimensional, a system with PDE dynamics is also

known as a distributed parameter system (DPS). The performance of the estima-

tion and control of a DPS can be enhanced (compared to stationary sensors and



actuators) due to the additional degree of freedom induced from the mobility of the

sensors and actuators. However, the vehicles carrying sensors and actuators usually

have limited onboard resources (e.g., fuels and batteries) whose usage requires ju-

dicious decisions. Hence, we propose a new optimization framework that addresses

the goal of estimation and control of a spatiotemporal process while considering the

limited onboard resources.

In the first part of this dissertation, an optimization framework is proposed

to control a DPS modeled by a 2D diffusion-advection equation using a team of

mobile actuators. The framework simultaneously seeks optimal control of the DPS

and optimal guidance of the mobile actuators such that a cost function associated

with both the DPS and the mobile actuators is minimized subject to the dynamics

of each. We establish conditions for the existence of a solution to the proposed prob-

lem. Since computing an optimal solution requires approximation, we also establish

the conditions for convergence to the exact optimal solution of the approximate

optimal solution. That is, when evaluating these two solutions by the original cost

function, the difference becomes arbitrarily small as the approximation gets finer.

Two numerical examples demonstrate the performance of the optimal control and

guidance obtained from the proposed approach.

In the second part of this dissertation, an optimization framework is proposed

to design guidance for a possibly heterogeneous team of multiple mobile sensors

to estimate a spatiotemporal process modeled by a 2D diffusion-advection process.

Owing to the abstract linear system representation of the process, we apply the

Kalman-Bucy filter for estimation, where the sensors provide linear outputs. We



propose an optimization problem that minimizes the sum of the trace of the covari-

ance operator of the Kalman-Bucy filter and a generic mobility cost of the mobile

sensors, subject to the sensors’ motion modeled by linear dynamics. We establish the

existence of a solution to this problem. Moreover, we prove convergence to the ex-

act optimal solution of the approximate optimal solution. That is, when evaluating

these two solutions using the original cost function, the difference becomes arbitrar-

ily small as the approximation gets finer. To compute the approximate solution, we

use Pontryagin’s minimum principle after approximating the infinite-dimensional

terms originating from the diffusion-advection process. The approximate solution is

applied in simulation to analyze how a single mobile sensor’s performance depends

on two important parameters: sensor noise variance and mobility penalty. We also

illustrate the application of the framework to multiple sensors, in particular the

performance of a heterogeneous team of sensors.

In the third part of this dissertation, a cooperative framework for estimating

and controlling a spatiotemporal process using collocated mobile sensors and actu-

ators is proposed. We model the spatiotemporal process by a 2D diffusion equation

that represents the dynamics. Measurement and actuation of the process dynamics

are performed by mobile agents whose motion is described by single-integrator dy-

namics. The estimation and control framework is formulated using a Kalman filter

and an optimization problem. The former uses sensor measurements to reconstruct

the process state, while the latter uses the estimated state to plan the actuation

and guidance of the mobile agents. The optimization problem seeks the actuation

and guidance that minimize the sum of the quadratic costs of the process state,



actuation input, and guidance effort. Constraints include the process and agent

dynamics as well as actuation and speed bounds. The framework is implemented

with the optimization problem solved periodically using a nonlinear program solver.

Numerical studies analyze and evaluate the performance of the proposed framework

using a nondimensional parameterization of the optimization problem. The frame-

work is also implemented on an outdoor multi-quadrotor testbed with a simulated

spatiotemporal process and synthetic measurement and actuation.
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Chapter 1: Introduction

The recent development of mobile robots has dramatically extended the sce-

narios where robots can be deployed to complete tasks autonomously. One of the

tasks is monitoring and controlling large-scale spatiotemporal processes, e.g., oil

spills, harmful algal blooms, and forest fires, which currently relies on human oper-

ators. These tasks can pose health threats, cause severe environmental issues, and

incur substantial financial costs. A heterogeneous pool of autonomous agents with

diverse sensors and actuators is an effective tool for understanding and/or influenc-

ing a dynamical spatiotemporal process. For example, a forest fire is an example

of a dynamical and spreading process that may be influenced by onboard actua-

tion, i.e., targeted application of fire retardant. Another example is chemical- or

biological-contamination in the air or water, where one or multiple toxic sources can

be detected with sensor measurements, and the plume can be contained and elimi-

nated by reactive counter-measures. However, operational and resource constraints,

such as time, energy, or the number of agents, may prohibit simultaneous estima-

tion and/or control of these processes, especially when the agents are simultaneously

performing other tasks. To overcome this limitation, agents should be adaptively

deployed to leverage their unique dynamics and sensing and actuation abilities.
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This dissertation aims to solve the problem raised in the scenarios described

above by proposing an optimization framework that addresses the goal of estimating

and controlling a spatiotemporal process and takes into consideration the limitations

of the mobile agents. Specifically, the following three problems are formulated and

studied in this dissertation:

1. How to control a spatiotemporal process using mobile actuators with limited

onboard resources? Specifically, what trajectories do the actuators follow, and

how much actuation do the actuators implement along such trajectories to

control the spatiotemporal process to a zero state?

2. How to estimate a spatiotemporal process using mobile sensors with limited

onboard resources? Specifically, what trajectories do the sensors follow to

improve the quality of estimation using a given estimation scheme?

3. How good is the proposed framework that controls a spatiotemporal process us-

ing the estimated state information with mobile sensors and actuators? What

are the advantages and disadvantages of the proposed framework?

1.1 Survey of the relevant literature

Spatiotemporal processes vary in both space and time, and they often span a

large domain. Earlier work has focused on sampling the spatiotemporal process us-

ing stationary or mobile sensor networks, where the so-called coverage problem has

been extensively investigated. Such a problem studies how to place the sensors with
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limited sensing range to cover the domain for sampling and to maintain communi-

cations among each other. Lloyd’s algorithm and its variations are frequently used

to solve the coverage problem, where the key is to partition the (non)uniform do-

main [8]. In [77], a multi-vehicle sampling algorithm is proposed to generate trajec-

tories for nonuniform coverage of a nonstationary spatiotemporal field. A nonlinear

coordinate transformation is applied to turn the field locally stationary (such that

uniform coverage algorithms are applied) and subsequently inversely transformed

to obtain the vehicles’ sampling trajectories. The authors of [72] propose a dis-

tributed control algorithm to steer a group of agents to provide adaptive sampling

of the environment. Coverage of the field and online learning of sampling priority

are conducted simultaneously. The algorithm provides provable guarantees on error

bounds of the estimation of the field and convergence of the robots to their locally

optimal sensing positions. Experiments were conducted to demonstrate the algo-

rithm with ground robots that sample spatially distributed luminous intensity as

the environment.

Modeling the spatiotemporal field by (non-parametric) Gaussian process [91]

or artificial sampling surfaces [77, 89] has shown satisfactory results for estimation

and sampling purposes. However, such models may not characterize well the control

or impact to the spatiotemporal field due to its lack of expression for inputs. An

alternative model is the partial differential equation (PDE). A PDE varies both in

space and time that matches the nature of spatiotemporal fields. An example is

the diffusion-advection PDE that characterizes mass transportation (harmful algal

blooms [71]) or heat transfer (temperature distribution control [69]). The control
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input takes effect in a PDE-modeled system by serving as an inhomogeneous term

in the differential equation. Measurement or sampling of the PDE is done through

the observation equation which provides local information of the PDE.

The fundamentals about PDEs in the context of control and estimation have

been studied since the 1960s. The textbooks [5,21] provide a comprehensive review

on the subject. The sensors/actuators can be placed on the boundary which results

in boundary estimation/control [36, 48, 74]. For sensors placed on the boundary,

one may design observers based on boundary measurements. The challenge in using

boundary measurements is that the output operator is unbounded when charac-

terized in an abstract linear system. A tutorial paper [36] reviews the conditions

for the well-posedness of the dual control problem with boundary inputs. One ap-

proach to boundary observer design is backstepping [42, 73], which stabilizes the

observer using a Volterra transformation that transforms the original system to a

stable target system and passes on the stability to the observer via its inverse trans-

formation. Optimization techniques, e.g., a linear-quadratic estimator [62], have

been proposed for boundary sensors using the method of variation. For boundary

control, backstepping may also be applied to design stabilizing control [74].

The estimation can be categorized into estimation of the parameters in the

model and the state of the process. The former is also known as parameter iden-

tification, in which the sensors are guided to collect information about the process

and use the model’s structure to infer unknown parameters. A common procedure

adopted from the field of optimal experiment design is based on the Fisher Informa-

tion Matrix (FIM), whose inverse is an approximation of the covariance matrix of

4



any unbiased estimator of the unknown parameters [81]. The FIM is constructed by

the partial derivative of the process state with respect to the unknown parameters.

Hence, the FIM characterizes parameter sensitivity. Many scalar-valued criteria can

be applied with various goals [81], for example, D-optimality, which maximizes the

log-determinant of the FIM, achieves the minimum volume of the confidence ellipsoid

of the estimation; E-optimality, which maximizes the smallest eigenvalue of the FIM,

achieves minimal length of the longest axis of the same ellipsoid. Various criteria

have been proposed for sensors’ guidance design, for example, D-optimality [75,79],

minimum time [82], or the Frobenius number of the Hessian of the least square [83].

Among the parameter identification problems, the one that aims to detect

the source(s) has been extensively studied due to broad applications that fit into

the problem’s definition. It is also known as source localization or source identi-

fication. Generally speaking, the source will generate a spatially distributed field

(also known as a plume) in which the sensors can detect the source using the gra-

dient information. But in reality this is not always the case since the field may

not be stationary: a dynamical process is likely possible. Furthermore, multiple

sources may exist and they could be mobile. In such complex scenarios, the model-

based methods provide systematic guidance for sensors to track the sources. The

authors of [46] propose a systematic approach for active source identification in a

steady-state advection-diffusion process using mobile sensors. The approach iterates

between two subproblems: motion planning and source identification. The motion

planning places the sensors at locations that maximize the minimum eigenvalue of

the FIM. The source identification is formulated as a PDE-constrained optimization

5



problem that minimizes a regularized least-squares cost. The method is compared

with other methods in simulations and shows advantage in different scales of the

Péclet number of the diffusion-advection process. Experimental demonstration is

conducted where the mobile sensor locates an ethanol source within a nonconvex

domain. In the case where a source may represent intruder which leaves behind

trackable plumes, a gradient ascent method has been used in [31,32] to track a mo-

bile source which yields relatively big errors in the estimated state variable. In [30],

a Lyapunov-based scheduling guidance law is proposed for a mobile sensor network

to estimate the proximity of an intruder modeled as a mobile source.

It is generally impossible to completely identify the state of a PDE-modeled

system with a finite number of sensors. Hence, an observer for such a system is

necessary. For the estimation of the state, since linear partial differential equations

can be treated as abstract linear systems, Luenberger observer and Kalman filter

(KF) [3] can be applied. The key to an infinite-dimensional KF is the evolution of

the estimation error’s covariance, which is operator-valued and can be solved via

Riccati equations whose properties have been discussed in [11, 12]. For numerical

approximation and computational issues, approximation results are summarized in

[13] for the infinite-dimensional algebraic Riccati equations of a linear-quadratic

regulator. However, often the disturbance to a system may not be Gaussian, in

which case H2- or H∞-observer design is favorable [61, 86]. For a comparison of

various observer designs for the heat equation, see [1].

For static in-domain sensors, a network can be deployed for estimating a PDE-

modeled system. The problem is how to place the sensors to yield effective estima-
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tion, which is referred to as sensor placement. The solution is to select the sensor

placement that yields optimal performance for a certain criterion. The trace of the

covariance operator of the KF, which quantifies the uncertainty of the estimate, is

a common choice of the cost function to be minimized [4]. A similar problem is

investigated in [96], which establishes the well-posedness of the sensor placement

problem and its approximation with the cost function being the trace of the co-

variance operator. The same criterion has been applied to sensor placement of the

Boussinesq equation [40]. In [66], a randomized observability constant is minimized

by choosing suitable shapes and locations of the sensors. Other criteria, e.g., en-

hanced observability, optimal state estimation, and robust input-output mapping,

are discussed for a parabolic PDE in [29]. Geometric approaches can also be ap-

plied to sensor placement, e.g., using the centroidal Voronoi tessellation [27] and

combining the transfer-function model with geometric rules [84].

A variation of the sensor placement problem includes mobility of the sensors.

In this scenario, a guidance policy is necessary to take advantage of the additional

degree of freedom induced by mobility, which also makes the problem more com-

plicated by introducing the dynamics of the mobile sensors. One may design sen-

sor guidance using Lyapunov-based methods, where the guidance is constructed to

make the derivative of the Lyapunov function negative. The Lyapunov function is

usually designed to contain (quadratic) terms of the PDE state and the sensor guid-

ance [22,23,33]. The Lyapunov-based guidance can further be used in monitoring a

hazardous environment where the regions of high information density reduce sensor

longevity. Such guidance is combined with a switching policy to balance the con-
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flicting needs of information collection and sensor life span [26]. A similar approach

uses the gradient of estimation error to guide sensors to the region that has large

estimation error [24].

Optimization can also be applied to design sensor guidance, where the guidance

(or the trajectory) of the sensor is selected to minimize a cost function. An early

work [14] proposes an optimization problem that minimizes the weighted sum of

the guidance effort for steering a sensor and the mean-square estimation error at a

terminal time. In [25], the sensors are guided to the location that yields a maximum

value of the estimation kernel. In [41], receding horizon guidance is proposed to find

the sensor path that maximizes mutual information between sensor measurements

and the predicted state of the PDE.

Since control of a PDE is the dual of estimation, the approaches reviewed

above have been applied for designing actuators’ scheduling, placement, or guid-

ance. The problem of determining the location of stationary actuators is called the

actuator placement problem. Actuator placement has been studied for optimality

in the sense of linear-quadratic (LQ) [57], H2 [58], and H∞ [43]. The author of [57]

studies the actuator placement problem with the LQ performance criterion. The

actuators’ locations are chosen to minimize the operator norm or trace norm of

the Riccati operator solved from an algebraic Riccati equation associated with an

infinite-dimensional system. If the input operator is compact and continuous with

respect to actuator location in the operator norm, then a solution exists for the

problem minimizing the operator norm of the Riccati operator [57, Theorem 2.6],

under stabilizability and detectability assumptions. When computing the optimal
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actuator locations, if the approximated Riccati operator converges to the original

Riccati operator at each actuator location, then the approximate optimal actua-

tor locations converge to the exact optimal locations [57, Theorem 3.5]. For the

above results to hold when minimizing the trace-norm of the Riccati operator, the

input and output spaces have to be finite-dimensional [57, Theorems 2.10 and 3.9]

in addition to the assumptions stated above.

The authors of [58] design optimal actuator placement by minimizing the H2-

control performance criterion, which minimizes the L2-norm of the linear output

of a linear system, subject state disturbances. Roughly speaking, H2-control per-

formance reduces the response to the disturbances while setting a zero initial con-

dition, whereas the LQ performance reduces the response to the initial condition

in a disturbance-free setting. For disturbances with known or unknown spatial

distribution, the trace of the Riccati solution (scaled by the disturbance’s spatial

distribution) or operator norm of the Riccati solution are minimized, respectively,

where the existence of a solution and convergence to the exact optimal solution of the

approximate optimal solution are guaranteed. In [43], the H∞-performance criterion

is minimized for actuator placement. Specifically, the actuators are placed in the

locations that yield infimum of the attenuation bound (upper bound of the infinity

norm of the closed-loop disturbance-to-output transfer function). The conditions

for the existence of a solution and convergence to the exact optimal placement of

the approximate optimal placement are provided.

Geometric approaches have also been proposed for actuator placement. For

example, a modified centroidal Voronoi tessellation (mCVT) yields locations of ac-
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tuators and sensors that yields least-squares approximate control and estimation

kernels for a parabolic PDE [27]. The input operator is designed by maximizing

the H2-norm of the input-to-state transfer function, whereas the kernel of the state

feedback is obtained using the Riccati solution. Next, mCVT determines the parti-

tion such that the actuator and sensor locations achieve optimal performance (in the

sense of least-squares) to the input operator and state feedback kernel, respectively.

A comparison of various performance criteria for actuator placement has been con-

ducted for controlling a simply supported beam [59] and a diffusion process [60].

It has been analyzed that maximizing the minimum eigenvalue of the controllabil-

ity gramian is not a useful criterion. Because the lower bound of the eigenvalue is

zero, the minimum eigenvalue approaches zero as the dimension of approximation

increases [59, 60].

The guidance of mobile actuators is designed to improve the control perfor-

mance in comparison to stationary actuators. Various performance criteria have

been proposed for guidance. In [34], a mobile heat source is steered to main-

tain a spatially uniform temperature distribution in 1D using the optimal control

method. The formulation uses a finite-dimensional approximation for modeling the

process and evaluating performance. Additionally, the admissible locations of the

heat source are chosen within a discrete set that yields approximate controllability

requirements. Algorithms are provided to solve the proposed problem with consider-

ations in real-time implementation and hardware constraints. Experimental results

demonstrate the performance of the proposed scheme. The authors of [35] pro-

pose an optimization framework that steers mobile actuators to control a reaction-
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diffusion process. A specific cost function, consisting of norms of control input and

measurement of the DPS and the steering force, is minimized subject to dynamics

of the actuator’s motion and the PDE, and bounds on the control input and state of

the DPS. The implementation of the framework is emphasized by discrete mechan-

ics and model predictive control which yield computationally tractable solutions, in

addition to an approximation of the PDE and a discrete set of admissible actuator

locations.

The problem of ultraviolet curing using a mobile radiant actuator is investi-

gated in [95], where the curing process is modeled by a 1D nonlinear PDE. Both the

radiant power and scanning velocity of the actuator are computed for reaching a tar-

get curing state. A dual extended Kalman filter is applied to estimate the state and

parameters of the curing process for feedback control, based on the phases of curing.

In [28], a navigation problem is studied in which a mobile agent moves through a

diffusion process represented by a hazardous field with given initial and terminal

positions. Such a formulation may be applied to emergency evacuation guidance

from an indoor environment with carbon monoxide. Both problems with minimum

time and minimum accumulated effects of hazards are formulated, and closed-form

solutions are derived using the Hamiltonian. A Lyapunov-based guidance strategy

for collocated sensors and actuators to estimate and control a diffusion process is

proposed in [23]. The decentralized guidance of the actuators for controlling a diffu-

sion process to a zero state is derived by constructing suitable Lyapunov functions.

The same methodology is applied to construct a distributed consensus filter via the

network among agents to improve state estimation.
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1.2 Contributions to the state-of-the-art

This dissertation provides research contributions in the general areas of esti-

mation and control of PDE-modeled systems and multi-agent systems. The main

results of this dissertation have been submitted for publication in archival jour-

nals [16, 17, 19]. Earlier research results related to this dissertation appeared in

conference proceedings [15,18,20].

First, we propose an optimization framework for controlling a PDE-modeled

system using a team of mobile actuators. The framework incorporates both con-

trolling the process and steering the mobile actuators. We establish the existence

conditions of a solution of the proposed problem. It turns out that the conditions

are generally satisfied in engineering problems, which allows the results to be ap-

plied to a wide range of applications. Most importantly, we prove the conditions

for the convergence to the exact optimal solution of the approximated optimal so-

lution. The convergence is in the sense that the cost function of the exact problem

evaluated at these two solutions becomes arbitrarily close as the dimension of the

approximation goes to infinity. The convergence is verified in numerical studies and

confirms the appropriateness of the optimal solution of the approximation.

Second, we formulate an optimization problem to generate a guidance policy

for a team of mobile sensors to estimate a 2D diffusion-advection process. The

optimization problem minimizes the trace of the covariance operator plus a generic

cost of the sensors’ motion subject to sensor platform dynamics. The formulation

with a generic mobility cost applies to a wide range of applications, e.g., accumulated
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exposure to hazards, guidance effort, or distance to terminal rendezvous locations.

We establish conditions for the existence of a solution to the proposed problem and

conditions for convergence to an exact optimal solution of the approximate optimal

solution. When evaluating these two solutions using the original cost function, the

difference gets arbitrarily small as the approximation gets finer.

Thirdly, we propose a framework for cooperative estimation and control of a

spatiotemporal process using a team of mobile collocated sensors and actuators. The

actuators’ guidance and actuation are obtained by periodically solving an optimiza-

tion problem. We identify key parameters for the optimization problem, use nondi-

mensional analysis to reduce the size of the parameter space, and conduct extensive

numerical analysis on how the performance of the optimal solution changes when the

nondimensional parameters change. The overall framework is evaluated using the

Monte Carlo simulations with comparisons to naive strategies. We demonstrate the

framework on an outdoor multi-quadrotor testbed, which confirms the framework’s

capability and also suggests ongoing and future directions to improve the feasibility

of the framework in practice with real spatiotemporal processes.

1.3 Outline of the dissertation

The organization of the dissertation is as follows. Chapter 2 introduces the

notation and terminology in this dissertation. Background knowledge is reviewed

in terms of the dynamics of the mobile sensors and actuators, 2D diffusion-advection

equation and its abstract linear system representation, the associated linear-quadratic
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regulator and the Kalman filter, and finite-dimensional approximations to the infinite-

dimensional components.

Chapter 3 describes an optimization framework for controlling a DPS that is

modeled by a 2D diffusion-advection equation using a team of mobile actuators. The

framework simultaneously seeks optimal control of the DPS and optimal guidance

of the mobile actuators such that a cost function associated with both the DPS and

the mobile actuators is minimized subject to the dynamics of each. We establish

conditions for the existence of a solution to the proposed problem. Since computing

an optimal solution requires approximation, we also establish the conditions for

convergence to the exact optimal solution of the approximate optimal solution. That

is, when evaluating these two solutions by the original cost function, the difference

becomes arbitrarily small as the approximation gets finer. Two numerical examples

demonstrate the performance of the optimal control and guidance obtained from

the proposed approach.

Chapter 4 describes an optimization framework for designing guidance for a

possibly heterogeneous team of multiple mobile sensors to estimate a DPS modeled

by a 2D diffusion-advection process. We propose an optimization problem that

minimizes the sum of the trace of the covariance operator of the Kalman-Bucy filter

and a generic mobility cost of the mobile sensors, subject to the sensors’ motion

modeled by linear dynamics. We establish the existence of a solution to this problem.

Moreover, we prove convergence to the exact optimal solution of the approximate

optimal solution. That is, when evaluating these two solutions using the original

cost function, the difference becomes arbitrarily small as the approximation gets
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finer. The approximate solution is applied in simulation to analyze how a single

mobile sensor’s performance depends on two important parameters: sensor noise

variance and mobility penalty. We also illustrate the application of the framework

to multiple sensors, particularly the performance of a heterogeneous team of sensors.

Chapter 5 describes a framework for cooperative estimation and control of a

2D diffusion process with collocated mobile actuators and sensors. We plan for the

actuators’ guidance and actuation using the estimation of the state. The guidance

and actuation are solved from an optimization problem that has the same structure

as the problem studied in Chapter 3 but with additional constraints on the maxi-

mum speed and maximum actuation of the actuators. The problem is formulated

with approximated PDE components and solved using a nonlinear optimal control

solver. Extensive numerical studies have been conducted to analyze and evaluate

the performance of the framework under varying parameters. The framework was

demonstrated on an outdoor multi-quadrotor testbed with four quadrotors. The

advantages and disadvantages of the framework are discussed.

Chapter 6 summarizes the contributions of the dissertation and lists ongoing

and future work.
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Chapter 2: Notation, terminology, and supporting Lemmas

2.1 Notation and terminology

The dissertation adopts the following notation. The symbols R, R+, and N

denote the sets of real numbers, nonnegative real numbers, and nonnegative integers,

respectively. The boundary of a set M is denoted by ∂M . The n-nary Cartesian

power of a set M is denoted by Mn. The notation X1 ↪→ X2 means that the space

X1 is densely and continuously embedded in X2. The norm in a finite- and infinite-

dimensional space is denoted by | · | and ‖·‖, respectively, with subscripts indicating

its type. The space of all bounded linear operators from space X to space Y is

denoted by L(X;Y ) or L(X) if Y = X. We define the space of continuous mappings

by C(I;X) = {F : I → X such that t 7→ F (t) is continuous in ‖·‖X} with the sup

norm ‖F (·)‖C(I;X) = supt∈I ‖F (t)‖X . For a Hilbert space H equipped with inner

product 〈·, ·〉 and φ1, φ2 ∈ H, define φ1 ◦ φ2 ∈ L(H) by (φ1 ◦ φ2)ψ = φ1〈φ2, ψ〉 for

all ψ ∈ H. The superscript ∗ denotes an optimal variable, whereas ? denotes the

adjoint of a linear operator. The transpose of a matrix A is denoted by A>. An

n × n-dimensional diagonal matrix with elements of vector [a1, a2, . . . , an] on the

main diagonal is denoted by diag(a1, a2, . . . , an). The ith element of a vector v is

[v]i. An n×n-dimensional identity matrix is denoted by In. We denote by 0n×m and
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1n×m an n×m-dimensional matrix with all entries being 0 and 1, respectively. The

term guidance refers to the steering of the mobile agents, whereas the term control

refers to the control input to the DPS. For an optimization problem

minimize
x

J(x)

subject to x ∈ C,
(P0)

we use J(P0)(x) to denote the cost function of (P0) evaluated at x. Specifically,

J∗(P0)(x
∗) indicates that the optimal value of (P0) is attained when the cost function

is evaluated at an optimal solution x∗.

2.2 Dynamics of the mobile actuators and sensors

Assume each of the ma mobile actuators has linear dynamics, so that the

dynamics of actuator i are

ξ̇i(t) = αiξi(t) + βipi(t), ξi(0) = ξi,0, (2.1)

where ξi(t) ∈ Rn (n ≥ 2) and pi(t) ∈ Pi ⊂ Rm are the state and guidance at t,

respectively, for i ∈ {1, 2, . . . ,m}. Assume that system (2.1) is controllable. The

first two elements of ξi(t) are the horizontal and vertical position, xi(t) and yi(t),

of the actuator in the 2D domain. One special case would be a single integrator,

where ξi(t) ∈ R2 is the position, pi(t) ∈ R2 is the velocity commands, αi = 02×2,

and βi = I2.
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For conciseness, we concatenate the states and guidance of all actuators, re-

spectively, and use one dynamical equation to characterize the dynamics of all ac-

tuators:

ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0, (2.2)

where matrices α and β are assembled from αi and βi for i ∈ {1, 2, . . . ,ma}, respec-

tively and are consistent with the concatenation for ξ and p. With a slight abuse

of notation, we use n for the dimension of ξ(t) and m for the dimension of p(t).

Define the admissible set of guidance P = P1 × P2 × · · · × Pma such that p(t) ∈ P

for t ∈ [0, tf ]. Let M ∈ R2ma×n be a matrix such that Mξ(t) is a vector of locations

of the actuators.

Assume each of the ms mobile sensors has the linear dynamics

ζ̇i(t) = αiζi(t) + βipi(t), ζi(0) = ζi,0, (2.3)

where ζi(t) ∈ Rn and pi(t) ∈ Pi ⊂ Rm are the state and the guidance of sensor i

at time t, respectively. With a slight abuse of notation, we do not distinguish the

notation for αi, βi, and pi in the dynamics of the actuators (2.1) and of the sensors

(2.3) as they are clear from the context. The state ζi contains the 2D location of

sensor i and hence n ≥ 2. Assume that system (2.3) is controllable. One special case

of (2.3) would be a single integrator, where ζi(t) ∈ R2 is the location, pi(t) ∈ R2 is the

velocity command, and αi and βi are zero matrix and identity matrix, respectively.

For conciseness, we concatenate the states and guidance of all ms sensors,
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respectively, and use one dynamical equation to describe the dynamics of all sensors:

ζ̇(t) = αζ(t) + βp(t), ζ(0) = ζ0, (2.4)

where matrices α and β are assembled from αi and βi for i ∈ {1, 2, . . . ,ms}, respec-

tively, and are consistent with the concatenation for ζ and p. The controllability of

the concatenated system (2.4) inherits that of each individual system (2.3). We use

n for the dimension of ζ(t) and m for the dimension of p(t). Define the admissible

set of guidance P = P1 × P2 × · · · × Pms such that p(t) ∈ P for t ∈ [0, tf ].

2.3 Deterministic abstract linear system and linear-quadratic regu-

lation

This dissertation is motivated by the problem of controlling the following

diffusion-advection process on a two-dimensional spatial domain Ω = [0, 1] × [0, 1]

with a team of ma mobile actuators:

∂z(x, y, t)

∂t
= a∇2z(x, y, t)− v · ∇z(x, y, t) +

ma∑
i=1

(Biui)(x, y, t), (2.5)

z(·, ·, t)|∂Ω = 0, (2.6)

z(x, y, 0) = z0(x, y), (2.7)

where z(·, ·, t) is the state at time t, v ∈ R2 is the velocity field for advection,

and ui is the control implemented by actuator i, with the actuation characterized
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spatially by Bi. The state z lives in the state space L2(Ω). A representative model

of the actuation dispensed by each actuator is Gaussian-shaped and centered at the

actuator i’s location (xi, yi) with a bounded support such that

Bi(x, y) =


1

2πσ2
i

exp

(
−(x− xi)2

σ2
i

− (y − yi)2

σ2
i

)
if |x− xi| ≤ σi and |y − yi| ≤ σi,

0 otherwise,

(2.8)

where the parameter σi determines the spatial influence of the actuation, which is

concentrated mostly at the location of the actuator and disperses to the surrounding

with an exponential decay.

To describe the dynamics of PDE (2.5)–(2.7), consider the following abstract

linear system:

Ż(t) = AZ(t) + B(Mξ(t), t)u(t), Z(0) = Z0, (2.9)

where Z(·) is the state within state space H = L2(Ω) and u(·) is the control within

the control space u(t) ∈ U ⊆ Rma for t ∈ [0, tf ]. In the case of diffusion-advection

process (2.5), for φ ∈ H,

(Aφ)(x, y) = a∇2φ(x, y)− v · ∇φ(x, y), (2.10)

where the operator A has domain Dom(A) = H2(Ω) ∩H1
0 (Ω). The input operator

B(Mξ(t), t) ∈ L(U,H) is a function of the actuator locations such that B(Mξ(t), t) =

[B1(Mξ1(t), t), . . . ,Bma(Mξma(t), t)]>, where Bi(·, t) ∈ L2(Ω) for all t ∈ [0, tf ] and
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i ∈ {1, 2, . . . ,ma}. A special case is the time-invariant input operator in (2.8). Since

the actuator state ξ(t) is a function of time t, we sometimes use B(t) for brevity.

The operator A : Dom(A) → H is an infinitesimal generator of a strongly

continuous semigroup S(t) on H. Subsequently, the dynamical system (2.9) has a

unique mild solution Z ∈ C([0, tf ];H) for any Z0 ∈ H and any u ∈ L2([0, tf ];U)

such that Z(t) = S(t)Z0 +
∫ t

0
S(t− τ)B(ξ(τ), τ)u(τ)dτ .

Similar to a finite-dimensional linear system, a linear-quadratic regulator (LQR)

problem can be formulated with respect to (2.9), which looks for a control u(·) ∈

L2([0, tf ];U) that minimizes the following quadratic cost:

J(Z, u) =

∫ tf

0

〈Z(t),Q(t)Z(t)〉+ u(t)>Ru(t)dt+ 〈Z(tf ),QfZ(tf )〉, (2.11)

where Q(t) ∈ L(H) and Qf ∈ L(H) are self-adjoint and nonnegative, which eval-

uates the running cost and terminal cost of the PDE state. The coefficient R is

an ma ×ma-dimensional symmetric and positive definite matrix that evaluates the

control effort. We refers to J(Z, u) as the PDE cost.

Analogous to the finite-dimensional LQR, an optimal control u∗ that minimizes

the quadratic cost (2.11) is

u∗(t) = −R−1B?(t)Πc(t)Z(t), (2.12)

where Πc is an operator that associates with the following backward differential
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operator-valued Riccati equation:

Π̇c(t) = −A?Πc(t)− Πc(t)A−Q(t) + Πc(t)B̄B̄?(t)Πc(t) (2.13)

with terminal condition Πc(tf ) = Qf , where B̄B̄?(t) is short for B(t)R−1B?(t). Before

we proceed to state the conditions for the existence of a unique solution of (2.13),

we introduce the Jq-class as follows.

Denote the trace of a nonnegative operator A ∈ L(H) by Tr(A), where Tr(A) =∑∞
k=1〈φk, Aφk〉 for any orthonormal basis {φk}∞k=1 of H (the trace is independent

of the choice of basis functions). For 1 ≤ q < ∞, let Jq(H) denote the set of all

bounded operators L(H) such that Tr((
√
A?A)q) <∞ [11]. If A ∈ Jq(H), then the

Jq-norm of A is defined as ‖A‖Jq(H) = (Tr((
√
A?A)q))1/q <∞. The class J1(H) and

J2(H) are known as the space of trace operators and the space of Hilbert-Schmidt

operators, respectively. Note that a continuous embedding Jq1(H) ↪→ Jq2(H) holds

if 1 ≤ q1 < q2 ≤ ∞. In other words, if A ∈ Jq1(H), then A ∈ Jq2(H) and

‖A‖Jq2 (H) ≤ ‖A‖Jq1 (H).

The existence of a mild solution of (2.13) is established via Lemma 2.1. We

omit the proof of this lemma because it is a direct consequence of [11, Theorem 3.6].

Consider the following assumptions with 1 ≤ q <∞:

(C1) Qf ∈ Jq(H) and Qf is nonnegative.

(C2) Q(·) ∈ L1([0, tf ];Jq(H)) and Q(t) is nonnegative for all t ∈ [0, tf ].

(C3) B̄B̄?(·) ∈ L∞([0, tf ];L(H)) and B̄B̄?(t) is nonnegative for t ∈ [0, tf ].
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Lemma 2.1. [11, Theorem 3.6] Let H be a separable Hilbert space and let S(t) be a

strongly continuous semigroup on H. Suppose assumptions (C1)–(C3) hold. Then,

the equation

Πc(t) = S?(tf − t)QfS(tf − t) +

∫ tf

t

S?(τ − t)

(
Q(τ)− Πc(τ)B̄B̄?(τ)Πc(τ)

)
S(τ − t)dτ (2.14)

provides a unique mild solution to (2.13) in the space L2([0, tf ];J2q(H)). The solu-

tion also belongs to C([0, tf ]; Jq(H)) and is pointwise self-adjoint and nonnegative.

Furthermore, if Q(·) ∈ C([0, tf ];Jq(H)) and B̄B̄?(·) ∈ C([0, tf ];L(H)), then Πc is a

weak solution to (2.13).

The equality introduced next in Lemma 2.2 allows for turning the optimal

quadratic PDE cost into a quadratic term associated with the initial condition of

the PDE and the Riccati operator. We state it without proof because it can be

established by integrating d〈Z(t),Πc(t)Z(t)〉/dt from 0 to tf ; the differentiability of

〈Z(t),Πc(t)Z(t)〉 is proven in [21, Theorem 6.1.9].

Lemma 2.2. Suppose Π(t) is a mild solution to (2.13), given by (2.14). For every

Z0 ∈ H, the optimal PDE cost (2.11) satisfies the equality J(Z∗, u∗) = 〈Z0,Π
c(0)Z0〉,

where Z∗ is the state that follows the dynamics (2.9) under optimal control u∗ of

(2.12), and Πc(0) is the solution (2.14) evaluated at t = 0.

The following assumption is vital to the main results in Chapter 3:

(C4) The input operator Bi(x, t) is continuous with respect to location x ∈ R2 [10,
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Definition 4.5], that is, there exists a continuous function l : R+ → R+ such

that l(0) = 0 and ‖Bi(x, t)− Bi(y, t)‖L2(Ω) ≤ l(|x − y|2) for all t ∈ [0, tf ], all

x, y ∈ R2, and all i ∈ {1, 2, . . . ,ma}.

The actuators’ locations determine where the input is actuated and, further-

more, how Πc(·) evolves through (2.14). Since the input operator B(·, t) is a mapping

of the actuators’ locations at time t, the composite input operator B̄B̄?(·) is a map-

ping of the actuator state in [0, tf ] and so is Πc(0) by (2.14), although the actuator

state is not explicitly reflected in the notation of B̄B̄?(·) or Πc(0). Hence, we can

define the optimal PDE cost 〈Z0,Π
c(0)Z0〉 as a mapping of the actuator state. Let

Kc : C([0, tf ];Rn) → R+ such that Kc(ζ) = 〈Z0,Π
c(0)Z0〉. Assumption (C4) plays

an important role in yielding the continuity of the mapping Kc(·) stated below in

Lemma 2.3. .

Lemma 2.3. Suppose Z0 ∈ H. Let assumptions (C1)–(C3) hold with q = 1 and

Πc ∈ C([0, tf ];J1(H)) be defined as in (2.14). If assumption (C4) holds, then the

mapping Kc : C([0, tf ];Rn)→ R+ such that Kc(ξ) = 〈Z0,Π
c(0)Z0〉 is continuous.

Proof. See Appendix A.1.
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2.4 Abstract linear system with Gaussian noise and the Kalman filter

Consider the following inhomogeneous diffusion-advection equation over a 2D

spatial domain Ω:

∂z(x, y, t)

∂t
= a∇2z(x, y, t)− v · ∇z(x, y, t) + w(x, y, t) (2.15)

z(x, y, 0) = ẑ(x, y, 0) + w0(x, y) (2.16)

z(x, y, t)|(x,y)∈∂Ω = 0, (2.17)

where (x, y) ∈ Ω, t ∈ [0, tf ], a > 0 is the diffusion coefficient, and v ∈ R2 is the flow

that yields advection. The initial condition z(·, ·, 0) is perturbed around its nominal

value ẑ(·, ·, 0) by an additive zero-mean Gaussian noise w0(·, ·). The dynamics (2.15)

is subject to an additive zero-mean Gaussian noise w(·, ·, t) with variance Q(t), which

is nonnegative and self-adjoint. The state noise w(·, ·, t) and initial noise w0(·, ·) are

mutually independent for all t.

For simplicity, represent the PDE state in (2.15) by an abstract linear system

whose state variable Z(t) represents z(·, ·, t) at time t, such that

Ż(t) = AZ(t) + w(t), Z(0) = Ẑ0 + w0, (2.18)

where Z ∈ H and the infinitesimal generator A of a strongly continuous semigroup

S are as defined in Section 2.3.

25



The measurement by sensor i depends on the sensor’s location such that

yi(t) = C?i (M0ζi(t), t)Z(t) + vi(t), (2.19)

where M0 is a matrix with appropriate dimension such that M0ζi(t) ∈ R2 is the

location of sensor i and C?i (M0ζi(t), t) ∈ L(H,R) is the output operator that yields

an integral kernel Ci(M0ζi(t), t) ∈ L2(Ω) such that

C?i (M0ζi(t), t)φ =

∫∫
Ω

Ci(M0ζi(t), t)(x, y)φ(x, y)dxdy

for φ ∈ H. Additive zero-mean Gaussian noise vi(t) with variance σ2
i is included in

the measurement.

The measurement can have many types, e.g., pointwise [14, 44, 45], interval

integral [12, 33], interval average [30], and Gaussian-type kernel [12]. Later in the

simulation section, we will use a time-invariant kernel given by square-shaped aver-

age

Ci(M0ζi(t))(x, y) =


1

4r2
i

if [ xy ]−M0ζi(t) ∈ [−ri, ri]× [−ri, ri]

0 otherwise,

(2.20)

where 2ri is the length of the side of the square at time t.

The measurements y(t) ∈ Rms of all sensors are compactly written as

y(t) = C?(Mζ(t), t)Z(t) + v(t), (2.21)
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where C?(Mζ(t), t) is an operator-valued vector

C?(Mζ(t), t) =
[
C?1(M0ζ1(t), t), C?2(M0ζ2(t), t), . . . , C?ms

(M0ζms(t), t)
]>

and M ∈ R2ms×n is a matrix such that Mζ(t) is a vector of locations of the sensors,

i.e.,

(Mζ(t))> =

[
(M0ζ1(t))> . . . (M0ζms(t))

>

]
.

We sometimes use C(t) for brevity instead of C(ζ(t), t), because the sensor state ζ(t)

is a function of t. The measurement noise v(t) is a zero-mean Gaussian vector with

covariance R = diag(σ2
1, σ

2
2, . . . , σ

2
ms

). Assume the noise w0(·, ·), w(·, ·, t), and v(t)

are mutually independent for all t.

Analogous to a finite-dimensional linear system, the infinite-dimensional linear

system (2.18) and (2.21) admits a Kalman-Bucy filter (KF). For the derivation of

the KF of an abstract linear system, one may refer to [54,65]. The estimation Ẑ(t)

of the state Z(t) can be updated from the measurement y(t) by

˙̂Z(t) = AẐ(t) + Πe(t)C(Mζ(t), t)R−1(y(t)− ŷ(t)), (2.22)

ŷ(t) = C?(Mζ(t), t)Ẑ(t), (2.23)

with initial condition Ẑ(t0) = Ẑ0. The predicted observation of the estimated

system is denoted by ŷ(t). The covariance operator of the estimation error Πe(t) =

27



E[(Z(t)− Ẑ(t)) ◦ (Z(t)− Ẑ(t))] satisfies the following operator Riccati equation:

Π̇e(t) = AΠe(t) + Πe(t)A? +Q(t)− Πe(t)C̄C̄?(t)Πe(t), (2.24)

where C̄C̄?(t) is a compact representation of C(t)R−1C?(t). The initial condition

Πe(0) is given as the covariance operator Πe
0 of the initial estimation error Πe

0 =

E[(Z(0)−Ẑ(0))◦ (Z(0)−Ẑ(0))] [96], which is the variance of w0 and is nonnegative

and self-adjoint.

Consider the following assumptions with 1 ≤ q <∞:

(E1) Πe
0 ∈ Jq(H) and Πe

0 is nonnegative.

(E2) Q(·) ∈ L1([0, tf ];Jq(H)) and Q(t) is nonnegative for all t ∈ [0, tf ].

(E3) C̄C̄?(·) ∈ L∞([0, tf ];L(H)) and C̄C̄?(t) is nonnegative for t ∈ [0, tf ].

The existence of a mild solution of (2.24) is established in Lemma 2.4 (which

is the dual version of Lemma 2.1). The proof is omitted because the lemma follows

directly from [11, Theorem 3.6].

Lemma 2.4. [11, Theorem 3.6] Let H be a separable Hilbert space. Suppose as-

sumptions (E1)–(E3) hold. Then, the equation

Πe(t) = S(t)Πe
0S?(t)+

∫ t

0

S(t−τ)
(
Q(τ)− Πe(τ)C̄C̄?(τ)Πe(τ)

)
S?(t−τ)dτ (2.25)

provides a unique mild solution to (2.24) in the space L2([0, tf ];J2q(H)). The solu-

tion is in C([0, tf ];Jq(H)) and is pointwise self-adjoint and nonnegative.
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The covariance operator Πe(t) characterizes the uncertainty of the estimation

error. The expected value of the squared norm of the estimation error is the trace

of the covariance operator Πe(t) [12, 96]:

Tr(Πe(t)) = E[‖Z(t)− Ẑ(t)‖2
H]. (2.26)

The following assumption is vital to the main results in Chapter 4:

(E4) For each sensor i ∈ {1, 2, . . . ,ms}, the kernel of the output operator Ci(x, t) is

continuous with respect to location x ∈ R2 [12, Definition 4.5]. That is, there

exists a continuous function l : R+ → R+ such that l(0) = 0 and

‖Ci(x1, t)− Ci(x2, t)‖L2(Ω) ≤ l(|x1 − x2|2) (2.27)

for all t ∈ [0, tf ] and all x1, x2 ∈ R2.

Assumption (E4) is important in that, roughly speaking, it establishes the

continuity of the covariance operator with respect to sensor state (Lemma 2.5), which

further permits the existence of a solution to the optimization problem proposed

in Chapter 4 (Theorem 4.1), its finite-dimensional approximation (Theorem 4.2),

and the convergence to the exact optimal cost of the approximate optimal cost

(Theorem 4.3).

Remark 2.1. The time invariant kernel in (2.20) is continuous with respect to

location, where l(u) = (4ric0u + u2)1/2/(4r2
i ) for sensor i in assumption (E4) for

c0 > 0.

29



The sensors’ locations determine where the output is measured and, further-

more, how the covariance operator evolves through (2.25). We characterize this

relation by a composite mapping. Since the output operator C?(·, t) is a mapping of

the sensors’ locations at time t, the composite output operator C̄C̄?(·) is a mapping

of the sensor state in [0, tf ] and so is Πe(·) by (2.25), although the sensor state

is not explicitly reflected in the notation of the latter two mappings. Hence, we

can define the uncertainty cost
∫ tf

0
Tr(Πe(t))dt as a mapping of the sensor state.

Let Ke : C([0, tf ];Rn)→ R+ such that Ke(ζ) =
∫ tf

0
Tr(Πe(t))dt. Lemma 2.5 below

shows when the uncertainty cost varies continuously with respect to the sensor state.

Lemma 2.5. Let assumptions (E1)–(E3) hold with q = 1 and Πe ∈ C([0, tf ];J1(H))

be defined in (2.25). If assumption (E4) holds, then the mapping Ke(·) is continuous.

Proof. See Appendix A.2.

2.5 Finite-dimensional approximations

Approximations to the infinite-dimensional terms (e.g., the PDE state Z and

its estimate Ẑ and the operators Q, Qf , and Πc
0) permit numerical computation.

Consider a finite-dimensional subspace HN ⊂ H with dimension N . The inner

product and norm ofHN are inherited from that ofH. Let PN : H → HN denote the

orthogonal projection of H onto HN . Let ZN(t) = PNZ(t) and SN(t) = PNS(t)PN

denote the finite-dimensional approximation of Z(t) and S(t), respectively. A finite-
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dimensional approximation of (2.9) is

ŻN(t) = ANZN(t) +BN(Mξ(t), t)u(t), (2.28)

ZN(0) = Z0,N = PNZ0, (2.29)

where AN ∈ L(HN) and BN(Mξ(t), t) ∈ L(U,HN) are approximations of A and

B(Mξ(t), t), respectively. Since the actuator state ξ(t) is a function of time t, we

sometimes use BN(t) for brevity. Correspondingly, the finite-dimensional approxi-

mation of (2.14) is

Πc
N(t) = S?N(tf − t)Qf,NSN(tf − t) +

∫ tf

t

S?N(τ − t)

(
QN(τ)− Πc

N(τ)B̄N B̄
?
N(τ)Πc

N(τ)
)
SN(τ − t)dτ, (2.30)

where QN = PNQPN , QfN = PNQfPN , and B̄N B̄
?
N(τ) is short for BN(τ)R−1B?

N(τ).

The optimal control u∗N that minimizes the approximated PDE cost

JN(ZN , uN) = 〈ZN(tf ), Qf,NZN(tf )〉

+

∫ tf

0

〈ZN(t), QN(t)ZN(t)〉+ u>N(t)RuN(t)dt (2.31)

is analogous to (2.12):

u∗N(t) = −R−1B?
N(Mξ(t), t)Πc

N(t)ZN(t), (2.32)
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where Πc
N(t) is a solution of (2.30).

The following assumptions are associated with the approximations:

(C5) Both Qf and sequence {Qf,N}∞N=1 are elements of Jq(H). Both Qf and Qf,N

are nonnegative for all N ∈ N and ‖Qf −Qf,N‖Jq(H) → 0 as N →∞.

(C6) Both Q(·) and sequence {QN(·)}∞N=1 are elements of L1([0, tf ];Jq(H)). Both

Q(τ) and QN(τ) are nonnegative for all τ ∈ [0, tf ] and all N ∈ N and satisfy∫ t
0
‖Q(τ)−QN(τ)‖Jq(H) dτ → 0 for all t ∈ [0, tf ] as N →∞.

(C7) Both B̄B̄?(·) and sequence {B̄N B̄
?
N(·)}∞N=1 are elements of L∞([0, tf ];L(H)).

Both B̄B̄?(t) and B̄N B̄
?
N(t) are nonnegative for all t ∈ [0, tf ] and all N ∈ N

and satisfy

ess sup
t∈[0,tf ]

∥∥B̄B̄?(t)− B̄N B̄
?
N(t)

∥∥
op
→ 0 (2.33)

as N →∞ (‖·‖op denotes the operator norm).

Note that the assumptions (C1), (C2), and (C3) are contained in (C5), (C6),

and (C7), respectively.

The next Lemma states the convergence of an approximate solution of the

Riccati equation, which is reproduced from [11, Theorem 3.5] and hence stated

without a proof.

Lemma 2.6. [11, Theorem 3.5] Suppose S(t) is a strongly continuous semigroup

of linear operators over a Hilbert space H and that {SN(t)}∞N=1 is a sequence of

uniformly continuous semigroup over the same Hilbert space that satisfy, for each
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φ ∈ H

‖S(t)φ− SN(t)φ‖ → 0, ‖S?(t)φ− S?N(t)φ‖ → 0 (2.34)

as N → ∞, uniformly in [0, tf ]. Suppose assumptions (C5)–(C7) hold. If Πc(·) ∈

C([0, tf ];Jq(H)) is a solution of (2.14) and Πc
N(·) ∈ C([0, tf ];Jq(H)) is the sequence

of solution of (2.30), then

sup
t∈[0,tf ]

‖Πc(t)− Πc
N(t)‖Jq(H) → 0 (2.35)

as N →∞.

The following assumption and lemma are analogous to (C4) and Lemma 2.3,

respectively:

(C8) The approximated input operator Bi,N(x, t) is continuous with respect to loca-

tion x ∈ R2, that is, there exists a continuous function lN : R+ → R+ such that

lN(0) = 0 and ‖Bi,N(x, t)−Bi,N(y, t)‖L2(Ω) ≤ lN(|x− y|2) for all t ∈ [0, tf ], all

x, y ∈ R2, and all i ∈ {1, 2, . . . ,ma}.

Similar to the mapping Kc(·) in Lemma 2.3, the optimal approximated PDE

cost can be characterized as a mapping of the actuator state through (2.30), where

the continuity is established in Lemma 2.7

Lemma 2.7. Suppose Z0,N ∈ HN . Let assumptions (C5)–(C7) hold and Πc
N(t) be

defined as in (2.30). If assumption (C8) holds, then the mapping Kc
N : C([0, tf ];Rn)→

R+ such that Kc
N(ξ) = 〈Z0,N ,Π

c
N(0)Z0,N〉 is continuous.

Proof. See Appendix A.3.
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The same approximation scheme can be applied to the Kalman filter of the

system (2.22), i.e.,

˙̂
ZN(t) = AN ẐN(t) + Πe

N(t)CN(t)R−1(y(t)− ŷN(t)), (2.36)

ŷN(t) = C?
N(t)ẐN(t), (2.37)

with initial condition ẐN(t0) = PN Ẑ0. The approximations AN ∈ L(HN) and

CN(t) ∈ L(Rms ,HN) are of A and C(t), respectively, and Πe
N(t) is the finite-

dimensional approximation of Πe(t) such that

Πe
N(t) =

∫ t

0

SN(t− τ)
(
QN(τ)− Πe

N(τ)C̄N C̄
?
N(τ)Πe

N(τ)
)
S?N(t− τ)dτ

+ SN(t)Πe
0,NS

?
N(t), (2.38)

where Πe
0,N = PNΠe

0PN and QN(t) = PNQ(t)PN are approximations of Πe
0 and Q(t),

respectively, and C̄N C̄
?
N(τ) is short for CNR

−1C?
N(τ).

If the subspace HN is chosen such that it is spanned by the first N functions

of the orthonormal basis {φi}∞i=1 that spans H, then

Tr(Πe
N(t)) = Tr(PNΠe(t)PN) =

N∑
i=1

〈φi,Πe(t)φi〉. (2.39)

To establish convergence of the approximate covariance operator Πe
N(·) to the orig-

inal operator Πe(·), the following assumptions are made:

(E5) Both Πe
0 and sequence {Πe

0,N}∞N=1 are elements of Jq(H). Both Πe
0 and Πe

0,N
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are nonnegative for all N ∈ N and
∥∥Πe

0 − Πe
0,N

∥∥
Jq(H)

→ 0 as N →∞.

(E6) Both Q(·) and sequence {QN(·)}∞N=1 are elements of L1([0, tf ];Jq(H)). Both

Q(τ) and QN(τ) are nonnegative for all τ ∈ [0, tf ] and all N ∈ N and satisfy

∫ t

0

‖Q(τ)−QN(τ)‖Jq(H) dτ → 0 (2.40)

for all t ∈ [0, tf ] as N →∞.

(E7) Both C̄C̄?(·) and sequence {C̄N C̄?
N(·)}∞N=1 are elements of L∞([0, tf ];L(H)).

Both C̄C̄?(t) and C̄N C̄
?
N(t) are nonnegative for all t ∈ [0, tf ] and all N ∈ N and

satisfy

ess sup
t∈[0,tf ]

∥∥C̄C̄?(t)− C̄N C̄?
N(t)

∥∥
op
→ 0 (2.41)

as N →∞ (‖·‖op denotes the operator norm).

Note that assumptions (E1), (E2), and (E3) are contained within assumptions

(E5), (E6), and (E7), respectively.

The convergence of the approximate covariance operator Πe
N(·) is stated in the

next theorem (which is the dual version of Lemma 2.6) whose proof is omitted since

the Lemma is reproduced from [11, Theorem 3.5].

Lemma 2.8 ( [11, Theorem 3.5]). Suppose S(t) is a strongly continuous semigroup

of linear operators over a Hilbert space H and that {SN(t)}∞N=1 is a sequence of

uniformly continuous semigroup over the same Hilbert space that satisfy, for each

φ ∈ H,

‖S(t)φ− SN(t)φ‖ → 0 (2.42a)
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‖S?(t)φ− S?N(t)φ‖ → 0 (2.42b)

as N → ∞, uniformly in [0, tf ]. Suppose assumptions (E5)–(E7) hold. If Πe(·) ∈

C([0, tf ];Jq(H)) is a solution of (2.25) and Πe
N(·) ∈ C([0, tf ];Jq(H)) is the sequence

of solution of (2.38), then

sup
t∈[0,tf ]

‖Πe(t)− Πe
N(t)‖Jq(H) → 0 (2.43)

as N →∞.

The following assumption and lemma are related to the continuity with respect

to location of the approximate output kernel and the continuity with respect to

sensor state of the trace of the approximate covariance operator, which are analogous

to assumption (E4) and Lemma 2.5, respectively.

(E8) The approximated input operator Ci,N(x, t) is continuous with respect to lo-

cation x ∈ R2, that is, there exists a continuous function lN : R+ → R+ such

that lN(0) = 0 and

‖Ci,N(x1, t)− Ci,N(x2, t)‖L2(Ω) ≤ lN(|x1 − x2|2)

for all t ∈ [0, tf ], all x1, x2 ∈ R2, and all i ∈ {1, 2, . . . ,ms}.

Similar to the mapping Ke(·) in Lemma 2.5, we can characterize the approxi-

mate uncertainty cost as a mapping of the sensor state ζ, where continuity is estab-

lished in Lemma 2.9.
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Lemma 2.9. Let assumptions (E5)–(E7) hold and Πe
N(t) be defined as in (2.38).

If assumption (E8) holds, then the mapping Ke
N : C([0, tf ];Rn) → R+ such that

Ke
N(ζ) =

∫ tf
0

Tr(Πe
N(t))dt is continuous.

Proof. See Appendix A.4.
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Chapter 3: Optimal cooperative control of a 2D diffusion-advection

process

In this chapter, an optimization framework is proposed that simultaneously

solves for the guidance of a team of mobile actuators and the control of a DPS. We

consider a 2D diffusion-advection process as the DPS for its capability of modeling

a variety of processes governed by continuum mechanics and the convenience of the

state-space representation. The framework minimizes an integrated cost function,

evaluating both the control of the DPS and the guidance of the actuators, subject

to the dynamics of the DPS and the mobile actuators. The problem addresses the

mobile actuator and the DPS as a unified system, instead of solely controlling the

DPS. Furthermore, the additional degree of freedom endowed by mobility yields

improved control performance in comparison to using stationary actuators.

The problem formulation in this chapter includes a cost function that simul-

taneously evaluates controlling the PDE-modeled DPS, referred to as the PDE cost,

and steering the mobile actuators, referred to as the mobility cost. The PDE cost

is a quadratic cost of the PDE state and control, whose optimal value can be ob-

tained by solving an operator-valued differential Riccati equation. Our results are

based on the related work [11], which establishes Bochner integrable solutions of
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finite-horizon Riccati integral equations (with values in Schatten p-classes) associ-

ated with infinite-dimensional systems. The existence conditions for the solution of

exact and approximate Riccati integral equations are established in [11]. The sig-

nificance of the Bochner integrable solution is that it allows the implementation of

simple numerical quadratures for computing the approximated solution of Riccati

integral equations. In [11], the Riccati solution is applied in a sensor placement

problem, which computes optimal sensor locations that minimize the trace of the

covariance operator of the Kalman filter of a diffusion-advection process. The same

cost has been used in an optimization framework for mobile sensor’s motion plan-

ning in [10]. The existence of a solution of the optimization problem is established

under the assumption that the integral kernel of the output operator is continu-

ous with respect to the location of the sensor [10, Definition 4.5]. This assumption

permits the construction of a compact set of operators [10, Lemma 4.6] over which

the cost function is continuous, and hence establishes the existence of a solution.

The assumption is also made on the input operator in Chapter 2, which allows the

derivation of a vital result on the Riccati operator’s continuity with respect to the

actuator trajectory (see Lemma 2.3). The continuity property plays a crucial role in

establishing the existence of the proposed problem’s solution and the convergence

to the exact optimal solution of the approximate optimal solution. The existence

of a solution is established in using the fact that a weakly sequentially lower semi-

continuous function attains its minimum on a weakly sequentially compact set over

a normed linear space. In addition to the assumptions made for the existence of

a solution, a stringent (yet with reasonable physical interpretation) requirement is
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placed on the admissible set to yield compactness, which leads to convergence of the

approximate optimal solution. The convergence is in the sense that when evaluat-

ing the exact and approximate optimal solutions by the original cost function, the

difference becomes arbitrarily small as the dimension of approximation increases.

The remainder of this chapter is organized as follows. Section 3.1 introduces

the proposed optimization problem and its equivalent problem. Conditions for the

existence of a solution are stated. Section 3.2 details the computation of an optimal

solution using finite-dimensional approximations. Conditions for the convergence

to the exact optimal solution of the approximate optimal solution are stated. A

gradient-based method is applied to find an optimal solution. Section 3.3 provides

two numerical examples to illustrate optimal guidance and control solved by the

proposed method.

3.1 Problem formulation

This chapter seeks to derive the guidance and control input of each actuator

such that the state Z of the abstract linear system (2.9) can be driven to zero.

Specifically, consider the following problem:

minimize
u∈L2([0,tf ];U)

p∈L2([0,tf ];P )

J(Z, u) + Jm(ξ, p)

subject to Ż(t) = AZ(t) + B(Mξ(t), t)u(t), Z(0) = Z0,

ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0,

(Pc)
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where Jm(ξ, p) =
∫ tf

0
h(ξ(t), t) + g(p(t), t)dt + hf (ξ(tf )) is the cost associated with

the motion of the actuators, named the mobility cost, such that the mappings h :

Rn × [0, tf ] → R+ and g : Rm × [0, tf ] → R+ evaluate the running state cost and

running guidance cost, respectively, and the mapping hf : Rn → R+ evaluates the

terminal state cost.

The running state cost h(·, ·) may characterize restrictions to actuator state.

For example, a Gaussian-type function with its peak in the center of the spatial

domain, i.e.,

h([ xy ] , t) =
1

2πσx(t)σy(t)
exp

(
−(x− 0.5)2

σ2
x(t)

− (y − 0.5)2

σ2
y(t)

)
, (3.1)

where σx(t), σy(t) > 0 and x, y ∈ [0, 1], can model a hazardous field that may shorten

the life span of an actuator. The integral of this function in the interval [0, tf ] eval-

uates the accumulated exposure of the mobile actuator along its trajectory, which

may need to be contained as small as possible (see [28]). Another example is the

artificial potential field [39], cast as a soft constraint, that penalizes the trajectory

when it passes an inaccessible region such as an obstacle. The running guidance

cost g(·, ·) may be the absolute value or a quadratic function of the guidance, which

characterizes the total amount (of fuel) or energy for steering, respectively. And

the terminal state cost hf (·) may characterize restrictions of the terminal state of

the mobile actuators. For example, if an application specifies terminal positions,

then hf (·) may be a quadratic function that penalizes the deviation of the actual

terminal positions.
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The formulation in (Pc) provides an intermediate step for minimizing the PDE

cost subject to mobility constraints, in addition to the dynamics constraints. The

mobility constraints are characterized by inequalities of hf (·) and the integrals of

h(·, ·) and g(·, ·), because these constraints can be used to augment the cost function

and turned into the form of (Pc) using the method of Lagrange multipliers.

An equivalent problem of (Pc) can be derived using Lemma 2.2. For an arbi-

trary admissible guidance p, the actuator trajectory ξ is determined following the

dynamics (2.2), which also determines the input operator B(ξ(·), ·). By Lemma 2.2,

the control u that minimizes the cost function of (Pc)—specifically, the PDE cost

J(Z, u)—is given by (2.12), and the minimum PDE cost is 〈Z0,Π(0)Z0〉, where

Π(0) is the mild solution of (2.14) with actuator trajectory steered by guidance p.

Note the Riccati operator Π(·) in this chapter is the operator Πc(·) in Chapter 2

(the superscript c is dropped for simplicity). Hence, we derive the following problem

equivalent to (Pc):

minimize
p∈L2([0,tf ];P )

〈Z0,Π(0)Z0〉+ Jm(ξ, p)

subject to ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0,

(Pc1)

where Π(0) is defined in (2.14) with t = 0.

To prove the existence of a solution to (Pc1), we make the following assump-

tions on the admissible set of guidance and the functions composing the mobility

cost:

(C9) The set of admissible guidance P ⊂ Rm is closed and convex.
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(C10) The mappings h : Rn× [0, tf ]→ R+, g : Rm× [0, tf ]→ R+, and hf : Rn → R+

are continuous. For every t ∈ [0, tf ], the function g(·, t) is convex.

(C11) There exists a constant d1 > 0 with g(p, t) ≥ d1|p|22 for all (p, t) ∈ P × [0, tf ].

Assumptions (C9)–(C11) are generally satisfied in applications with vehicles

carrying the actuators. Assumption (C9) is a physically reasonable characterization

of the steering of a vehicle, where the admissible steering is generally a continuum

with attainable limits within its range. Assumption (C10) places a general continuity

requirement on the cost functions and a convexity requirement on the steering cost

function. Assumption (C11) requires the function g(p, t) to be bounded below by

a quadratic function of the guidance p for all t, which is generally satisfied, e.g.,

with g itself being a quadratic function of p. These assumptions are applied in

Theorem 3.1 below regarding the existence of a solution of (Pc1). Subsequently, the

solution to (Pc1) can be used to reconstruct the solutions to (Pc), which is stated

in Theorem 3.2.

Theorem 3.1. Consider problem (Pc1) and let assumptions (C1)–(C4) and (C9)–

(C11) hold. Then (Pc1) has a solution.

Proof. See Appendix A.5.

Theorem 3.2. Consider problems (Pc) and (Pc1). Let assumptions (C4) and (C9)–

(C11) hold. Let p∗ be the optimal solution of (Pc1) and u∗ be the optimal control

obtained from (2.12) with actuator trajectory steered by p∗. Then u∗ and p∗ minimize

problem (Pc).
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Proof. See Appendix A.6.

The equivalent problem (Pc1) allows us to search for an optimal guidance p

such that the mobility cost plus the optimal PDE cost is minimized. The control

is no longer an optimization variable, because it is determined by the LQR of the

abstract linear system for arbitrary trajectories of the mobile actuators.

3.2 Computation of optimal control and guidance

Approximation of the infinite-dimensional terms in problem (Pc) is necessary

when computing the optimal control and guidance. Hence, we replace the PDE cost

and dynamics of (Pc) by (2.31) and (2.28), respectively, and obtain the following

approximate problem (APc):

minimize
u∈L2([0,tf ];U)

p∈L2([0,tf ];P )

JN(ZN , u) + Jm(ξ, p)

subject to ŻN(t) = ANZN(t) +BN(Mξ(t), t)u(t)

ZN(0) = Z0,N ,

ξ̇(t) = αξ(t) + βp(t),

ξ(0) = ξ0.

(APc)

Similar to (Pc), problem (APc) can be turned into an equivalent form using
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LQR results for a finite-dimensional system:

minimize
p∈L2([0,tf ];P )

〈Z0,N ,ΠN(0)Z0,N〉+ Jm(ξ, p)

subject to ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0,

(APc1)

where ΠN(0) is defined in (2.30) with t = 0. Analogous to Theorems 3.1 and 3.2,

the existence of a solution of (APc1) and how to use its solution to reconstruct a

solution for (APc) are stated in Theorem 3.3 below.

Theorem 3.3. Consider problem (APc1) and let assumptions (C5)–(C8) and (C9)–

(C11) hold. Then (APc1) has a solution, denoted by p∗N . Let u∗N be the optimal

control obtained from (2.32) with actuator trajectory steered by p∗N . Then u∗N and

p∗N minimize problem (APc).

Proof. See Appendix A.7.

An extension to Theorem 3.3 is that an optimal feedback control can be ob-

tained from (2.32) whenever the optimal guidance is solved from (APc) or (APc1).

Basically, when the trajectory is determined via the optimal guidance, a feedback

control can be implemented.

To establish convergence to the solution of (Pc1) of (APc1)’s solution, we

need to restrict the set of admissible guidance to a smaller set as introduced below

in assumption (C12).

(C12) There exist pmax > 0 and amax > 0 such that the set of admissible guidance

is P(pmax, amax) = {p ∈ C([0, tf ];P ) : |p(t)| is uniformly bounded by pmax and
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|p(t1)− p(t2)| ≤ amax|t1 − t2|, ∀t1, t2 ∈ [0, tf ]}.

There are two perspectives to interpreting the assumption (C12). Mathemat-

ically, (C12) requires the admissible guidance to be a continuous function that is

uniformly bounded and uniformly equicontinuous. These two properties yield the

sequential compactness of the set P(pmax, amax) by the Arzelà-Ascoli Theorem [67].

Practically, (C12) requires the input signal to be continuous and have bounds pmax

and amax on the magnitude and the rate of change, respectively. This requirement is

reasonable and checkable because a continuous signal is commonly used for smooth

operation, and the bounds on magnitude and changing rate are due to the physical

limits of the motion of a platform. For example, in the case of single integrator dy-

namics where p is the velocity command, pmax and amax refer to the maximum speed

and maximum acceleration, respectively. Moreover, since time discretization of the

signal is applied when computing the optimal guidance, as long as the bound pmax

on the magnitude of the signal is determined, then the changing rate is bounded by

amax := 2pmax/∆tmin for the smallest discrete interval length ∆tmin. Theorem 3.4

below states the convergence of the approximate optimal solution.

Theorem 3.4. Consider problem (Pc1) and its finite-dimensional approximation

(APc1). Let assumptions (C4)–(C12) hold and let p∗ and p∗N denote the optimal

guidance of (Pc1) and (APc1), respectively. Then

lim
N→∞

|J∗(APc1)(p
∗
N)− J∗(Pc1)(p

∗)| = 0. (3.2)

Furthermore, the cost function of (Pc1) evaluated at the guidance p∗N converges to
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the optimal cost of (Pc1)

lim
N→∞

|J(Pc1)(p
∗
N)− J∗(Pc1)(p

∗)| = 0. (3.3)

Proof. See Appendix A.8.

Remark 3.1. Two implications of Theorem 3.4 follow. First, (3.2) implies that

the optimal cost of the approximated problem (APc1) converges to that of the exact

problem (Pc1), which justifies the approximation in (APc1). Second, (3.3) implies

that the approximate optimal guidance p∗N , when evaluated by the cost function of

(Pc1), yields a cost that is arbitrarily close to the exact optimal cost of (Pc1).

Since p∗N is computable and p∗ is not, the convergence in (3.3) qualifies p∗N as an

appropriate optimal guidance.

The convergence stated in Theorem 3.4 is established based on several earlier

stated results, including

1. the input operator’s continuity with respect to location (assumption (C4)),

which leads to the continuity of the PDE cost with respect to actuator trajec-

tory (Lemma 2.3);

2. existence of the Riccati operator (Lemma 2.1) and convergence of its approx-

imation (Lemma 2.6); and

3. sequential compactness of the set of admissible guidance (assumption (C12)),

which leads to the continuity of the cost function with respect to guidance

(Lemma A.1 in the Appendix).
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Notice that these key results, in an analogous manner, are also required in [57]

when establishing the convergence to the exact optimal actuator locations of the

approximate optimal locations [57, Theorem 3.5], i.e.,

1. continuity with respect to location and compactness of the input operator [57,

Theorem 2.6], which lead to continuity of the Riccati operator with respect to

actuator locations [57, Theorem 2.6];

2. existence of the Riccati operator [57, Theorem 2.3] and the convergence of its

approximation [57, Theorem 3.1]; and

3. sequential compactness of the set of admissible locations, which is inherited

from the setting that the spatial domain is closed and bounded in a finite-

dimensional space.

Although the establishment of convergence is similar to the one in [57], the cost

function and type of Riccati equation are different: we have the quadratic PDE cost

plus generic mobility cost and differential Riccati equation in this chapter for con-

trol and actuator guidance versus the Riccati operator’s norm as cost function and

algebraic Riccati equation in [57] for actuator placement. The similarity comes from

the infinite-dimensional nature of PDEs such that approximation is necessary for

computation, and convergence in approximation qualifies the approximate optimal

solutions.
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3.2.1 Checking assumptions (C4)–(C12)

For the approximated optimal guidance to be a good proxy of the exact opti-

mal guidance, by Theorem 3.4, assumption (C4)–(C12) have to be checked to ensure

the convergence. We summarize methods for checking these assumptions here. (C4):

examine the explicit form of B; (C5)–(C7): examine the explicit form of the opera-

tors Q, Qf , and B̄B̄? and their approximations; (C8): examine the explicit form of

BN ; (C9)–(C11): examine the explicit form of Jm; (C12): examining the bounds on

the magnitude and changing rate of the admissible guidance.

3.2.2 Gradient-descent for solving problem (APc)

We apply a gradient-descent for solving problem (APc). Define the costates

λ(t) ∈ HN and µ(t) ∈ Rn associated with ZN(t) and ξ(t), respectively, for t ∈ [0, tf ]

and define the Hamiltonian:

H(ZN(t), ξ(t), u(t), p(t), λ(t), µ(t))

= 〈ZN(t), QN(t)ZN(t)〉+ u>(t)Ru(t) + h(ξ(t), t)

+ g(p(t), t) + λ>(t) (ANZN(t) +BN(Mξ(t), t)u(t))

+ µ>(t) (αξ(t) + βp(t)) . (3.4)

By Pontryagin’s minimum principle [51], we can solve a two-point boundary value

problem originated from (3.4) to find a local minimum of (APc). The iterative

procedure for solving the two-point boundary value problem can be implemented in
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a gradient-descent manner [47,50].

3.3 Numerical examples

We demonstrate the performance of the optimal guidance and control in two

numerical examples. The first example uses the diffusion-advection process with

zero Dirichlet boundary condition (2.5)–(2.7). The second example uses the same

process but with zero Neumann boundary condition.

The examples are motivated by and simplified from practical applications, e.g.,

removal of harmful algal blooms (HAB). In this case, the distribution of the HAB’s

concentration on the water surface can be modeled by a 2D diffusion-advection

process. The cases of zero Dirichlet and Neumann boundary conditions correspond

to the scenarios where the surface is circumvented by absorbent and nonabsorbent

materials, respectively. The control to the process is implemented by the surface

vehicles that use physical methods (e.g., emitting ultrasonic waves or hauling algae

filters) or chemical methods (by releasing algal treatment) [71], whose impact on

the process can be characterized by the input operator (2.8). The magnitude of

the control determines how fast the concentration is reduced at the location of the

actuator. The optimal control and guidance minimize the cost such that the HAB

concentration is reduced while the vehicles do not exercise too much control nor

conduct aggressive maneuvers. And vehicles’ low-level control can track the optimal

trajectories despite the model mismatch between the dynamics of the vehicles and

those applied in the optimization problem (Pc).
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We apply the following values in the numerical examples: Ω = [0, 1] × [0, 1],

z0(x, y) = 320(x− x2)(y − y2), N = 13, ma = 4, tf = 1, v = [0.1,−0.1]>, a = 0.05,

U = Rm, Pi = [−100, 100], pmax = amax = 100, R = 0.1I4, Q = Qf = χ(x, y),

h(ξ(t), t) = hf (ξ(tf )) = 0, g(p(t), t) = 0.1p>(t)p(t), ξ1(0) = [0.1, 0.1]>, ξ2(0) =

[0.125, 0.1]>, ξ3(0) = [0.125, 0.125]>, ξ4(0) = [0.1, 0.125]>, bi = 1, σi = 0.05, αi =

02×2, and βi = I2 for i ∈ {1, 2, . . . ,ma}, where the indicator function χ(x, y) = 1

if x = y, and χ(x, y) = 0 if x 6= y. We use (2.8) for the input operator of each

actuator. The Péclect number of the process is |v|2/a ≈ 2.83, which implies neither

the diffusion or the advection dominates the process.

3.3.1 Diffusion-advection process with Dirichlet boundary condition

We use the dynamics in (2.5)–(2.7) with the Dirichlet boundary condition.

We use the Galerkin scheme to approximate the infinite-dimensional variables. The

orthonormal set of eigenfunctions of the Laplacian operator ∇2 (with zero Dirich-

let boundary condition) over the spatial domain Ω = [0, 1] × [0, 1] is φi,j(x, y) =

2 sin(πix) sin(πjy). We introduce a single index k = (i−1)N+j such that φk = φi,j.

For brevity, we use HN to denote the N2-dimensional space spanned by the basis

functions {φk}N
2

k=1. Recall the orthogonal projection PN : H → HN . It follows that

P ?
N = PN and P ?

NPN → I strongly [11]. Let ΦN = [φ1 φ2 . . . φN2 ]>. We choose

N = 13 because it is the smallest dimension such that the resulting optimal cost is

within the 1% of the optimal cost evaluated with the maximum dimension N = 20

in the numerical studies (see Fig. 3.7).
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Assumption (C4) holds for the choice of input operator. With the Galerkin

approximation using the orthonormal eigenfunctions of the Laplacian operator ∇2

with zero Dirichlet boundary condition, it can be shown that assumption (C8) holds

for lN(·) = N2l(·). Assumptions (C5)–(C7) hold with q = 1 under the Galerkin

approximation with aforementioned basis functions ΦN [11]. Assumptions (C9)–

(C11) and (C12) hold for the choice of functions in the mobility cost and parameters

of the set of admissible guidance, respectively.

We use the forward-backward sweeping method [53] to solve the two-point

boundary value problem originated from the Hamiltonian (3.4). The forward prop-

agation of ZN and ξ and backward propagation of λ and µ are computed using the

Runge-Kutta method. The same method is also applied to propagate the approx-

imate Riccati solution Π(t). Spatial integrals are computed using Legendre-Gauss

quadrature. To verify the convergence of the approximate optimal cost J∗(APc1)(p
∗
N)

stated in (3.2), we compute J∗(APc1)(p
∗
N) for N ∈ {6, 7, . . . , 20}. Note that the total

number of basis functions is N2. The result is shown in Fig. 3.7, where exponential

convergence can be observed.
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ū
∗ .

T
h
e

ac
tu

at
or

s
ar

e
st

ee
re

d
b
y

th
e

op
ti

m
al

gu
id

an
ce
p∗

.
S
n
ap

sh
ot

s
at
t

=
0.

05
an

d
0.

2
s

sh
ow

th
e

tr
an

si
en

t
st

ag
e,

w
h
er

ea
s

th
e

on
e

at
t

=
1

s
sh

ow
s

th
e

re
la

ti
ve

ly
st

ea
d
y

st
ag

e.
T

h
e

m
ob

il
e

d
is

tu
rb

an
ce

is
sh

ow
n

in
gr

ay
.

53



0 0.2 0.4 0.6 0.8 1

-10

-5

0

1

2

3

4

Actuator

0 0.05 0.1 0.15 0.2

-10

-5

0

Figure 3.2: Optimal feedback control ū∗ of each actuator in the case of Dirichlet
boundary condition. The circles along the horizontal axis correspond to the snap-
shots in Fig. 3.1.
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Figure 3.3: Norm of the PDE state in the case of Dirichlet boundary condition with
pairs of control and guidance in Table 3.1. The circles along the horizontal axis
correspond to the snapshots in Fig. 3.1.

In the simulation, a mobile disturbance 0.5B(xd(t), t), whose trajectory is

xd(t) = [0.5+0.3 sin(2πt), 0.5+0.3 cos(2πt)]>, is added to the right-hand side of the

dynamics (2.5).

Denote the optimal open-loop control and optimal guidance solved using the

gradient-descent method in the end of Section 3.2 by u∗ and p∗, respectively. The
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trajectory steered by p∗ is denoted by ξ∗. Recall that an optimal feedback control,

denoted by ū∗, can be synthesized using (2.32) based on the optimal trajectory ξ∗

of the actuators.

Fig. 3.1 shows the evolution of the process controlled by the optimal feedback

control and the optimal trajectories of the actuators. The actuation concentrates in

the first 0.2 s, which is shown in Fig. 3.2. The actuators quickly pass the peak of

the initial PDE at the center of the spatial domain and spread evenly in space in

the first 0.2 s. Subsequently, the actuators 2–4 cease active steering and dispensing

actuation. The flow field causes the actuators to drift until the terminal time.

To demonstrate the performance of the optimal feedback control ū∗, we com-

pare it with semi-naive control usn and naive control un defined as local feedback

controls: usn(t) = −0.1zsn(ξ∗(t), t) and un(t) = −0.1zn(ξn(t), t). The semi-naive

actuators follow the optimal trajectory ξ∗, whereas the naive actuators follow the

trajectory ξn, which moves at a constant speed from ξ0 to 1n×1 − ξ0. Table 3.1

compares the cost breakdown of all the control and guidance strategies. The opti-

mal feedback control yields a smaller cost than the optimal open-loop control due

to the capability of feedback control in rejecting disturbances. Simulations with a

disturbance-free model (not shown) yield identical total cost for optimal open-loop

control and optimal feedback control, which justifies the correctness of the synthe-

sis. Fig. 3.3 compares the norm of the PDE state controlled by pairs of control and

guidance listed in Table 3.1. As can be seen, the PDE is effectively regulated using

optimal feedback control. As a comparison, the norm associated with optimal open-

loop control grows slowly after 0.3 s due the influence of the disturbance, although
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Control (C) and Guidance (G) Cost

C G JN Jm Total

opt. feedback ū∗ ξ∗ 13.7% 3.0% 16.7%
opt. open-loop u∗ ξ∗ 17.5% 3.0% 20.5%
semi-naive usn ξ∗ 42.5% 3.0% 45.5%
naive un ξn 78.8% 0.5% 79.3%
no control - - 100.0% 0.0% 100.0%

Table 3.1: Cost comparison of control and guidance strategies in the case of Dirichlet
boundary condition. All costs are normalized with respect to the total cost of the
case with no control.

its reduction in the beginning is indistinguishable from that of the optimal feedback

control.

3.3.2 Diffusion-advection process with Neumann boundary condition

The results derived in this chapter also apply to the operator A defined in

(2.10) with a Neumann boundary condition (BC), because a general second-order

and uniformly elliptic operator with Neumann BC yields a strongly continuous ana-

lytic semigroup on L2(Ω) [49]. In this example, we consider the diffusion-advection

process (2.5) with initial condition (2.7) and zero Neumann BC: ∂z(x, y, t)/∂n = 0,

where n is the normal to the boundary ∂Ω and (x, y) ∈ ∂Ω. Notice that the

basis function applied for Galerkin approximation in this case are the eigenfunc-

tions of the Laplacian with zero Neumann BC, φi,j(x, y) = 2 cos(πix) cos(πjy) for

i, j ∈ {0, 1, . . . }. All the parameters, disturbance, and pairs of control and guidance

for comparison applied in this example are identical to those in Section 3.3.1. Ex-

ponential convergence in the approximate optimal cost can be observed in Fig. 3.7.

Fig. 3.4 shows the evolution of the process and the optimal trajectory of the
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actuators. Similar to the case of Dirichlet BC, the actuators spread out to cover most

of the domain in the initial 0.2 s, with most of the actuation implemented during the

same interval, seen in Fig. 3.5. However, the actuators span a slightly larger area

(Fig. 3.4) and the maximum amplitude of actuation is bigger (Fig. 3.5), compared

to the case of Dirichlet BC in Fig. 3.1 and Fig. 3.2, respectively. The difference is

a consequence of the fact that the zero Neumann BC does not contribute to the

regulation of the process because it insulates the process from the outside. Con-

trarily, the zero Dirichlet BC acts as a passive control that can essentially regulate

the process to a zero state when there is no inhomogeneous term in the dynamics

(2.5). This difference can be observed when comparing the norm of the PDE state

in Fig. 3.6 with Fig. 3.3. The norm of the uncontrolled state reduces slightly in

the case of Neumann BC (Fig. 3.6) compared to the almost linear reduction in the

case of Dirichlet BC (Fig. 3.3). Fig. 3.6 also shows the difference of norm reduction

between the optimal feedback control and optimal open-loop control. Once again,

the former yields a smaller terminal norm than the latter due to the feedback’s

capability of disturbance rejection. The cost breakdown of the pairs of control and

guidance in comparison is shown in Table 3.2.
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Figure 3.5: Optimal feedback control ū∗ of each actuator in the case of Neumann
boundary condition. The circles along the horizontal axis correspond to the snap-
shots in Fig. 3.4.
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Figure 3.6: Norm of the PDE state in the case of Neumann boundary condition
with pairs of control and guidance in Table 3.2. The circles along the horizontal
axis correspond to the snapshots in Fig. 3.4.
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Control (C) and Guidance (G) Cost

C G JN Jm Total

opt. feedback ū∗ ξ∗ 6.4% 1.6% 8.0%
opt. open-loop u∗ ξ∗ 7.1% 1.6% 8.7%
semi-naive usn ξ∗ 63.7% 1.6% 65.3%
naive un ξn 65.9% 0.2% 66.1%
no control - - 100.0% 0.0% 100.0%

Table 3.2: Cost comparison of control and guidance strategies in the case of Neu-
mann boundary condition. All costs are normalized with respect to the total cost
of the case with no control.
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1

Figure 3.7: Approximate optimal costs J∗(APc1)(p
∗
N) normalized with respect to the

optimal cost for N2 = 400.
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Chapter 4: Optimal cooperative estimation of a 2D diffusion-advection

process

This chapter proposes an optimization framework that designs guidance for

a team of mobile sensors to estimate a 2D diffusion-advection process using a cen-

tralized KF. The cost to be minimized is the sum of two terms: the trace of the

covariance operator of the KF, called the uncertainty cost, which quantifies the un-

certainty of the estimation error and the mobility cost associated with the sensors’

motion. The covariance operator of the KF, which is the solution of an operator-

valued Riccati equation, has been studied in [11]. Specifically, conditions for the

existence of Bochner integrable solutions (with values in the Schatten p-class) of

an operator-valued Riccati equation are established. The Bochner integrable solu-

tions yield simple numerical quadratures for computation of the covariance operator,

which is demonstrated in sensor placement [11] and sensor trajectory planning [12].

Both problems minimize the trace of a weighted covariance operator, whereas the

latter has the sensors’ dynamics as the constraint.

In our formulation, factors related to the mobile sensor platforms are inte-

grated in addition to reducing the estimation uncertainty only [12]. Specifically, the

integration is reflected by the mobility cost, which can be interpreted as the penalty
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associated with motion. Our formulation supports various types of cost functions

for evaluating the cost or penalty induced from mobility. In prior work, the mo-

bility cost is either limited to a quadratic guidance effort [14] or cast as a general

function of the guidance without detailed discussion [4,9]. Furthermore, the formu-

lation permits treating the proposed problem as an optimal control problem, where

we show both the uncertainty cost and the mobility cost are continuous mappings

of the sensors’ guidance. We use the techniques for the existence of an optimal

control [88, Theorem 6.1.4] to establish the existence of a solution to our problem.

To compute an optimal solution, approximations of the infinite-dimensional

terms are necessary. Our treatment of the proposed problem (and its approxima-

tion) permits the application of a two-point boundary value problem derived using

Pontryagin’s minimum principle. After restricting the admissible guidance functions

to a stringent set (with a reasonable physical interpretation), we establish conver-

gence to an exact optimal solution of an approximate optimal solution, i.e., the

cost difference between the original and approximate solutions becomes arbitrarily

small as the dimension of approximation increases. The convergence result justifies

the use of the approximation and affirms that the performance of an approximate

solution is arbitrarily close to the performance of an exact solution.

We implement the solution method numerically in simulations to evaluate and

analyze the performance of a single sensor and multiple sensors. The flow field

that yields advection is set to drift the sensor platforms under realistic conditions.

It has been observed that the flow field is leveraged by the optimal guidance to

reduce the mobility cost in both cases of a single sensor and a team of homogeneous
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sensors. Simulations with a team of heterogeneous sensors suggest that such a team

can reduce the cost of investment with only a minor degradation in the overall

performance.

The remainder of the chapter is organized as follows. Section 4.1 states the

problem formulation and establishes conditions for the existence of a solution to the

problem. Section 4.2 proves the convergence to the exact optimal solution of the

approximate optimal solution and introduces a solution method to obtain optimal

guidance. Section 4.3 includes the simulation results of multiple parameter studies:

a single sensor, a team of homogeneous sensors, and a team of heterogeneous sensors.

4.1 Problem formulation

We now introduce the formulation of the optimization problem. Given the

dynamics and initial condition (2.4) of the sensors, the dynamics of the diffusion-

advection process (2.18), and the second moment of the initial state noise w0(·, ·),

the process noise w(·, ·, t), and measurement noise v(t), the problem below yields the

optimal guidance for a team of mobile sensors to estimate a 2D diffusion-advection

process.

The cost function consists of two parts: one part accounts for reducing the

estimation uncertainty (uncertainty cost), and the other accounts for the motion

of the sensors (mobility cost). Note the Riccati operator Π(·) in this chapter is

the operator Πe(·) in Chapter 2 (the superscript e is dropped for simplicity). The

uncertainty cost is the integral of the trace of the covariance operator Π(·) over the
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horizon [0, tf ], i.e.,
∫ tf

0
Tr(Π(t))dt. The mobility cost Jm(ζ, p) is defined as

Jm(ζ, p) =

∫ tf

0

h(ζ(t), t) + g(p(t), t)dt+ hf (ζ(tf )). (4.1)

Here, h : Rn × [0, tf ] → R+ is a continuous function that characterizes the cost

associated with the state of the mobile sensors. For example, a hazardous field

can be modeled by h, where h(ζ(t), t) evaluates the exposure of the mobile sensors,

which can shorten the sensor’s life span. The cost of the guidance is characterized

by g : Rm × [0, tf ] → R+. For example, quadratic guidance effort is g(p(t), t) =

p>(t)γp(t), where γ ∈ Rm×m is symmetric and positive definite. The guidance cost

can address limited onboard resources, like fuel or batteries, by treating γ as the

penalty coefficient.

The terminal state cost hf : Rn → R+ evaluates the cost associated with the

terminal state. An exemplary scenario is when the sensors are expect to come close

to a set of pre-assigned terminal locations xf ∈ Ωms , where hf (ζ(tf )) = |Mζ(tf ) −

xf |22. The motion of the sensors follow from the dynamics (2.4), which constrain

the optimization. Denote the admissible set of guidance functions as P = {p ∈

L2([0, tf ];P )}, where P is the set of admissible guidance (values) defined at the end

of Section 2.2.

The optimization problem is formulated as follows:

minimize
p∈P

∫ tf

0

Tr(Π(t)) + h(ζ(t), t) + g(p(t), t)dt+ hf (ζ(tf ))

subject to ζ̇(t) = αζ(t) + βp(t), ζ(0) = ζ0,

(Pe)
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where Π(t) is given by (2.25) with a given initial condition Π(0) = Π0. It suffices

to search for guidance p that minimizes the cost of (Pe), because the sensor state

ζ is entirely determined by guidance p via the sensor dynamics and the given ini-

tial condition ζ0, which further determines Π(·) through (2.25) with a given initial

covariance Π(0).

A special case is considered in [18] where only a quadratic guidance effort is

considered in the mobility cost. Such a formulation applies to the case of limited

onboard resources of each mobile sensor when γ is diagonal. It minimizes the La-

grangian function of the optimization problem that minimizes the uncertainty cost

subject to the constraints of bounded guidance effort and linear dynamics of the

mobile sensors.

The following three assumptions are necessary for the existence of a solution

to problem (Pe).

(E9) The set of admissible guidance P ⊂ Rm is closed and convex.

(E10) The mappings h : Rn× [0, tf ]→ R+, g : Rm× [0, tf ]→ R+, and hf : Rn → R+

are continuous. For every t ∈ [0, tf ], the function g(p, t) is convex about p.

(E11) There exists a constant d1 > 0 with g(p, t) ≥ d1|p|22 for all (p, t) ∈ P × [0, tf ].

Assumptions (E9)–(E11) are generally met in applications with real vehicles.

Assumption (E9) is satisfied when the values of admissible guidance vary along a

continuum. The continuity requirement in assumption (E10) on the cost functions

h, g, and hf is typically satisfied. And the convexity requirement in assumption

(E10) and quadratic boundedness from below in assumption (E11) can be met if g
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is quadratic in p, e.g., g(p, t) = p>(t)γ(t)p(t) for a symmetric and positive definite

matrix γ(t) (which is continuous with respect to t) such that d1 can be chosen as

the minimum eigenvalue of γ(t) for t ∈ [0, tf ] (see [6, Corollary VI.1.6]).

Theorem 4.1. Consider problem (Pe) and let assumptions (E1)–(E4) and (E9)–

(E11) hold. Then problem (Pe) has a solution.

Proof. See Appendix A.9.

We use Pontryagin’s minimum principle to characterize an optimal solution of

(Pe). Consider the Hamiltonian

H(ζ(t), p(t), λ(t), t) = Tr(Π(ζ, t)) + h(ζ(t), t) + g(p(t), t) + λ>(t)(αζ(t) + βp(t)),

(4.2)

where λ(t) ∈ Rn is the costate associated with ζ(t). The necessary conditions of

(local) optimality are as follows:

ζ̇∗(t) = αζ∗(t) + βp∗(t), (4.3a)

ζ∗(0) = ζ0, (4.3b)

λ̇∗(t) = − α>λ∗(t)−∇ζh(ζ∗(t), t)−∇ζTr(Π∗(ζ∗, t)), (4.3c)

λ∗(tf ) = ∇ζhf (ζ
∗(tf )), (4.3d)

0 = ∇pg(p∗(t), t) + β>λ∗(t), (4.3e)

where Π∗(·) is evaluated along the optimal system state ζ∗(·) and we use the first-

order necessary condition ∇pH(ζ∗(t), p∗(t), λ∗(t), t) = 0 in (4.3e) for H to attain its
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minimum at p∗(t). The necessary condition (4.3) essentially requires the solution

to a two-point boundary value problem, which further requires the derivation of

∇ζTr(Π∗(t)). We refer to a similar derivation in [12], where the gradient of the

covariance operator’s trace with respect to sensor’s guidance is taken. The ith row

of∇ζTr(Π∗(t)), denoted by [∇ζTr(Π∗(t))]i, is the partial derivative of Tr(Π∗(t)) with

respect to the ith element of the state ζ∗(t) for i ∈ {1, 2, . . . , n}. Since trace is a

linear operator, we have

[∇ζTr(Π∗(t))]i =
∂Tr(Π∗(t))

∂[ζ(t)]i
= Tr(

∂Π∗(t)

∂[ζ(t)]i
). (4.4)

By the chain rule, (4.4) becomes

Tr(
∂Π∗(t)

∂[ζ(t)]i
) = Tr(DC̄C̄?(t)Π

∗(t) ◦D[ζ(t)]i C̄C̄?(t)), (4.5)

where DC̄C̄?(t)Π(t) is the Fréchet derivative of the Riccati operator with respect to

the composite output operator C̄C̄?(t) and D[ζ(t)]i C̄C̄?(t) is the Fréchet derivative of

C̄C̄?(t) with respect to [ζ(t)]i. Denote DC̄C̄?(t)Π
∗(t) by Λ(t) and, by [12, Theorem

5.5], Λ(t) is the unique solution to

Λh(t) = −
∫ t

0

S(t− s)
(
(Λh)(s)C̄C̄?(s)Π(s) + Π(s)C̄C̄?(s)(Λh)(s)

+ Π(s)h(s)Π(s)
)
S?(t− s)ds, (4.6)

Λ(0) = 0, (4.7)
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for all h ∈ C([0, tf ],J1(H)) and all t ∈ [0, tf ]. The approximated version of problem

(Pe) and the two-point boundary value problem (4.3) will be applied to solve for

optimal guidance in Section 4.2.

4.2 Solving optimal guidance using approximation

Since the infinite-dimensional terms in (Pe) have to be approximated for com-

putation as introduced in Section 2.5, we arrive at the approximated problem:

minimize
pN∈P

∫ tf

0

Tr(ΠN(t)) + h(ζ(t), t) + g(pN(t), t)dt+ hf (ζ(tf ))

subject to ζ̇(t) = αζ(t) + βpN(t), ζ(0) = ζ0,

(APe)

where ΠN(t) is obtained through (2.38). It suffices to search for guidance pN , because

both the sensor state ζ and the approximated estimation covariance ΠN are fully

determined by the guidance and initial conditions. The existence of a solution of

problem (APe) is guaranteed in Theorem 4.2.

Theorem 4.2. Consider problem (APe) and let assumptions (E5)–(E11) hold.

Then (APe) has a solution.

Proof. See Appendix A.10.

Solving problem (APe) provides a candidate solution, denoted by p∗N , where

N is the dimension of the approximation. The candidate p∗N may not equal the

exact optimal solution, denoted by p∗, of the original problem (Pe). However, as we

show in the following theorem, the candidate p∗N yields the optimal value of (APe)
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arbitrarily close to the one of (Pe), as the dimension N goes to infinity. Moreover,

when p∗N is evaluated in the original problem (Pe), the resulting cost is arbitrarily

close to the optimal cost of (Pe).

Before we state this convergence result, we introduce an assumption on the

set of admissible guidance functions.

(E12) There exist pmax > 0 and amax > 0 such that the set of admissible guidance

is P(pmax, amax) = {p ∈ C([0, tf ];P ) : |p(t)| is uniformly bounded by pmax and

|p(t1)− p(t2)| ≤ amax|t1 − t2|, ∀t1, t2 ∈ [0, tf ]}.

Notice that the set P(pmax, amax) is sequentially compact, due to the Arzelà-

Ascoli Theorem [67], since the guidance functions in P(pmax, amax) are uniformly

equicontinuous and uniformly bounded. The parameters pmax and amax may be

determined by the vehicles carrying sensors. For example, pmax and amax refer to

the maximum speed and maximum acceleration, respectively, in the case of single

integrator dynamics where p is the velocity command.

Theorem 4.3. Consider problem (Pe) and its finite-dimensional approximation

(APe). Let assumptions (E4)–(E12) hold and let p∗ and p∗N denote the optimal

guidance of (Pe) and (APe), respectively. Then

lim
N→∞

|J∗(APe)(p
∗
N)− J∗(Pe)(p

∗)| = 0. (4.8)

Furthermore, the cost function of (Pe) evaluated at the guidance p∗N converges to
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the optimal cost of (Pe)

lim
N→∞

|J(Pe)(p
∗
N)− J∗(Pe)(p

∗)| = 0. (4.9)

Proof. See Appendix A.11.

Remark 4.1. Two implications follow from the convergence result in Theorem 4.3.

First, the convergence in (4.8) affirms the usage of approximation since the optimal

cost of the approximate problem (APe) gets arbitrarily close to that of the exact

problem (Pe) as the approximation gets finer. Second, the convergence in (4.9)

affirms the optimal guidance computed using approximation. When the approximate

optimal guidance is evaluated by the cost function of the original problem (Pe), the

resulting value is arbitrarily close to the optimal cost of (Pe) as the approximation

gets finer. In other words, the approximate optimal guidance is a sufficiently accurate

proxy for the exact optimal guidance.

Remark 4.2. Assumptions are made for the existence of a solution to problem (Pe)

((E9)–(E11)), well-posedness of the Riccati operators ((E1)–(E4)), and the conver-

gence of the approximated solution ((E5)–(E8) and (E12)). Assumptions (E9)–

(E11) are regarding the mobility cost and the set of admissible guidance, which

are generally satisfied in engineering applications (see the discussion before The-

orem 3.1). The rest of the assumptions are typically satisfied with the diffusion-

advection equation and Galerkin approximation (using eigenfunctions of the Lapla-

cian operator). Details of how to check similar assumptions for the dual control

problem can be found in Section 3.2.1.
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The convergence stated in Theorem 4.3 is established based on several earlier

stated results, including

1. the output operator’s continuity with respect to location (assumption (E4)),

which leads to the continuity of the uncertainty cost with respect to sensor

state (Lemma 2.5);

2. existence of the Riccati operator (Lemma 2.4) and convergence of its approx-

imation (Lemma 2.8); and

3. sequential compactness of the set of admissible guidance functions (assumption

(E12)), which leads to the continuity of the cost function with respect to

guidance (Lemma A.2 in the Appendix).

Notice that these key results, in an analogous manner, are also required in [96] when

establishing the convergence to the exact optimal sensor locations of the approximate

optimal locations [96, Theorem 4.3], i.e.,

1. continuity with respect to location and compactness of the output operator

(dual of [57, Theorem 2.10]), which lead to continuity of the Riccati operator

with respect to sensor locations [96, Theorem 4.1];

2. existence of the Riccati operator [96, Theorem 2.5] and the convergence of its

approximation [96, Theorem 4.2]; and

3. sequential compactness of the set of admissible locations, which is inherited

from the setting that the spatial domain is closed and bounded in a finite-

dimensional space.
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To compute an optimal solution to problem (APe), we use Pontryagin’s mini-

mum principle, which introduces a Hamiltonian function that has the same form as

(4.2) except that the covariance operator Π(t) in (4.2) is replaced by its approxima-

tion ΠN(t). And correspondingly, the resulting two-point boundary value problem

has the same form as (4.3) except for Π(t) being replaced by ΠN(t).

Remark 4.3. The optimal sensor trajectory ζ∗ steered by the optimal guidance p∗

may be used as the reference trajectory tracked by the vehicle’s lower-level control.

Although collision avoidance among the sensors is not discussed in this chapter,

it can be incorporated into the lower-level control using numerous methods in the

existing literature, e.g., [87] and the references therein.

4.3 Simulation results

This section shows the simulation results obtained using the solution method

proposed in Section 4.2. Comparison and analysis are made regarding the perfor-

mance of the mobile sensor(s) under optimal guidance for the case of a single sensor,

a team of homogeneous sensors, and a team of heterogeneous sensors.

We use the Galerkin scheme to approximate the infinite-dimensional terms.

The orthonormal set of eigenfunctions of the Laplacian operator ∇2 (with zero

Dirichlet boundary condition) over the spatial domain Ω = [0, 1]×[0, 1] is φi,j(x, y) =

2 sin(πix) sin(πjy). With a single index k = (i−1)N + j such that φk = φi,j, the set

of eigenfunctions {φk}N
2

k=1 spans an N2-dimensional space that is previously denoted

by HN . For the orthogonal projection PN : H → HN , it follows that P ?
N = PN and
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Figure 4.1: Approximate optimal costs J∗(APe)(p
∗
N) normalized with respect to the

optimal cost for N2 = 400.

P ?
NPN → I strongly. And the assumption (2.42) in Theorem 4.2 holds uniformly for

all t ∈ [0, tf ] as N → ∞ [11]. We set pmax and amax to be sufficiently large so that

the solution is in the set P(pmax, amax). We plot the optimal cost J∗(APe)(p
∗
N) for N

from 7 to 20, as shown in Fig. 4.1. The optimal cost shows a tendency of exponential

convergence as we increase the number of basis functions. And we choose N = 12 in

the rest of the simulations since it is the smallest dimension with the optimal cost

within 1% of the optimal cost evaluated with the maximum dimension N = 20 in

the trials.

The parameters in the simulation are tf = 2 and a = 0.01. We use single

integrator dynamics for each sensor. The state ζ is the 2D location of the sensors

and guidance p is the 2D velocity command. In some applications, the flow field v of

the diffusion-advection process can affect the mobile sensors. For example, surface

vehicles that measure the concentration of certain chemical substances or biological

entities in a water body are subject to the movement of the water. Considering

this realistic condition, we append the flow field v = [0.1,−0.1]> of advection to

the right-hand side of the single integrator dynamics, which means the sensors will
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drift along the flow when zero guidance is implemented. The previous statements

and results on the existence of solution and convergence of the approximate solution

still hold within this setting. The optimization will find optimal guidance subject to

(or possibly taking advantage of) this flow field. The sensor has the square-shaped

average output kernel (see (2.20)) with ri = 0.05, in which case its footprint only

covers 1% of the domain in area. We set g(p(t)) = γp>(t)p(t)/2 and h(ζ(t), t) =

hf (ζ(tf )) = 0 as the mobility cost, which is simply the quadratic guidance effort for

γ > 0.

Assumption (E4) holds for the choice of output operator (see Remark 2.1).

With the Galerkin approximation using the orthonormal eigenfunctions {φk}N
2

k=1, it

can be shown that assumption (E8) holds for lN(·) = N2l(·). Assumptions (E5)–

(E7) hold with q = 1 under the Galerkin approximation with aforementioned basis

functions {φ}N2

k=1 [11]. Assumptions (E9)–(E11) and (E12) hold for the choice of

functions in the mobility cost and parameters of the set of admissible guidance

functions, respectively.

To evaluate the performance of the optimal guidance in simulation, we set

the deterministic portion of the initial condition of the PDE to zero, i.e., Ẑ0 = 0,

which excludes the bias from choosing a particular non-zero one. The stochastic

portion of the initial condition w0 is chosen as a zero-mean Gaussian process with

non-stationary kernel function k0 : Ω× Ω→ R+ such that

k0(x1, x2) = 9exp
(
− |x1 − x2|22

200
− |x1 − x0|22

10
− |x2 − x0|22

10

)
, (4.10)
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where x0 ∈ Ω represents the peak of the uncertainty in the domain and we set

x0 = [0.75, 0.25]>. For the state noise w(t), we use a zero-mean Gaussian process

with a homogeneous kernel function k : Ω× Ω→ R+ such that

k(x1, x2) = exp
(
− |x1 − x2|22

2000

)
. (4.11)

We use the forward-backward sweep method [53] to solve the two-point bound-

ary problem (4.3) (with Π replaced by ΠN) and subsequently compute the optimal

guidance. A fixed-step length of 0.01 and a relative tolerance of 1×10−6 are applied

in the iterative procedure. The forward propagation of (4.3a) and (2.38) and the

backward propagation of (4.3c) are computed via the Runge-Kutta method.

4.3.1 Single sensor results

Two important parameters in the problem setting are the sensor noise variance

R and mobility penalty γ. Smaller R yields higher sensor quality, whereas smaller

γ yields better mobility of the vehicle. For example, if γ is the mass of the vehicle,

then the guidance effort is the kinetic energy of the vehicle. These parameters affect

the performance of the estimation as shown next. In this simulation, the sensor

is initiated at ζ0 = [0.3, 0.1]>. Monte Carlo simulations of 100 trials compare the

optimal guidance with three naive guidance policies whose corresponding sensor

trajectories are as follows:

1. Naive 1: crossing the domain by reaching the opposite of the initial location

within domain at [0.7, 0.9]> at a constant speed.
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Figure 4.2: Optimal trajectories for various values of the sensor noise variance R

2. Naive 2: reaching the peak of the initial uncertainty x0 at a constant speed.

3. Naive 3: circulating the domain in the clockwise direction with center [0.5, 0.5]>,

radius 1/
√

5, and angular speed π rad/s.

A stationary sensor is also included for comparison whose guidance, named null

guidance, merely compensates for the flow field v.

First, hold either R or γ fixed and vary the other to observe the variation of

the optimal trajectory. Fig. 4.2 displays the trajectories when γ = 0.5 and R varies

from 0.2 to 1. The sensor maneuvers less as R increases, which indicates the optimal

guidance’s compensation for deteriorating sensor quality by moving it closer to the

peak of the initial uncertainty at x0 = [0.75, 0.25]>.

For the Monte Carlo trials, the mean and standard deviation of the terminal

estimation error’s norm are shown in Fig. 4.3. The optimal guidance exhibits smaller

mean and variance of terminal estimation error over the naive guidance policies and

the null guidance at each evaluated R. Notice that the advantage is preserved when
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Figure 4.3: Norm of the terminal estimation error for various values of sensor noise
variance R. The color bar shows the mean value; the error bar shows the standard
deviation. The value of mobility penalty γ is fixed at 0.5, whereas the sensor noise’s
variance R takes values in the set {0.2, 0.4, 0.6, 0.8, 1}.

the sensor quality deteriorates as R increases.

Fig. 4.4 displays the trajectories when R = 0.2 and γ varies from 0.5 to 2.5.

A bigger value of γ suppresses the guidance effort and hence reduces the range of

the sensor’s motion. The results of Monte Carlo trials when γ varies are shown

in Fig. 4.5. Notice that the mean and standard deviation are invariant for each

naive guidance policy and the null guidance among the varying γ since the sensor

trajectory steered by each of these guidance policies is independent of γ. The optimal

guidance shows its advantage over the other guidance policies at a relatively smaller

values of γ, e.g., at 0.5 and 1. This advantage is gradually lost as γ takes relatively

bigger values, e.g., 2 and 2.5. This comparison suggests that the optimal guidance

may not be the best option for vehicles with large γ (e.g., when the vehicle is heavy),
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Figure 4.4: Optimal trajectories for various values of the mobility penalty γ

0.5 1 1.5 2 2.5
0
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optimal naive 1 naive 2 naive 3 null

Figure 4.5: Norm of the terminal estimation error for various values of the mobility
penalty γ. The color bar shows the mean value; the error bar shows the standard
deviation. The value of sensor noise’s variance R is fixed at 0.2, whereas the mobility
penalty γ takes values in the set {0.5, 1, 1.5, 2, 2.5}.
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despite the fact that the guidance is still optimal for the chosen cost function in

simulation.
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Fig. 4.6 shows the snapshots of the sensor trajectory under the optimal guid-

ance and contour plot of the pointwise variance of the estimation error among the

Monte Carlo trials with γ = 1 and R = 0.2. The pointwise variance is computed

at each point in a uniform grid of 144× 144 sampling points in the domain Ω. The

sensor is steered quickly towards the area with higher uncertainty near [0.75, 0.25]>

(see the snapshot at t = 0.8 s). Eventually, the sensor starts to drift along the flow

field v = [0.1,−0.1]> (see the snapshot at t = 2 s). That sensor can effectively re-

duce the uncertainty of the estimation error as can be observed from the drop in the

pointwise variance in the sensor’s footprint. Note that the zero Dirichlet boundary

condition also contributes to reducing the uncertainty of the estimation error via

diffusion and advection.

4.3.2 Team of homogeneous sensors
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To demonstrate the framework’s capability in guiding a team of multiple sen-

sors, we simulate four homogeneous sensors (R = 0.2, γ = 0.5). To adapt to a total

of four sensors, the kernel functions for w0 and w are enlarged four times in (4.10)

and (4.11), respectively, and the peak of the initial uncertainty is set to the center

[0.5, 0.5]>. The other settings are identical to those in Section 4.3.1. Fig. 4.7 shows

the snapshots of the sensors’ trajectories under the optimal guidance and contour

plot of the pointwise variance of the estimation error among the Monte Carlo tri-

als. Similar to the case of a single sensor in Fig. 4.6, the sensors quickly sweep the

peak of the initial uncertainty in the center and expand to cover the domain (see

the snapshot at t = 0.6 s). The pointwise variance drops along sensors’ footprints.

The sensors essentially drift along the flow to reduce the guidance effort (see the

snapshot at t = 2 s).

4.3.3 Team of heterogeneous sensors

The parameters R and γ essentially relate to operational planning: one may

invest more for better sensor quality or a swifter vehicle. Consequently, one would

necessarily invest more for a team of superior mobile sensors (e.g., R = 0.2 and

γ = 0.5) than a team of poor mobile sensors (e.g., R = 1 and γ = 2.5). The

latter has five times as much sensor noise (in terms of standard deviation) and five

times the mobility penalty as the former. One may balance the conflicting needs of

performance and investment by deploying a team of heterogeneous sensors, i.e., a

mixed team of superior and poor sensors.
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The following simulation compares the performance of a team of heterogeneous

sensors (including mp poor sensors and 8−mp superior sensors, for mp in the range of

{1, 2, . . . , 7}) with that of homogeneous teams (mp = 0 for superior sensors only and

mp = 8 for poor sensors only). The sensors are introduced in the lower left corner

of the domain and the coordinates are shown in Table 4.1. To adapt to a total of

eight sensors, the kernel functions for w0 and w are enlarged eight times in (4.10)

and (4.11), respectively, and the peak of the initial uncertainty is set to the center

of the domain at [0.5, 0.5]>. Fig. 4.8 shows the normalized optimal total cost and

uncertainty cost for the heterogeneous team compared with homogeneous teams of

superior and poor sensors. The performance deteriorates judged by the rising costs

as the number of poor sensors increases in team. However, the degradation of the

heterogeneous team (when mp ≤ 5) is maintained within 20% of the superior team

in both the total cost and uncertainty cost, which indicates the cost effectiveness of

the heterogeneous team since the investment reduces linearly as mp increases.

sensor 1 2 3 4 5 6 7 8

x 0.1 0.15 0.2 0.1 0.15 0.2 0.1 0.15
y 0.1 0.1 0.1 0.15 0.15 0.15 0.2 0.2

Table 4.1: Coordinates of initial sensor locations

84



0 2 4 6 8

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Figure 4.8: Normalized optimal total cost and uncertainty cost of a heterogeneous
team with mp poor sensors and 8−mp superior sensors.
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Chapter 5: Cooperative estimation and control: simulations and ex-

periments

In this chapter, we propose a framework for controlling a 2D diffusion process

with mobile collocated sensors and actuators. The framework has been demon-

strated in experiments on an outdoor multi-quadrotor testbed.

We start with a quick review of the background and notation for this chapter.

Consider a team of m mobile agents in a 2D domain Ω = [0, l] × [0, l], where each

agent carries an actuator and a sensor. The words vehicle, actuator, and sensor all

refer to a mobile agent in this chapter although their appearance depends on the

context. We model each agent’s motion by a single integrator, i.e.,

ξ̇i(t) = vi(t), (5.1)

where ξi(t) ∈ Ω and vi(t) ∈ V ⊆ R2 contain the 2D position and velocity of agent i

for all t. The variable vi serves as the guidance that steers the agent. Concatenating

ξi and vi vertically for i ∈ {1, 2, . . . ,m} to get ξ ∈ Ωm and v ∈ V m, respectively, we

have

ξ̇(t) = v(t). (5.2)
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With a slight abuse of notation, we use V to denote the feasible set of velocity for

all agents, i.e., v(t) ∈ V ⊆ R2m. The single integrator model is taken for its simple

form although complicated agent dynamics can be applied. The optimal trajectory

associated with the dynamics (5.2) can serve the reference signal for tracking by

lower-level control of the vehicles if it does not match the vehicles’ exact dynamics.

We use a 2D diffusion equation to model the spatiotemporal processes that is

controlled by the mobile actuators

∂z(x, y, t)

∂t
=a∇2z(x, y, t) +

m∑
i=1

Bi(x, y)ui(t) + w(x, y, t), (5.3)

z(·, ·, t)|∂Ω =0, (5.4)

z(x, y, 0) =ẑ0(x, y) + ω0(x, y), (5.5)

where z(·, ·, t) is the state at time t and ui is the control implemented by actuator

i with its actuation characterized spatially by Bi(·, ·). The initial state z(·, ·, 0) has

nominal value ẑ0 with initial uncertainty ω0. The term w characterizes the state

noise and model uncertainties. The parameter a is the diffusivity, which characterize

how fast the state z diffuses. The state z lives in the state space L2(Ω). The Dirichlet

boundary condition (BC) is considered in (5.4), where the boundary of the domain

serves the role of (passive) actuation and will eventually draw the state to zero when

the actuators implement zero control. The Neumann BC is also considered in this

chapter, where

∂z(·, ·, t)
∂n

|∂Ω = 0. (5.6)
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In reality, the Dirichlet and Neumann boundary conditions correspond to actuation

and insulation at the boundary. In the case of oil spills, filters and booms at the

boundary of the domain can be modelled by these two types of boundary conditions,

respectively.

Depending on the model’s preciseness, the input operator Bi can have different

shapes. For example, a Gaussian function with its center at actuator i’s location

(xi, yi) with a bounded support is a natural way to modeling the effect that the

actuation concentrates at the location of release and spreads to its surroundings

with exponentially decaying magnitude:

Bi(x, y) =


1

2πσ2
i

exp

(
−(x− xi)2

σ2
i

− (y − yi)2

σ2
i

)
, if |x− xi| ≤ σi and |y − yi| ≤ σi

0, otherwise.

(5.7)

A simplification of the Gaussian function assumes that the actuation distributes

uniformly in a square (or, more generally, a rectangle)

Bi(x, y) =


1

4σ2
i

, if |x− xi| ≤ σi and |y − yi| ≤ σi

0, otherwise.

(5.8)

In this case the input operator can approximate the point actuation when σi → 0 [85,

Remark 3], that is, a Dirac delta function that is nonzero at the location of the

actuator i.

Recall that the each pair of sensor and actuator are collocated. The measure-
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ment by sensor i depends on its location such that

yi(t) =

∫∫
Ω

Ci(x, y)z(x, y, t)dxdy + νi(t), (5.9)

where Ci is the measurement kernel of sensor i and νi is the sensor noise. The

kernel may have various shapes, e.g., an interval average kernel that corresponds to

a camera-type sensor, where the average measurement over a 2ri× 2ri area is taken

Ci(x, y) =


1

4r2
i

, if |x− xi| ≤ ri and |y − yi| ≤ ri

0, otherwise;

(5.10)

or a pointwise kernel that corresponds to a single-pixel sensor

Ci(x, y) = δ(x− xi)δ(y − yi). (5.11)

The sensors could be mobile by themselves, in which case separately designed guid-

ance strategy can be implemented, e.g., the guidance design in Chapter 4.

We denote by y(t) the collection of all sensors’ measurements at time t, i.e.,

y(t) = [y1(t), . . . , ym(t)]>. (5.12)

The dynamics of PDE (5.3)–(5.5) and the observation equation (5.12) can be
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conveniently characterized by the abstract linear system:

Ż(t) =AZ(t) + B(ξ(t))u(t) + ω(t), (5.13)

Z(0) =Ẑ0 + ω0, (5.14)

y(t) =C?(ξ(t))Z(t) + ν(t), (5.15)

where Z(·) is the state within state space H = L2(Ω) and u(·) is the control

within the control space u(t) ∈ U ⊆ Rm for t ∈ [0, tf ]. In the case of diffusion

process (5.3), for φ ∈ H, (Aφ)(x, y) = a∇2φ(x, y), where the operator A has do-

main Dom(A) = H2(Ω) ∩ H1
0 (Ω) (see Chapter 3). For any ξ(t) ∈ Ωm and all

t, the input operator B(ξ(t)) ∈ L(U ;H) is a function of the actuator locations

such that B(ξ(t)) = [B1(ξ1(t)), . . . ,Bm(ξm(t))]>, where Bi(ξi(t)) ∈ L2(Ω) for all

i ∈ {1, 2, . . . ,m}. The noise ω0, ω(t), and ν(t) are zero-mean Gaussian with appro-

priate dimensions and covariance Πe
0, Q, and R, respectively. Moreover, they are

mutually independent for all t.

The output operator C?(ξ(t)) ∈ L(H;Rm) is defined by

C?(ξ(t))φ = [C?1(ξ1(t))φ, . . . , C?m(ξm(t))φ] (5.16)

for φ ∈ L2(Ω), where C?i is the adjoint of Ci such that

C?i φ =

∫∫
Ω

Ci(x, y)φ(x, y)dxdy, i ∈ {1, 2, . . . ,m}. (5.17)
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Due to the infinite-dimensional nature of (5.13), approximations to (5.13)

and (5.15) permit numerical computation. Consider a finite-dimensional subspace

HN ⊂ H with dimension N . The inner product and norm of HN are inherited

from that of H. Let PN : H → HN denote the orthogonal projection of H onto

HN . We use the Galerkin scheme with the HN spanned by the eigenfunctions

φij(x, y) = 2 sin(πix/l) sin(πjy/l)/l of the Laplacian operator ∇2 with Dirichlet

BC for i, j ∈ {1, 2, . . . , N} (for Neumann BC, the eigenfunctions for approximation

are ψi,j(x, y) = 2 cos(πix/l) cos(πjy/l)/l for i, j ∈ {0, 1, . . . , N − 1}). Let ZN(t) =

PNZ(t) denote the finite-dimensional approximation of Z(t). The finite-dimensional

approximations of (5.13)–(5.15) are

ŻN(t) = ANZN(t) +BN(ξ(t))u(t) + ωN(t), (5.18)

ZN(0) =PN(Ẑ0 + ω0), (5.19)

yN(t) = C?
N(ξ(t))ZN(t) + ν(t), (5.20)

where AN ∈ L(HN), BN(ξ(t)) ∈ L(U ;HN), and C?
N(ξ(t)) are approximations of A,

B(ξ(t)), and C?(ξ(t)), respectively, for all ξ(t) ∈ Ωm and all t. Note that the mea-

surement yN ∈ Rm. The noise ωN(t) and its covariance QN are the finite-dimensional

approximations of ω(t) and Q, respectively. Since the actuator state ξ(t) is a func-

tion of time t, we sometimes use BN(t) and C?
N(t) for brevity.

Our formulation will be based on the finite-dimensional system (5.18)–(5.20).

This is known as early-lumping [56], where the infinite-dimensional system is approx-

imated, and subsequently the controller is designed. The opposite is late-limping,
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where the controller design refers to the original system, and approximations only

happen at the stage of computation, e.g., see Chapter 3.

We use the Kalman filter to reconstruct the state ZN using sensor measure-

ments yN :

˙̂
ZN(t) = AN ẐN(t) + Πe

N(t)CN(t)R−1(y(t)− ŷN(t)), (5.21)

ẐN(0) = ẐN,0, (5.22)

ŷN(t) = C?
N(t)ẐN(t), (5.23)

where ẐN is the estimated state with initial value ẐN,0 = PN Ẑ0, and Πe
N ∈ L(HN)

is the covariance of the estimate ẐN which follows the Riccati equation

Π̇e
N(t) = ANΠe

N(t) + Πe
N(t)A?N +QN(t)− Πe

N(t)CN(t)R−1C?
N(t)Πe

N(t). (5.24)

The initial value of Πe
N(0) is the approximated covariance Πe(0) of the initial state

noise ω0.

5.1 Cooperative estimation and control framework

We propose a framework for a team of collocated mobile sensors and actuators

to estimate and control a 2D diffusion process. We use the Kalman filter to recon-

struct the state information using sensor measurements. The reconstructed state

is fed into an optimization problem that solves the actuation and guidance of the

actuators. We first introduce the optimization problem below and then show how
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it is incorporated into the framework.

The goal of optimization is to plan the actuator guidance and actuation so

that the magnitude of the PDE state reduces more quickly than by diffusion alone.

First, define the admissible set of guidance and actuation functions such that v(·) ∈

V = L2([0, tf ];V ) and u(·) ∈ U = L2([0, tf ];U). The cost of controlling the PDE

state, named PDE cost, is the sum of quadratic costs of the state and actuation:

∫ tf

0

〈ZN(t), κZN(t)〉+ u(t)>γu(t)dt+ 〈ZN(tf ), κfZN(tf )〉. (5.25)

Here, 〈·, ·〉 denotes the inner product on HN ; κ and κf ∈ L(HN) are nonnegative

and self-adjoint and γ ∈ Rm×m is symmetric and positive definite. The PDE cost

penalizes the magnitude of the state while restricting the total weighted quadratic

actuation. Another term we consider in the cost function is the mobility cost:

∫ tf

0

v(t)>qv(t)dt, (5.26)

where q ∈ R2m×2m is symmetric and positive definite. The mobility cost is a weighted

quadratic function of the guidance; it may be interpreted as the guidance effort.

The constraints for planning include the deterministic dynamics of the PDE

and the dynamics of the mobile actuators. The two dynamics are coupled by the

input operator BN(ξ(·)), which is a function of the actuator state ξ. The constraints

also include physical limitations of the actuators and their carrying vehicles, i.e.,
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each actuator has its actuation limited to an interval

− umax ≤ ui(t) ≤ 0, (5.27)

and the speed of each vehicle is bounded

|vi(t)|2 ≤ vmax (5.28)

for i ∈ {1, 2, . . . ,m}, where umax and vmax are positive and correspond to the max-

imum actuation and maximum speed, respectively. Summarizing (5.25)–(5.28), we

obtain the following problem formulation:

minimize
u∈U ,v∈V

∫ tf

0

〈ZN(t), κZN(t)〉+ u(t)>γu(t) + v(t)>qv(t)dt+ 〈ZN(tf ), κfZN(tf )〉

subject to ŻN(t) = ANZN(t) +BN(ξ(t))u(t), ZN(0) = Z0,N ,

ξ̇(t) = v(t), ξ(0) = ξ0,

− umax ≤ ui(t) ≤ 0,

‖vi(t)‖2 ≤ vmax, i ∈ {1, 2, . . . ,m}.
(Pexp)

The inputs to problem (Pexp) are the PDE’s initial state Z0,N and the actua-

tors’ initial locations ξ0. Subsequently, problem (Pexp) simultaneously solves for the

optimal guidance v∗ and optimal actuation u∗, which are treated as outputs. When

the exact state Z0,N is not available to be fed into (Pexp), the estimate Ẑ0,N is the

input to (Pexp) in practice, and the state’s propagation follows the deterministic
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PDE dynamics applied in (Pexp) as the constraint. We use a nonlinear optimal

control solver ICLOCS2 [63] to compute a solution to (Pexp).

An alternative approach would be to detach the sensors from the actuators.

In such a scenario, the sensors could be stationary or mobile. For the latter case,

sensors’ guidance can be designed for reducing the uncertainty of the estimation, e.g.,

minimizing the covariance of the Kalman filter (see Chapter 4). Such a scheme is not

applied here due to its heavy computational load (which includes a N4-dimensional

Riccati equation in the constraints). Also, the sensors collocated with the actuators

can provide sufficient state estimation for planning actuation and guidance when

solving problem (Pexp).

The framework is implemented in the following manner: at each planning mo-

ment, the state estimation ẐN and the location of the vehicles ξ are fed into (Pexp)

for the optimal guidance v∗ and actuation u∗ for the planning horizon of tf . Once v∗

and u∗ are solved, the former steers the vehicles along the new trajectories while the

system’s state ZN is propagated subject to the optimal actuation u∗. At the same

time, the sensors’ measurements are collected to propagate the state estimation ẐN .

The procedure repeats until the terminal time or other likely terminal conditions

(e.g., the norm of state ZN is sufficiently close to zero).

5.2 Numerical studies

This section analyzes and evaluates the performance of the proposed frame-

work in simulation. We first show an example of the optimal solution to problem
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(Pexp). We then analyze problem (Pexp)’s solution by examining how its perfor-

mance depends on model parameters. Finally, we evaluate the entire framework

using Monte Carlo simulations with comparison to naive guidance and actuation

strategies.

5.2.1 An example of optimal guidance and actuation

Consider the following example for problem (Pexp): For simplicity, only one

vehicle m = 1 is deployed in the domain Ω with length l = 30 m and is initialized

at ξ0 = [1, 3]> m. The models in (5.8) and (5.10) are used for the input and

output of the PDE, respectively, with r1 = σ1 = 0.1. The initial PDE is Ẑ0(x, y) =

(30x − x2)(30y − y2)/50625 and is approximated using N2 = 132 basis functions

{φi,j}Ni,j=1 for Dirichlet BC and {ψi,j}N−1
i,j=0 for Neumann BC to obtain ZN(0). Other

parameters in this simulation are as follows: umax = 11 kg/m2s, vmax = 6 m/s, and

tf = 60 s. The matrices κ = κf = I132 , γ = 0.1, and q = 0.1I2. We use ICLOCS2 as

the solver for problem (Pexp) using trapezoidal discretization and 10−2 tolerance (for

local absolute error). The resulting snapshots of the optimal trajectory are shown in

Figs. 5.1(a) and 5.1(b) with Dirichlet BC and Neumann BC, respectively. In both

cases, the actuator moves towards the central region of the domain where the initial

distribution concentrates (0–10 s). For the Dirichlet BC, the actuator then stays

near the same area to reduce the remaining spots with relatively big magnitude

(10–30 s) and essentially ceases moving as the process is controlled close to zero

(30–60 s). For the Neumann BC, the actuator covers a bigger area (10–60 s) than
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with the Dirichlet BC due to the boundary insulation effect of Neumann BC. The

Dirichlet BC serves as a passive actuation that reduces the process magnitude by

diffusion; Fig. 5.2 shows that the reduction in state norm ‖ZN‖ with Dirichlet BC is

faster than that with Neumann BC, and Fig. 5.3 shows that the actuation and speed

of the actuator with Dirichlet BC lasts shorter than those with Neumann BC. Also

note that initial actuation and speed with both BCs are umax and vmax, respectively,

indicating the actuator’s best effort to control the process by reaching its actuation

and speed limits.
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Figure 5.2: Reduction of the state norm. The vertical dashed lines correspond to
the time of snapshots in Fig. 5.1.

0 10 20 30 40 50 60

0

5

10

15

0

2

4

6

8

Figure 5.3: Optimal control and speed solved from (Pexp). The vertical dashed
lines correspond to the time of snapshots in Fig. 5.1.

5.2.2 Nondimensional analysis of the parameter space

For the ease of analysis in various applications where the values of model

parameters are at different scales, we conduct a nondimensional analysis of selected

parameters. The nondimensional analysis uses the Buckingham π Theorem [7] to

compute sets of nND = nD − nU dimensionless parameters from nD parameters that

are expressed in terms of nU independent physical units. We choose the following

nD = 6 parameters and display their physical units in Table 5.1: the initial process

state norm ‖ZN(0)‖ (kg/m2), maximum speed vmax (m/s), maximum actuation umax
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(kg/m2/s), diffusivity a (m2/s), domain size l2 (m2), and total time tf (s). Note

that the process state could have other units, e.g., temperature (°C) for forest fires.

Unit ‖ZN (0)‖ vmax umax a l2 tf

kg 1 1
s -1 -1 -1 1
m -2 1 -2 2 2

Table 5.1: Model parameters and their physical units

Since there are nU = 3 independent physical units in Table 5.1, there are nND =

3 nondimensional parameters [7]. We introduce the following domain-independent

parameters: relative speed v̄max and relative diffusivity ā. These parameters scale

vmax and a to a unit-sized domain as follows:

v̄max =
vmax

l
, ā =

a

l2
. (5.29)

Using the scaled parameters in (5.29), we define the three nondimensional parame-

ters: nondimensional speed v̄max/ā, actuation effectiveness (umax/ ‖ZN(0)‖)/ā, and

total diffusion ātf . Although these are not the only nondimensional terms (e.g.,

v̄maxtf is also dimensionless), we choose these three terms for their meaningful phys-

ical interpretations below.

The nondimensional speed (NS) has a clear interpretation in terms of the ve-

hicle speed relative to the process diffusivity. When NS is significantly greater than

one, the mobile actuators are dominant in shaping the distribution of the state.

Moreover, the impact of the actuation is mainly local because the relative diffusion

rate is low. Contrarily, when NS is significantly smaller than one, diffusion is domi-

100



nant in shaping the distribution of the state. The large diffusivity can propagate the

impact of actuation to its surroundings faster than the actuator motion, in which

case the actuators may be treated as essentially stationary.

The actuation effectiveness (AE) characterizes the relation between actuation

and diffusion. The numerator umax/ ‖ZN(0)‖ is the ratio of the maximum possible

actuation to the initial state’s norm, which characterizes roughly how fast the actu-

ation can affect the state. The denominator indicates how fast the diffusion smooths

process. In the case of zero Dirichlet BC, AE characterizes the in-domain actuation

compared to the boundary actuation.

The total diffusion (TD) simply characterizes the total particle transportation

caused by diffusion in a unit-sized domain for a duration of tf . Increasing the relative

diffusivity ā or the terminal time tf increases the total diffusion.

The effect of the nondimensional parameters is quantitatively analyzed in sim-

ulation. Since the parameters may vary at different scales, for example, the diffusiv-

ity a could range from 10−5 m2/s (molecular diffusion) to 500 m2/s (horizontal eddy

diffusivity in the ocean) [2], while the maximum speed of an unmanned vehicle may

vary from 0.1 m/s to 20 m/s, it could be burdensome to cover all the parameters

in their entire range on a fine grid. We first use a coarse grid, where the diffusivity

a ∈ {10−5, 10−4, 10−3, 10−2} m2/s, to see the overall tendency of performance change
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evaluated by the following three metrics:

Zrate =
‖ZN(0)‖ − ‖ZN(tf )‖

tf
, (5.30)

uavg =

∫ tf
0
|u(t)|dt
tf

, (5.31)

vavg =

∫ tf
0
‖v(t)‖2 dt

tf
, (5.32)

which stand for reduction rate of the state norm, average actuation, and average

speed, respectively. The parameters for problem (Pexp) are identical to those in

Section 5.2.1 except for the initial condition Ẑ0(x, y) = (30x− x2)(30y− y2)/10125.

The results are shown in Fig. 5.4 with both the Dirichlet BC and Neumann BC.

The reduction rate of the state norm Zrate rises in the former and maintains a

constant value in the latter as the diffusivity a increases. This is true because

the Dirichlet BC serves as (passive) actuation whose efficiency is proportional to

diffusivity, whereas Neumann BC serves as insulation and does not impact the state.

For the same reason, the average actuation uavg drops for the Dirichlet BC and

maintains a constant value for the Neumann BC since the boundary’s actuation

becomes dominant in the former case as diffusivity increases, which relieves the

actuator from implementing actuation. The average speed vavg drops as diffusivity

increases for both types of BCs because greater diffusivity contributes more to the

spreading of the actuation to the surroundings of the actuators, which relieves the

actuator from travelling at the maximum speed. Note that the average speed for

the Dirichlet BC is smaller than that for the Neumann BC as diffusivity increases

102



10
-5

10
-4

10
-3

10
-2

0.5

1

1.5
Dirichlet BC

Neumann BC

(a) Norm reduction rate Zrate

10
-5

10
-4

10
-3

10
-2

5

10

Dirichlet BC

Neumann BC

(b) Average actuation uavg

10
-5

10
-4

10
-3

10
-2

0

5

Dirichlet BC

Neumann BC

(c) Average speed vavg

Figure 5.4: Performance of the optimal solution to problem (Pexp) for diffusivity a
in the range of 10−5 to 10−2 m2/s.

due to the former’s increasingly dominant boundary actuation.

The result at a coarse parameter grid provide an overall tendency of perfor-

mance when the diffusivity changes. We proceed to evaluate the performance on a

finer grid with a fixed diffusivity a = 10−3 m2/s. We vary the values of vmax, umax,

and tf , where each results in the variation of one nondimensional term indepen-

dently. Specifically, we apply the following set of values: vmax ∈ {1, 2, . . . , 10} m/s,

umax ∈ {6, 7, . . . , 15} kg/m2/s, and tf ∈ {60, 90, 120} s. The other parameters for

the simulations are identical to those in the case of the coarse grid.

Fig. 5.5 shows the results on the fine grid with Dirichlet BC. In Fig. 5.5(a), we
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display the variation of state norm’s reduction rate Zrate when NS and AE vary with

TD fixed (top) and when AE and TD vary with NS fixed (bottom). A clear tendency

of greater state reduction rate can be observed when NS and AE increase, which is

expected since actuators with higher maximum speed and maximum actuation can

reduce the state norm more efficiently. The reduction rate drops as TD increases

because bigger terminal time tf yields a bigger denominator in the reduction rate

Zrate and the numerator is almost constant (due to the zero Dirichlet BC’s eventual

zero state norm). The reduction rate is not sensitive to NS when AE is fixed, which

we do not show. In Fig. 5.5(b), we plot the average actuation uavg when NS and AE

vary with TD fixed (top) and when AE and TD vary with NS fixed (bottom). Similar

tendencies can be observed as in Fig. 5.5(a). Additionally, the average actuation is

capped by the maximum actuation umax (which is proportional to AE in the plot).

The average actuation is not sensitive to NS when AE is fixed, which we do not

show. In Fig. 5.5(c), we display the average speed vavg when NS and AE vary with

TD fixed (top) and when NS and TD vary with AE fixed (bottom). The overall

tendency is that the average speed vavg increases when NS and AE increase or TD

decreases. Also, the average speed is capped by the maximum speed vmax (which is

proportional to NS in the figure) when vmax is relatively small.
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The plots for the Neumann BC with the same values of nondimensional pa-

rameters and the same metrics as for the Dirichlet BC are shown in Fig. 5.6. The

tendency therein are consistent with the Dirichlet BC in Fig 5.5. Hence, we do

not expand the descriptions. But observe the scale of the reduction rate Zrate with

Neumann BC in Fig. 5.6(a) is almost half of that with Dirichlet BC in Fig. 5.5(a)

due to the (passive) actuation implemented by the boundary actuation of the latter.
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5.2.3 Monte Carlo simulations

To evaluate the performance of the overall framework, we conduct Monte Carlo

simulations with two comparison guidance and actuation strategies. Both strate-

gies use random walk as the guidance policy, whereas one applies linear-quadratic-

Gaussian (LQG) feedback as the actuation and the other applies constant actua-

tion uconst = −2 kg/m2s, named the semi-naive and naive strategies, respectively.

For the LQG actuation in the semi-naive strategy, the gain for the estimation-

based feedback control is solved from minimizing an infinite-horizon quadratic cost∫∞
t
〈ZN(τ), κZN(τ)〉+ u(τ)>γu(τ)dτ at each decision time t. The same parameters

for the noise model, Kalman filter, and bounds on speed and actuation are applied

to all strategies for a fair comparison. The framework is implemented with a plan-

ning horizon of 15 s, which is set to be the terminal time tf of problem (Pexp). The

simulations for all strategies run in discrete-time with 0.5 s sample/decision time.

The approximation has dimension N2 = 132, and the matrices for the cost function

are κ = κf = I132 , γ = 0.1I4, and q = 0.1I8. The total time T is 150 (300) s for the

simulations with Dirichlet (Neumann) BC. The diffusivity a is taken in the range

{10−5, 10−4, 10−3} m2/s. The initial conditions Z0(x, y) with Dirichlet and Neu-

mann BC are (30x−x2)(30y−y2)/1875 and (30x−x2)(30y−y2)/5625, respectively.

The kernel functions K0 and K for the Gaussian-process-modelled initial noise ω0
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and state noise ω(·), respectively, are

K0(x1, x2) =9 exp

(
−‖x12‖2

2

20
− ‖x10‖2

2

400
− ‖x20‖2

2

400

)
, (5.33)

K(x1, x2) =0.1 exp (−500 ‖x12‖2
2), (5.34)

where xij = xi − xj for i, j ∈ {0, 1, 2}, x1, x2 ∈ Ω, and x0 = [l/2, l/2]>. The

measurement noise on each sensor follows the standard normal distribution. The

bounds on the speed and actuation are vmax = 1 m2/s and umax = 5 kg/m2s. Four

agents are deployed with their initial locations randomly assigned in the domain Ω

by a uniform distribution. 100 trials are conducted for each value of diffusivity and

each type of BC.

Two metrics are evaluated: the norm of the state ‖ZN(T )‖ and the average

norm reduction per unit actuation (RPA), (‖ZN(0)‖−‖ZN(T )‖)/
∫ T

0
|u(t)|2dt, both

computed at the total time T . These two metrics evaluate the ability of reducing

the state norm and the efficiency of actuation, respectively. The results are shown

in Fig. 5.7. The optimal policy can reduce the state norm to the lowest among

the three strategies, for both the Dirichlet and Neumann BCs and for all values

of diffusivity. The semi-naive is slightly better than the naive strategy due to the

feedback control in the former (compared to the open-loop control in the latter). In

terms of actuation efficiency, the optimal policy has the greatest RPA at all values

of diffusivity for the Neumann BC, which suggests the highest actuation efficiency.

For the Dirichlet BC, the optimal strategy’s RPA is the highest among all strategies

at a = 10−5 m2/s. At relatively greater values of diffusivity (10−4 and 10−3 m2/s),

109



the naive strategy has the highest RPA. But the naive strategy’s RPA is subject to

the change in uconst. In other words, its RPA may not be the highest should uconst

takes other values. Note that when diffusivity is relatively small (a = 10−5 m2/s)

with Neumann BC, some trials with the semi-naive and naive strategies cause the

accumulation of negative actuation such that the state ZN(t) turns negative and

‖ZN(T )‖ > ‖ZN(0)‖. The negative values of the RPA in Fig. 5.7(d) indicate the

such accumulation, which results in inefficiency and waste of actuation.

5.3 Experimental demonstration of the framework

This section shows the experimental results for the demonstration of the co-

operative estimation and control framework on an outdoor multi-quadrotor testbed.

We first review the multi-quadrotor testbed in the literature.

5.3.1 Survey of multi-quadrotor testbed in the literature

The quadrotor is a type of aircraft that is propelled and lifted by four rotors.

The simple structure yields straightforward dynamics and a vast number of research

on controller design for both the maneuver of a single quadrotor and the collec-

tive motion of multiple quadrotors. A recent review [70] introduces existing multi-

quadrotor testbeds developed for research, industry, or entertainment purposes. One

theoretical research topic that applies to multiple quadrotors is formation control,

where position-, displacement-, and distance-based control have been studied for

different sensing capability and interaction topology of agents [64]. Exemplary re-
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Figure 5.7: Results for Monte Carlo simulations. Smaller values of the state norm
‖ZN(T )‖ in (a) and (b) indicate more effective actuation, whereas bigger values of
the RPA in (c) and (d) indicate more efficient actuation.
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sults with experimental validation can be found in [38, 52, 55]. Another research

topic that applies to multiple quadrotors is the autonomous swarm, which refers to

a team of agents who can respond to the tasks that require cooperation based on

individual autonomy. No rigid formation is required in this case. Representative

applications of the autonomous swarm includes surveillance, search, and tracking,

for example, [77, 90,94].

5.3.2 Multi-quadrotor testbed in this work

Our testbed contains a ground station and six custom-built quadrotors: two

use the DJI F450 frame while the other four use the Tarot 650 frame (see Fig. 5.8).

Each quadrotor is equipped with a Pixhawk 2 onboard flight controller for lower-

level control, a real-time kinematic (RTK) GPS for improved positioning, and a

downward-facing lidar for fine altitude reading. Each quadrotor communicates its

status and receives commands from the ground station over 915 MHz telemetry

radio. We assign a unique frequency band to each quadrotor within the range of

902–928 MHz to suppress interference between the radio modules.

On the ground station, the quadrotors’ high-level trajectory planning is com-

puted in MATLAB. The open-source software OpenMACE [37] (developed by Heron

Systems Inc.) interfaces between the quadrotors and the ground station. Open-

MACE broadcasts the quadrotors key status (GPS coordinates, altitude, attitude

angles, and battery voltage) and listens to commands (waypoint, velocity, and take-

off/land) via the Robot Operating System (ROS), which allows users to compute and
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Figure 5.8: Quadrotors in the testbed with the DJI F450 frame (left) and the Tarot
650 frame (right)

send control commands to quadrotors in MATLAB through its interface with ROS.

OpenMACE provides a graphical display that shows the locations of the quadro-

tors on a satellite map with key status information and enables the toggling of

flight modes. The testbed supports virtual quadrotors that are controlled by Ar-

duCopter in the software in the loop (SITL) simulator. The software architecture

of the testbed is summarized in Fig. 5.9. The quadrotors are constrained to fly in

a 90 × 30 × 10 m3 area within the Fearless Flight Facility (F3), an outdoor netted

flight test site at the University of Maryland.

5.3.3 Setup and procedure of the experiments

The experiments were conducted at F3 within a 30 × 30 × 10 m3 area. Four

quadrotors were deployed in the experiments, and each represents a pair of collo-

cated sensor and actuator. The spatiotemporal field and its interactions with the

sensors and actuators were virtual: the simulated process was computed on the

ground station, and the measurement/actuation by the sensors/actuators was syn-
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Figure 5.9: Block diagram of hardware and software architecture of the multi-
quadrotor testbed

thesized based on the quadrotors’ real-time locations. The software architecture

that supports the experiments is shown in Fig. 5.10. Due to software incompatibil-

ity across operating systems (OS), two laptops were used for the experiments: one

with Ubuntu 16.04 OS and the other with Windows 10 OS (both with Intel i7-8650U

processor). The Ubuntu computer runs OpenMACE to send waypoint commands

to and receive real-time locations from the quadrotors. Based on the quadrotors’

locations, the same computer propagates the simulated process with the optimal

actuation and maintains an estimation of the process in MATLAB. The optimal

actuation and guidance are computed on the Windows computer using ICLOCS2

with the (estimated) state and vehicles’ locations passed from the Ubuntu computer

at the start of each planning horizon via TCP/IP. Once the solution is computed,

the optimal trajectories that are propagated using the single integrator dynamics

(5.2) are passed back to the Ubuntu computer along with the optimal actuation.

Both the simulated process and the estimated process are paused during the time
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Figure 5.10: Software architecture for the experiments. Dashed arrows indicate
synthetic values.

when ICLOCS2 computes the optimal solution.

The MATLAB script on the Ubuntu computer uses a timer that updates the

simulated process and estimated process at 0.5 s. This is the minimum interval that

the MATLAB script can handle all tasks, including sending waypoints to and updat-

ing real-time locations of the quadrotors, updating real-time display of quadrotors’

locations, and propagating the simulated and estimated processes. For the quadro-

tors to follow the optimal trajectory, we command each quadrotor to the waypoint

three steps (1.5 s) ahead of the current time along its optimal trajectory. This look-

ahead waypoint control is implemented due to 0.5–1 s delay between the MATLAB

script sending a waypoint command till the quadrotors starting to move towards

this waypoint. Collision avoidance of the quadrotors is implemented by separating

the altitudes of quadrotors by 1.5 m (which is chosen to reduce downwash effects).

We conducted two experiments: Experiment 1 has Dirichlet BC and Experi-

ment 2 has Neumann BC. Both experiments have 0.5 s sample/decision time, 15 s

planning time (tf ), and 180 s total time (T ). To reduce the computational load

for solving the optimal actuation and guidance, we relax the quadratic constraint
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|vi|2 ≤ vmax to a linear constraint |vi|∞ ≤ vmax for i ∈ {1, 2, 3, 4} such that each vehi-

cle’s speeds along the horizontal and vertical axis are bounded by vmax. In the exper-

iments, we set vmax = 1 m/s, and each quadrotor’s onboard controller (ArduCopter)

is set to have maximum speed for reaching a waypoint at
√

2 ≈ 1.41 m/s to approxi-

mately enforce the speed constraint. We also reduce the number of basis functions to

N2 = 92 for approximations to relieve the computation load. Other parameters used

in the experiments are as follows: a = 10−3 m2/s (Experiment 1), a = 10−4 m2/s

(Experiment 2), umax = 5 kg/m2s, Z0(x, y) = 10| sin(2πx/30) sin(2πy/30)| (Experi-

ment 1), Z0(x, y) = 2(30x−x2)(30y−y2)/16875 (Experiment 2), quadrotors’ initial

locations {[5, 5]>, [25, 25]>, [5, 25]>, [25, 5]>}, and matrices κ = κf = I92 , γ = 0.1I4,

and q = 0.01I8 for cost functions in problem (Pexp). The spatial correlation for the

initial and state noise and the measurement noise model are identical to the settings

in the Monte Carlo simulations in section 5.2.3.

5.3.4 Results and discussion

The evolution of the diffusion process and trajectories of the quadrotors are

shown in Figs. 5.11 and 5.12 for Experiments 1 and 2, respectively. For the first 30

(60) seconds in Experiment 1 (2), the quadrotors are moving around the peaks in of

the initial state with actuation at full level umax (as seen in Fig. 5.13). The full level

actuation lasts longer in Experiment 2 than in Experiment 1 (with Dirichlet BC)

due to the boundary’s passive actuation in the latter case, where actuation from

the actuators is saved. Subsequently, the quadrotors spread out to the domain to
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implement actuation to the regions that have a relatively large magnitude of the

process. During this time, the actuation is not conducted at full level umax. The

norm reduction is shown in Fig 5.14. The comparison to the cases with no actuation

indicates the capability of the proposed framework for controlling a 2D diffusion

process subject to state and measurement noise and delays in implementation. A

video recording of Experiment 1 from 60 s to 105 s is available at https://youtu.

be/kv5ist9zD3w.
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Figure 5.13: Optimal actuation in experiments. The unit for the vertical axes is
kg/m2s. The vertical dashed lines correspond to the time of snapshots in Figs. 5.11
and 5.12.

Despite the results above, we also realized the framework’s limitations in

its current stage from the experimental demonstration. Below we discuss lessons

learned from the demonstration, which suggest potential improvements for the

framework’s implementation with real spatiotemporal processes.

1. The major time consumption of the framework is on the computation of

the optimal guidance and actuation, where the average computation time for the

planning horizon (15 s) is 27.8 s and 41.7 s for Experiments 1 and 2, respectively.

Although ICLOCS2 provides efficient computation of the solution, for practical ap-

plications of the framework, the computation time needs to be reduced to a level at

which the spatiotemporal process does not not significantly change during the time

of solving the optimization problem. One approach to reducing the computation

time is to reduce the order of the model. For example, one may apply the domain-
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decomposition method [24] which only keeps relatively higher-order approximation

near the actuators (where finer characterization of the process is needed) and applies

relatively lower-order approximation to the other area.

2. The proposed framework supports the usage of surface or ground vehicles

as long as their lower-level controller can track the optimal trajectories, and the

speed limit of such vehicles can be incorporated by vmax. Furthermore, they are

more suitable than aerial vehicles when planning takes significant time since almost

no fuel or energy is needed to maintain their working status, unlike quadrotors that

need the power to maintain the hovering state.

3. We use a look-ahead waypoint-following scheme to steer the quadrotors to

travel along the designated trajectories, which updates waypoints at 2 Hz. This

scheme is simple to implement. With the lower-level waypoint control of the on-

board controller (Pixhawk 2), the trajectory-following is acceptable (not shown).

For trajectory-following with better precision, an onboard computer may be used

that samples and corrects the vehicles’ motion at a higher rate (� 2 Hz).

4. We only consider the diffusion process in this chapter. However, advection

caused by a velocity field could be incorporated, which leads to a diffusion-advection

process. The latter is not considered here for the significantly increased computa-

tion time when solving problem (Pexp) with the advection term. Nevertheless, the

diffusion-advection process extends the framework to more application scenarios.

Simulations results in Chapter 3 suggest that the actuators can take advantage

of the velocity field to conserve energy, where the formation therein is similar to

problem (Pexp) in this chapter.
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Figure 5.14: Reduction of the state norm in experiments. The vertical dashed lines
correspond to the time of snapshots in Figs. 5.11 and 5.12.
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Chapter 6: Conclusion

This dissertation develops several frameworks for estimation and control of a

partial differential equation modeled spatiotemporal process using a team of mobile

sensors and actuators. The proposed methods utilize tools from infinite-dimensional

systems, optimization, Galerkin approximation, and nonlinear programming. More-

over, an outdoor multi-quadrotor testbed is set up for demonstrations of the pro-

posed framework.

6.1 Summary of contributions

This dissertation addresses the problem of deploying mobile sensors and ac-

tuators to estimate and control a spatiotemporal process. From the theoretical

perspective, we use optimization to formulate the problems of study that unifies

the goal of reducing estimation uncertainty or controlling the PDE state and the

limitations of the vehicles that carry the sensors or actuators. Conditions for the

existence of solution and convergence of the approximate optimal solution within

each formulation are proved. From the experimental perspective, we introduce a

cooperative estimation and control framework to demonstrate the practical feasibil-

ity of the proposed formulations after adaptations to practical applications. Results
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from both numerical studies and experimental demonstration confirm the value of

the proposed framework.

Chapter 3 proposes an optimization framework that steers a team of mobile

actuators to control a DPS modeled by a 2D diffusion-advection process. Specifi-

cally, jointly optimal control of the DPS and guidance of the mobile actuators are

solved such that the sum of a quadratic PDE cost and a generic mobility cost is

minimized subject to the dynamics of the DPS and of the mobile actuators. We

obtain an equivalent problem using LQR of an abstract linear system, which re-

duces the problem to search for optimal guidance only. The optimal control can be

synthesized once the optimal guidance is obtained. Conditions on the existence of

a solution are established based on the equivalent problem. We use the Galerkin

approximation scheme to reduce the problem to a finite-dimensional one and apply

a gradient-descent method to compute optimal guidance and control numerically.

We prove conditions under which the approximate optimal guidance converges to

that of the exact optimal guidance in the sense that when evaluating these two

solutions by the original cost function, the difference becomes arbitrarily small as

the dimension of approximation increases. The convergence justifies the appropri-

ateness of both the approximate problem and its solution. The performance of the

proposed optimal control and guidance is illustrated with two numerical examples,

where exponential convergence of the approximate optimal cost is observed.

Chapter 4 proposes a guidance design method for a team of mobile sensors to

estimate a spatiotemporal process modeled by a 2D diffusion-advection process. We

formulate an optimization problem that minimizes the sum of the trace of the covari-
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ance operator of the Kalman-Bucy filter and a generic mobility cost of the sensors

subject to the dynamics of the sensor platforms. Conditions for the existence of a

solution to the proposed problem are established, where a fundamental assumption

is that the output kernel is continuous with respect to location. The approximation

of the infinite-dimensional terms permits the computation of the optimal guidance.

And we prove that the approximated problem’s optimal cost converges to that of

the exact problem. Moreover, we prove that the optimal guidance obtained from an

approximate problem yields the cost evaluated by the exact problem’s cost function

arbitrarily close to the exact optimal cost. We use Pontryagin’s minimum principle

to compute optimal guidance numerically. The numerical solutions are evaluated

in simulations. We study how the optimal trajectory and terminal estimation er-

ror change subject to the varying values of sensor noise variance and the mobility

penalty for a single sensor. Trajectories of the sensors and the evolution of the

pointwise variance are shown for a single sensor and a homogeneous team of sensors

in a flow field. We also study the cost-effectiveness of a heterogeneous team of mixed

sensors with superior and poor qualities by comparing the performance degradation

to that of the homogeneous team of superior sensors.

Chapter 5 proposes a framework of cooperative estimation and control of a

2D diffusion process using collocated mobile sensors and actuators. The actuators’

guidance and actuation are solved from an optimization problem that minimizes

the magnitude of the process with penalties on guidance and actuation effort. The

sensors’ measurement is fed to a Kalman filter to estimate state subject to Gaussian

state and measurement noise. The estimation is periodically fed to the optimization
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problem to plan for optimal guidance and actuation. Extensive numerical stud-

ies have been conducted to analyze and evaluate the performance of the proposed

framework with both parameter sweep on the nondimensional parameters of the op-

timization problem and Monte Carlo simulations of the entire framework. Compar-

isons to naive strategies suggest the proposed framework’s advantage in controlling

the spatiotemporal process and efficiency of actuation. The framework is demon-

strated on an outdoor multi-quadrotor testbed at the Fearless Flight Facility of the

University of Maryland. The quadrotors carry the virtual sensors and actuators

that interact with a simulated spatiotemporal process via synthesized actuation and

sensor measurement, which are generated based on the quadrotors’ real-time loca-

tions. Experimental results demonstrate the framework’s capability in controlling

the spatiotemporal process and suggest potential improvement towards application

to real spatiotemporal processes.

6.2 Ongoing and future work

Ongoing and future work include establishing the convergence rate of the ap-

proximate optimal cost in Chapters 3 and 4, which will provide reference to the

number of basis functions in approximations for practical applications. Problems

with other types of PDE cost may be considered, such as the operator norm of

the Riccati operator [57] to characterize unknown initial conditions and H2- or H∞-

performance criteria for different types of perturbation [43, 58]. Applications with

other types of PDE-modelled systems may be considered, e.g., monitoring deforma-
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tion of large infrastructures (bridges) or controlling congested traffic [93].

On the sensor/actuator side, decentralized guidance design may be incorpo-

rated in future work to enable more autonomy of the team than a centralized im-

plementation. The decentralized scheme will make the team’s performance less

dependent on a central node (or server), although it poses another level of complex-

ity to the problem. Sensors and actuators that travel along the boundary of a 2D

or 3D domain may be considered as well, which would result in boundary controller

and observer design, respectively.

For practical feasibility, computational methods that require less power or

time will be pursued, such as domain-decomposition methods or data-driven meth-

ods. Finite-element methods for a bigger domain with possibly irregular shapes will

be incorporated into the current framework to broaden the potential applications.

The integration of a heterogeneous team of mobile independent sensors and actua-

tors may be considered to exploit the sensing and actuation capabilities. Moreover,

the cooperative estimation and control framework could be validated with real spa-

tiotemporal processes, e.g., monitoring and mitigating harmful algal blooms with

unmanned aerial and surface vehicles.
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Chapter A: Proofs

A.1 Proof of Lemma 2.3

Proof. Without loss of generality, consider the case of one mobile actuator, i.e.,

ma = 1. The case of multiple actuators follows naturally. We first show a conse-

quence of the input operator B being continuous with respect to location. Consider

two actuator states, ξ1 and ξ2 ∈ C([0, tf ];Rn). For any φ ∈ H = L2(Ω) and all

t ∈ [0, tf ],

|B?(Mξ1(t), t)φ− B?(Mξ2(t), t)φ| ≤ ‖B(Mξ1(t), t)− B(Mξ2(t), t)‖L2(Ω) ‖φ‖L2(Ω)

≤l (|M(ξ1(t)− ξ2(t))|2) ‖φ‖L2(Ω) , (A.1)

where we use the fact that B(·, ·) is the integral kernel of B?(·, ·). Hence,

‖B?(Mξ1(t), t)− B?(Mξ2(t), t)‖L(H;R) ≤ l (|M(ξ1(t)− ξ2(t))|2) . (A.2)
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Since R is finite-dimensional, there exists c1 > 0 such that [10, Proof of Lemma 4.3]

‖B?(Mξ1(t), t)− B?(Mξ2(t), t)‖J1(H;R) ≤ c1 ‖B?(Mξ1(t), t)− B?(Mξ2(t), t)‖L(H;R)

(A.3)

For brevity, we shall use B1(t) for B(Mξ1(t), t) and B2(t) for B(Mξ2(t), t). Now,

∥∥B1(t)R−1B?1(t)− B2(t)R−1B?2(t)
∥∥
J1(H)

≤
∥∥B1(t)R−1

∥∥
J1(R;H)

‖B?1(t)− B?2(t)‖J1(H;R)

+
∥∥R−1B?2(t)

∥∥
J1(H;R)

‖B1(t)− B2(t)‖J1(R;H)

=(
∥∥B1(t)R−1

∥∥
J1(R;H)

+
∥∥R−1B?2(t)

∥∥
J1(H;R)

) ‖B?1(t)− B?2(t)‖J1(H;R)

≤c2 ‖B?1(t)− B?2(t)‖J1(H;R)

≤c2c1l(|M(ξ1(t)− ξ2(t))|2) (A.4)

for some c2 > 0 where the last inequality follows from (A.2) and (A.3).

We now continue to prove that Kc : C([0, tf ];Rn) → R is a continuous map-

ping. For brevity, we use Πc
1(0) and Πc

2(0) for the Riccati operator associated with

trajectory ξ1 and ξ2, respectively. We also suppress the usage of the time argument

of the integrand in the following derivation. We start with Kc(ξ1)−Kc(ξ2):

Kc(ξ1)−Kc(ξ2) =〈Z0,

∫ tf

0

S?Πc
1B1R

−1
(
B?1Πc

1 − B?2Πc
2

)
SdτZ0〉

+ 〈Z0,

∫ tf

0

S?
(
Πc

1B1 − Πc
2B2

)
R−1B?2Πc

2SdτZ0〉.
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Our analysis continues with the first term on the right-hand side, because the second

term can be analyzed similarly using the following derivation:

〈Z0,

∫ tf

0

S?Πc
1B1R

−1
(
B?1Πc

1 − B?2Πc
2

)
SdτZ0〉

=〈Z0,

∫ tf

0

S?Πc
1B1R

−1B?1
(
Πc

1 − Πc
2

)
SdτZ0〉

+ 〈Z0,

∫ tf

0

S?Πc
1B1R

−1
(
B?1 − B?2

)
Πc

2SdτZ0〉. (A.5)

Take absolute values on both sides, we get

|〈Z0,

∫ tf

0

S?Πc
1B1R

−1
(
B?1Πc

1 − B?2Πc
2

)
SdτZ0〉|

≤ ‖Z0‖2
H

∫ tf

0

(‖S?‖L(H)

∥∥Πc
1B1R

−1B?1
∥∥
L(H)
‖Πc

1 − Πc
2‖L(H) ‖S‖L(H))dτ

+ ‖Z0‖2
H

∫ tf

0

(‖S?‖L(H)

∥∥Πc
1B1R

−1
∥∥
L(R;H)

‖Πc
2‖L(H) ‖B

?
1 − B?2‖L(H;R) ‖S‖L(H))dτ.

Since there exists ctf such that ‖S(t)‖L(H) ≤ ctf and ‖S?(t)‖L(H) ≤ ctf for all

t ∈ [0, tf ], it follows that

|〈Z0,

∫ tf

0

S?Πc
1B1R

−1
(
B?1Πc

1 − B?2Πc
2

)
SdτZ0〉|

≤ ‖Z0‖2
H c

2
tf

∫ tf

0

(
∥∥Πc

1B1R
−1B?1

∥∥
L(H)
‖Πc

1 − Πc
2‖L(H)

+
∥∥Πc

1B1R
−1
∥∥
L(R;H)

‖Πc
2‖L(H) ‖B

?
1 − B?2‖L(H;R))dτ.

Since Jq(H) ↪→ L(H) [11], there exists c3 > 0 such that ‖Πc
1(τ)− Πc

2(τ)‖L(H) ≤

c3 ‖Πc
1(τ)− Πc

2(τ)‖Jq(H) for 1 ≤ q <∞. Hence, the following inequality holds for
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q = 1:

|〈Z0,

∫ tf

0

S?Πc
1B1R

−1
(
B?1Πc

1 − B?2Πc
2

)
SdτZ0〉|

≤ ‖Z0‖2
H c

2
tf

∫ tf

0

(c3

∥∥Πc
1B1R

−1B?1
∥∥
L(H)
‖Πc

1 − Πc
2‖J1(H)

+
∥∥Πc

1B1R
−1
∥∥
L(R;H)

‖Πc
2‖L(H) ‖B

?
1 − B?2‖L(H;R))dτ

≤‖Z0‖2
H c

2
tf

(
c3

∫ tf

0

∥∥Πc
1B1R

−1B?1
∥∥
L(H)

dτ ess sup
t∈[0,tf ]

‖Πc
1(t)− Πc

2(t)‖J1(H)

+

∫ tf

0

∥∥Πc
1B1R

−1
∥∥
L(R;H)

‖Πc
2‖L(H) dτ ess sup

t∈[0,tf ]

‖B?1(t)− B?2(t)‖L(H;R)

)
. (A.6)

We now wish to bound

ess sup
t∈[0,tf ]

‖Πc
1(t)− Πc

2(t)‖J1(H) and ess sup
t∈[0,tf ]

‖B?1(t)− B?2(t)‖L(H;R) . (A.7)

Notice that Πc(·) is continuous on [0, tf ] into J1(H) (Lemma 2.1). Hence,

ess sup
t∈[0,tf ]

‖Πc
1(t)− Πc

2(t)‖J1(H) = sup
t∈[0,tf ]

‖Πc
1(t)− Πc

2(t)‖J1(H) . (A.8)

By (2.14), the mapping Πc : [0, tf ] → J1(H) varies continuously with respect to

B̄B̄?(·) [11] in supt∈[0,tf ] ‖·‖J1(H)-norm. Hence, there exists c4 > 0 such that

sup
t∈[0,tf ]

‖Πc
1(t)− Πc

2(t)‖J1(H) ≤ sup
t∈[0,tf ]

c4

∥∥B̄1B̄?1(t)− B̄2B̄?2(t)
∥∥
J1(H)

. (A.9)
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Recall B(·)R−1B?(·) = B̄B̄?(·) and combine (A.4), (A.8), and (A.9):

ess sup
t∈[0,tf ]

‖Πc
1(t)− Πc

2(t)‖J1(H) ≤ sup
t∈[0,tf ]

c4c1c2l(|M(ξ1(t)− ξ2(t))|2). (A.10)

It remains to bound ess supt∈[0,tf ] ‖B?1(t)− B?2(t)‖L(H;R). By (A.2),

ess sup
t∈[0,tf ]

‖B?1(t)− B?2(t)‖L(H;R) ≤ ess sup
t∈[0,tf ]

l(|M(ξ1(t)− ξ2(t))|2). (A.11)

Finally, plugging (A.10) and (A.11) into (A.6), it follows that |Kc(ξ1)−Kc(ξ2)| → 0

as supt∈[0,tf ] |ξ1(t) − ξ2(t)| → 0, which concludes the continuity of the mapping

Kc(·).

A.2 Proof of Lemma 2.5

Proof. Without loss of generality, consider the case of one mobile sensor, i.e., ms = 1.

The case of multiple sensors follows naturally. We first show a consequence of the

output operator C? being continuous with respect to location. Consider two sensor

states ζ1, ζ2 ∈ C([0, tf ];Rn). For any φ ∈ H = L2(Ω) and all t ∈ [0, tf ],

|C?(Mζ1(t), t)φ− C?(Mζ2(t), t)φ| ≤ ‖C(Mζ1(t), t)− C(Mζ2(t), t)‖L2(Ω) ‖φ‖L2(Ω)

≤l (|M(ζ1(t)− ζ2(t))|2) ‖φ‖L2(Ω) , (A.12)
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where we use the fact that C(·, ·) is the integral kernel of C?(·, ·). Hence,

‖C?(Mζ1(t), t)− C?(Mζ2(t), t)‖L(H;R) ≤ l (|M(ζ1(t)− ζ2(t))|2) . (A.13)

Since R is finite-dimensional, there exists c5 > 0 such that [12, proof of Lemma 4.3]

‖C?(Mζ1(t), t)− C?(Mζ2(t), t)‖J1(H;R) ≤ c5 ‖C?(Mζ1(t), t)− C?(Mζ2(t), t)‖L(H;R) .

(A.14)

For brevity, we shall use C1(t) for C(Mζ1(t), t) and C2(t) for C(Mζ2(t), t). Now,

∥∥C1(t)R−1C?1(t)− C2(t)R−1C?2(t)
∥∥
J1(H)

≤
∥∥C1(t)R−1

∥∥
J1(R;H)

‖C?1(t)− C?2(t)‖J1(H;R) +
∥∥R−1C?2(t)

∥∥
J1(H;R)

‖C1(t)− C2(t)‖J1(R;H)

=
(∥∥C1(t)R−1

∥∥
J1(R;H)

+
∥∥R−1C?2(t)

∥∥
J1(H;R)

)
‖C?1(t)− C?2(t)‖J1(H;R)

≤c6 ‖C?1(t)− C?2(t)‖J1(H;R)

≤c6c5l(|M(ζ1(t)− ζ2(t))|2) (A.15)

for some c6 > 0, where the last inequality follows from (A.13) and (A.14).

By (2.25), the mapping Πe : [0, tf ] → J1(H) varies continuously with respect

to C̄C̄?(·) [12] in supt∈[0,tf ] ‖·‖J1(H)-norm. Hence, there exists c7 > 0 such that

sup
t∈[0,tf ]

‖Πe
1(t)− Πe

2(t)‖J1(H) ≤ sup
t∈[0,tf ]

c7

∥∥C̄1C̄?1(t)− C̄2C̄?2(t)
∥∥
J1(H)

. (A.16)
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Now, we have

|Ke(ζ1)−Ke(ζ2)| =
∣∣∣∣∫ tf

0

Tr(Πe
1(t))− Tr(Πe

2(t))dt

∣∣∣∣
=

∣∣∣∣∫ tf

0

‖Πe
1(t)‖J1(H) − ‖Π

e
2(t)‖J1(H) dt

∣∣∣∣
≤
∫ tf

0

‖Πe
1(t)− Πe

2(t)‖J1(H) dt

≤ sup
t∈[0,tf ]

‖Πe
1(t)− Πe

2(t)‖J1(H) tf . (A.17)

It follows from (A.15)–(A.17) that

|Ke(ζ1)−Ke(ζ2)| ≤ c5c6c7tf sup
t∈[0,tf ]

l(|M(ζ1(t)− ζ2(t))|2),

and we conclude the continuity of Ke(·).

A.3 Proof of Lemma 2.7

Proof. Since the norm defined on HN is inherited from that of H, the proof follows

from the same derivation of Lemma 2.3.

A.4 Proof of Lemma 2.9

Proof. Since the norm defined on HN is inherited from that of H, the proof follows

from the same derivation of Lemma 2.5’s proof.
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A.5 Proof of Theorem 3.1

The proof of Theorem 3.1 uses Definition A.1 and Theorem A.1 (stated below)

to establish the existence of an optimal solution of (Pc1).

Definition A.1. Suppose (X, ‖·‖) is a normed linear space.

1. A sequence {xk} ⊂ X is weakly convergent to an x ∈ X, denoted by xk ⇀ x,

if lim
k→∞

(x?, xk) = (x?, x) for all x? belonging to the dual space X?.

2. A subset A ⊂ X is weakly sequentially closed if {xk} ⊂ A and xk ⇀ x implies

x ∈ A.

3. A subset A ⊂ X is weakly sequentially compact if for every sequence {xk} ⊂ A

there exists a subsequence {xki} ⊂ {xk} and an x ∈ A with xki ⇀ x.

4. Suppose A ⊂ X and f : A → R. The mapping f is weakly sequentially

lower semicontinuous on A if {xk} ⊂ A and xk ⇀ x ∈ A implies f(x) ≤

lim infk→∞ f(xk).

Theorem A.1. [88, Theorem 6.1.4] Suppose (X, ‖·‖) is a normed linear space,

M0 ⊂ X is weakly sequentially compact and f : M0 → R is weakly sequentially lower

semicontinuous on M0. Then there exists an x̄ ∈ M0 such that f(x̄) = inf{f(x) :

x ∈M0}.

Proof of Theorem 3.1. Without loss of generality, we consider the case of one mobile

actuator, i.e., ma = 1. The case of ma ≥ 2 follows naturally.

135



We want to apply Theorem A.1 to prove that the minimum of the cost function

of (Pc1) is achieved on a subset P0 (defined below) of the admissible set in which

the cost of guidance is upper bounded. Consider problem (Pc1)’s admissible set

of guidance functions P = {p ∈ L2([0, tf ];Rm) : p(t) ∈ P, t ∈ [0, tf ]}. Since there

exists p0 ∈ P such that J(Pc1)(p0) < ∞ (e.g., a zero guidance function that yields

a stationary sensor), we define P0 = {p ∈ P : J(Pc1)(p) ≤ J(Pc1)(p0)}. We wish to

prove Condition-1, Condition-2, and Condition-3 stated below:

Condition-1: The set P0 is bounded.

Condition-2: The set P0 is weakly sequentially closed.

Condition-3: The mapping J(Pc1)(·) : P → R is weakly sequentially lower semicon-

tinuous on P0.

Condition-1 and Condition-2 imply that P0 is weakly sequentially compact.

By Theorem A.1, problem (Pc1) has a solution when Condition-1–Condition-3 hold.

Before proving these three conditions, we define a mapping T : L2([0, tf ];Rm)→

C([0, tf ];Rn) by (Tp)(t) = ξ(t) = eαtξ0 +
∫ t

0
eα(t−τ)βp(τ)dτ for t ∈ [0, tf ]. The con-

tinuity of the map T is straightforward [88], i.e., there exists c8 > 0 such that

‖Tp‖C([0,tf ];Rn) ≤ c8 ‖p‖C([0,tf ];Rm).
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Proof of Condition-1: Suppose p ∈ P0, then

J(Pc1)(p0) ≥ J(Pc1)(p)

= hf (Tp(tf )) +

∫ tf

0

h(Tp(t), t) + g(p(t), t)dt

+ 〈Z0,Π(0)Z0〉

≥
∫ tf

0

d1|p(t)|22dt

= d1 ‖p‖2
L2([0,tf ];Rm) , (A.18)

where the second inequality follows from the nonnegativity of hf (·), h(·, ·), and

〈Z0,Π(0)Z0〉. Since d1 > 0, the boundedness of P0 follows.

Proof of Condition-2: Suppose {pk} ⊂ P0 and {pk} converges weakly to p (denoted

by pk ⇀ p). We want to show p ∈ P0. We start with proving that P is weakly

sequentially closed and, hence, p ∈ P . Subsequently, we show J(Pc1)(p) ≤ J(Pc1)(p0)

to conclude Condition-2.

To show that the set P is weakly sequentially closed, by [80, Theorem 2.11], it

suffices to show that P is closed and convex. Let {qk} ⊂ P and qk → q. We want to

show q ∈ P , i.e., q ∈ L2([0, tf ];Rm) and q(t) ∈ P for t ∈ [0, tf ]. Since L2([0, tf ];Rm)

is complete, we can choose a subsequence {qkj} ⊂ P that converges to q pointwise

almost everywhere on [0, tf ] [92, p. 53]. Since P is closed (assumption (C9)), q(t) ∈ P

for almost all t ∈ [0, tf ]. Hence, P is closed. The convexity of P follows from that

of P (assumption (C9)), i.e., if p1, p2 ∈ P , then λp1 + (1−λ)p2 ∈ L2([0, tf ];Rm) and

λp1(t) + (1− λ)p2(t) ∈ P for t ∈ [0, tf ] and λ ∈ [0, 1].
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What remain to be shown is J(Pc1)(p) ≤ J(Pc1)(p0). Since pk ⇀ p, by definition,

we have Tpk → Tp. We now show that the sequence {Tpk} contains a uniformly

convergent subsequence in C([0, tf ];Rn). The sequence {Tpk} ⊂ C([0, tf ];Rn) is

uniformly bounded and uniformly equicontinuous for the following reasons: Since

‖Tpk‖C([0,tf ];Rn) ≤ c8 ‖pk‖L2([0,tf ];Rm), it follows that ‖Tpk‖C([0,tf ];Rn) is uniformly

bounded, because {pk} ⊂ P0 which is a bounded set. For s, t ∈ [0, tf ], we have

|Tpk(t)− Tpk(s)|1 =

∣∣∣∣∫ t

s

αTpk(τ) + βpk(τ)dτ

∣∣∣∣
1

≤ |t− s||α|1 ‖Tpk‖C([0,tf ];Rn) + |t− s|1/2|β|2 ‖pk‖L2([0,tf ];Rm) .

Since {‖pk‖L2([0,tf ];Rm)} and {‖Tpk‖C([0,tf ];Rn)} both are uniformly bounded for all

pk ∈ P0, {Tpk} is uniformly equicontinuous. By the Arzelà-Ascoli Theorem [67],

there is a uniformly convergent subsequence {Tpkj} ⊂ {Tpk}.

Without loss of generality, we assume pk ⇀ p and Tpk → Tp uniformly on

[0, tf ], and J(Pc1)(pk) ≤ J(Pc1)(p0). We have J(Pc1)(p0) − J(Pc1)(p) = J(Pc1)(p0) −

J(Pc1)(pk)+J(Pc1)(pk)−J(Pc1)(p) ≥ J(Pc1)(pk)−J(Pc1)(p), by which, to show J(Pc1)(p) ≤

J(Pc1)(p0), it suffices to show J(Pc1)(p) ≤ lim infk→∞ J(Pc1)(pk), which is to show

hf (Tp(tf )) +

∫ tf

0

h(Tp(t), t) + g(p(t), t)dt+ 〈Z0,Π(0)Z0〉

≤ lim inf
k→∞

hf (Tpk(tf )) +

∫ tf

0

h(Tpk(t), t) + g(pk(t), t)dt+ 〈Z0,Π
k(0)Z0〉, (A.19)

where Πk(0) is the solution of (2.14) associated with actuator state Tpk. Since
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{Tpk} converges to Tp uniformly on [0, tf ], the continuity of hf (·) implies

hf (Tp(tf )) = lim inf
k→∞

hf (Tpk(tf )); (A.20)

Fatou’s lemma [67] implies

∫ tf

0

h(Tp(t), t)dt ≤ lim inf
k→∞

∫ tf

0

h(Tpk(t), t)dt; (A.21)

and Lemma 2.3 implies

〈Z0,Π(0)Z0〉 = lim inf
k→∞

〈Z0,Π
k(0)Z0〉. (A.22)

To prove (A.19), based on (A.20)–(A.22), it suffices to show

∫ tf

0

g(p(t), t)dt ≤ lim inf
k→∞

∫ tf

0

g(pk(t), t)dt. (A.23)

By contradiction, assume there is λ > 0 such that

lim inf
k→∞

∫ tf

o

g(pk(t), t)dt < λ <

∫ tf

0

g(p(t), t)dt. (A.24)

There exists a subsequence {pkj} ⊂ {pk} such that Oλ = {q ∈ L2([0, tf ];Rm) :∫ tf
0
g(q(t), t)dt ≤ λ} and {pkj} ⊂ Oλ. We wish to show thatOλ is weakly sequentially

closed. By [80, Theorem 2.11], it suffices to show that Oλ is convex and closed.

Since g(·, t) : Rm → R is convex for all t ∈ [0, tf ], it follows that Oλ is convex.
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Let {qk} ⊂ Oλ and ‖qk − q‖L2([0,tf ];Rm) converges to 0 as k → ∞. We can choose a

subsequence {qkj} ⊂ {qk} such that qkj converges to q pointwise almost everywhere

on [0, tf ] [92, p. 53]. Now we have

(1) g(qkj(t), t) ≥ 0 for all t ∈ [0, tf ] (assumption (C11));

(2) limj→∞ g(qkj(t), t) = g(q(t), t) almost everywhere on [0, tf ].

By Fatou’s lemma [67],

∫ tf

0

g(q(t), t)dt ≤ lim inf
k→∞

∫ tf

0

g(qkj(t), t)dt ≤ λ,

where the last inequality holds due to {qkj} ⊂ Oλ. Hence, q ∈ Oλ and Oλ is closed.

Since Oλ is weakly sequentially closed, pkj ⇀ p implies that p ∈ Oλ, which con-

tradicts (A.24). Hence, J(Pc1)(p) ≤ J(Pc1)(p0) is proved, and we conclude Condition-2.

Proof of Condition-3: We now show that the mapping J(Pc1)(·) : P → R is weakly

sequentially lower semicontinuous on P0. Suppose {pk} ⊂ P0 and pk ⇀ p ∈ P0. We

wish to show J(Pc1)(p) ≤ lim infk→∞ J(Pc1)(pk), which has been established when we

proved J(Pc1)(p) ≤ J(Pc1)(p0) in Condition-2 (starting from (A.19)).

So we conclude that the existence of a solution of problem (Pc1).

A.6 Proof of Theorem 3.2

Proof. By contradiction, assume there are p∗0 and u∗0 minimizing (Pc) and p∗0 6= p∗

and u∗0 6= u∗ such that J∗(Pc)(u
∗
0, p
∗
0) < J(Pc)(u

∗, p∗) = J(Pc1)(p
∗). Denote ū∗0 the opti-

mal control (2.12) associated with actuator trajectory steered by p∗0. It follows that

J∗(Pc)(u
∗
0, p
∗
0) = J(Pc)(ū

∗
0, p
∗
0), because J∗(Pc)(u

∗
0, p
∗
0) > J(Pc)(ū

∗
0, p
∗
0) violates the opti-
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mality of u∗0 and J∗(Pc)(u
∗
0, p
∗
0) < J(Pc)(ū

∗
0, p
∗
0) contradicts the fact that ū∗0 minimizes

the quadratic cost J(Z, u) (see Lemma 2.2). Since J(Pc)(ū
∗
0, p
∗
0) = 〈Z0,Π

∗
0(0)Z0〉 +

Jm(ξ∗0 , p
∗
0) = J(Pc1)(p

∗
0) < J∗(Pc1)(p

∗), where Π∗0(0) associates with trajectory ξ∗0 steered

by p∗0, it follows that p∗ is not an optimal solution of (Pc1), which contradicts the

optimality of p∗ for (Pc1).

A.7 Proof of Theorem 3.3

Proof. Since 〈Z0,N ,ΠN(0)Z0,N〉 ≥ 0 and the mapping Kc
N : C([0, tf ];Rn) → R+ is

continuous (see Lemma 2.7), the proof is analogous to that of Theorem 3.1, where

we use 〈Z0,N ,ΠN(0)Z0,N〉 to substitute 〈Z0,Π(0)Z0〉. The proof that u∗N and p∗N

minimize problem (APc) follows from the same logic as the proof of Theorem 3.2.

A.8 Proof of Theorem 3.4

Before we prove Theorem 3.4, we first establish two intermediate results in

Lemma A.1.

Lemma A.1. Consider problem (Pc1) and its approximation (APc1). If assump-

tions (C4)–(C7) and (C9)–(C12) hold, then the following two implications hold:

1. For p ∈ C([0, tf ];P ), limN→∞ |J(APc1)(p)− J(Pc1)(p)| = 0, where N is the dimen-

sion of approximation applied in (APc1).

2. The mapping J(Pc1) : C([0, tf ];P ) → R+ is continuous, where J(Pc1)(p) =

〈Z0,Π(0)Z0〉+Jm(ξ, p). Here, the actuator state ξ follows the dynamics (2.2) steered

by the guidance p, and Π(0) follows (2.13) with the actuator state ξ.
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Proof. 1. We first prove for p ∈ C([0, tf ];P ),

lim
N→∞

|J(APc1)(p)− J(Pc1)(p)| = 0. (A.25)

The limit (A.25) is established for the following reason: By Lemma 2.6,

lim
N→∞

‖Π(0)− ΠN(0)‖Jq(H) = 0. (A.26)

Since Jq(H) ↪→ L(H) [11], it follows that

lim
N→∞

‖Π(0)− ΠN(0)‖L(H) = 0. (A.27)

The convergence (A.27) and the fact

lim
N→∞

‖Z0,N −Z0‖H = 0 (A.28)

imply that

lim
N→∞

|〈Z0,N ,ΠN(0)Z0,N〉 − 〈Z0,Π(0)Z0〉| = 0. (A.29)

The limit in (A.25) follows naturally since J(APc1)(p)−J(Pc1)(p) = 〈Z0,N ,ΠN(0)Z0,N〉−

〈Z0,Π(0)Z0〉.

2. Consider the continuous mapping T : L2([0, tf ];Rm)→ C([0, tf ];Rn) as de-

fined in the proof of Theorem 3.1 such that (Tp)(t) = ξ(t) = eαtξ0+
∫ t

0
eα(t−τ)βp(τ)dτ

for t ∈ [0, tf ]. Since the admissible guidance is in C([0, tf ];Rm) ⊂ L2([0, tf ];Rm),
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the continuity of T is preserved, i.e., there exists d2 > 0 such that for p1, p2 ∈

C([0, tf ];Rm)

‖Tp1 − Tp2‖C([0,tf ];Rn) ≤ d2 ‖p1 − p2‖C([0,tf ];Rm) . (A.30)

Furthermore, define the mapping J̄m : C([0, tf ];Rm)→ R+ by

J̄m(p) = Jm(Tp, p). (A.31)

Define mappings G : C([0, tf ];Rm) → R+, H : C([0, tf ];Rn) → R+, and

Hf : C([0, tf ];Rn)→ R+ such that

G(p) =

∫ tf

0

g(p(t), t)dt, (A.32)

H(p) =

∫ tf

0

h(Tp(t), t)dt, (A.33)

Hf (p) = hf (Tp(tf )). (A.34)

We first show the mapping J̄m is continuous by showing that the mappings G, H,

and Hf are continuous since J̄m(p) = G(p) +H(p) +Hf (p).

Let p1, p2 ∈ P(pmax, amax). Both the set of admissible guidance’s values P0 =

∪t∈[0,tf ]{p(t) : p ∈ P(pmax, amax)} and the interval [0, tf ] are closed and bounded

(hence compact). Since g : P0 × [0, tf ] → R+ is continuous, by the Heine-Cantor

Theorem [76, Proposition 5.8.2], g is uniformly continuous, i.e., for all ε > 0 there
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exists δ > 0 such that for all t ∈ [0, tf ]

|p1(t)− p2(t)| < δ ⇒ |g(p1(t), t)− g(p2(t), t)| < ε. (A.35)

Hence, it follows that

‖p1 − p2‖C([0,tf ];Rm) = sup
t∈[0,tf ]

|p1(t)− p2(t)| < δ,

⇒ |g(p1(t), t)− g(p2(t), t)| < ε, ∀t ∈ [0, tf ]. (A.36)

Therefore, for all ε > 0 there exists δ > 0 such that ‖p1 − p2‖C([0,tf ];Rm) < δ implies

∫ tf

0

|g(p1(t), t)− g(p2(t), t)|dt < εtf , (A.37)

which concludes the continuity of the mapping G.

Since the continuous image of a compact set is compact [76, Proposition 5.5.1],

the image set T (P(pmax, amax)) is compact, i.e., the set Ξ = {ξ ∈ C([0, tf ];Rn) :

ξ = Tp, p ∈ P(pmax, amax)} is compact. The compactness of Ξ implies that the

set of actuator state’s values ξ(t), Ξ0 = ∪t∈[0,tf ]{ξ(t)|ξ ∈ Ξ}, is closed. Further-

more, since ‖Tp‖C([0,tf ];Rn) is bounded (see (A.30)) and Ξ0 is finite-dimensional,

the set Ξ0 is compact. The compactness of Ξ0 and continuity of the function

h : Ξ0 × [0, tf ] → R+ implies that h is uniformly continuous by the Heine-Cantor

Theorem [76, Proposition 5.8.2]. Hence, for all ε > 0 there exists δ > 0 such that if
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‖p1 − p2‖C([0,tf ];Rm) < δ/d2, which implies ‖Tp1 − Tp2‖C([0,tf ];Rn) < δ, then

∫ tf

0

|h(Tp1(t), t)− h(Tp2(t), t)|dt ≤ εtf , (A.38)

which concludes the continuity of the mapping H.

The mapping Hf is continuous because for all ε > 0 there exists δ > 0 such

that if ‖p1 − p2‖C([0,tf ];Rm) < δ/d, which implies supt∈[0,tf ] |Tp1(t)−Tp2(t)| < δ, then

|Tp1(tf )− Tp2(tf )| < δ, (A.39)

and, furthermore, |Hf (p1) − Hf (p2)| = |hf (Tp1(tf )) − hf (Tp2(tf ))| < ε due to the

continuity of hf . Hence, we conclude the continuity of J̄m.

The cost function of (Pc1) is the sum of two parts: the PDE cost 〈Z0,Π(0)Z0〉,

cast as a continuous mapping Kc : C([0, tf ];Rn) → R+ (see Lemma 2.3) and the

mobility cost Jm(ξ, p), cast as a continuous mapping J̄m : C([0, tf ];Rm)→ R+. Due

to the continuity of the mapping T (see (A.30)), there exists d3 > 0 such that

|Kc(Tp1)−Kc(Tp2)|1 ≤ d3 ‖p1 − p2‖C([0,tf ];Rm) . (A.40)

The continuity of the mapping J(Pc1) follows from (A.40) and the continuity of

J̄m.

We now prove Theorem 3.4.

Proof of Theorem 3.4. In the notation J(APc1)(p
∗
N), the dimension of approximation
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in (APc1), which is N in this case, is indicated by its solution p∗N . We append a sub-

script to indicate the dimension when it is not explicitly reflected by the argument,

e.g., J(APc1)N
(p).

We first show (3.2), i.e., |J∗(APc1)(p
∗
N)− J∗(Pc1)(p

∗)| → 0 as N →∞. First,

J∗(APc1)(p
∗
N) = min

p∈P(pmax,amax)
J(APc1)(p)

≤ J(APc1)(p
∗)

≤ |J(APc1)(p
∗)− J∗(Pc1)(p

∗)|+ J∗(Pc1)(p
∗).

Since |J(APc1)(p
∗)− J∗(Pc1)(p

∗)| → 0 as N → 0 (see Lemma A.1-1), it follows that

lim sup
N→∞

J∗(APc1)(p
∗
N) ≤ J∗(Pc1)(p

∗). (A.41)

To proceed with proving (3.2), in addition to (A.41), we shall show

lim inf
N→∞

J∗(APc1)(p
∗
N) ≥ J∗(Pc1)(p

∗). (A.42)

Choose a convergent subsequence {J∗(APc1)(p
∗
Nk

)}∞k=1 such that limk→∞ J
∗
(APc1)(p

∗
Nk

) =

lim infN→∞ J
∗
(APc1)(p

∗
N). Since the guidance functions defined in the set P(pmax, amax)

are uniformly equicontinuous and uniformly bounded, by the Arzelà-Ascoli Theo-

rem [67], there is a uniformly convergent subsequence of {p∗Nk
}∞k=1 which we use the

146



same index {Nk}∞k=1 to simplify notation and let the limit of {p∗Nk
}∞k=1 be p∗inf , i.e.,

lim
k→∞

∥∥p∗Nk
− p∗inf

∥∥
C([0,tf ];Rn)

= 0. (A.43)

Now, |J∗(APc1)(p
∗
Nk

)−J(Pc1)(p
∗
inf)| ≤ |J∗(APc1)(p

∗
Nk

)−J(Pc1)(p
∗
Nk

)|+|J(Pc1)(p
∗
Nk

)−J(Pc1)(p
∗
inf)|,

which implies

lim sup
k→∞

|J∗(APc1)(p
∗
Nk

)− J(Pc1)(p
∗
inf)| ≤ lim

k→∞
|J∗(APc1)(p

∗
Nk

)− J(Pc1)(p
∗
Nk

)|

+ lim
k→∞
|J(Pc1)(p

∗
Nk

)− J(Pc1)(p
∗
inf)|. (A.44)

The first limit on the right-hand side of (A.44) is zero for the following reason.

For all p ∈ P(pmax, amax), J(APc1)N
(p) converges to J(Pc1)(p) pointwise as the di-

mension of approximation N → ∞ (see Lemma A.1-1). Furthermore, since the

sequence of approximated PDE cost {〈ZN(0),ΠN(0)ZN(0)〉}∞N=1 is a monotoni-

cally increasing sequence, the sequence {J(APc1)N
(p)}∞N=1 is a monotonically in-

creasing sequence for each p on the compact set P(pmax, amax). By Dini’s Theo-

rem [68, Theorem 7.13], |J(APc1)N
(p) − J(Pc1)(p)| → 0 uniformly on P(pmax, amax)

as N → ∞. By Moore-Osgood Theorem [68, Theorem 7.11], this uniform con-

vergence and the convergence p∗Nk
→ p∗inf as k → ∞ (see (A.43)) imply that

limk→∞ J(Pc1)(p
∗
Nk

) = limj→∞ limk→∞ J
∗
(APc1)j

(p∗Nk
), in which the iterated limit equals

the double limit [78, p. 140], i.e.,

lim
j→∞

lim
k→∞

J∗(APc1)j
(p∗Nk

) = lim
j→∞
k→∞

J∗(APc1)j
(p∗Nk

) lim
k→∞

J∗(APc1)(p
∗
Nk

).
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The second limit on the right-hand side of (A.44) is zero due to Lemma A.1-2.

Hence, it follows from (A.44) that limk→∞ J
∗
(APc1)(p

∗
Nk

) = J(Pc1)(p
∗
inf), which implies

lim inf
N→∞

J∗(APc1)(p
∗
N) = lim

k→∞
J∗(APc1)(p

∗
Nk

)

= J(Pc1)(p
∗
inf)

≥ J∗(Pc1)(p
∗). (A.45)

Therefore, we conclude limN→∞ J
∗
(APc1)(p

∗
N) = J∗(Pc1)(p

∗) from (A.41) and (A.45).

Next, we show (3.3), i.e., |J(Pc1)(p
∗
N) − J∗(Pc1)(p

∗)| → 0 as N → ∞. We start

with J∗(Pc1)(p
∗) ≤ J(Pc1)(p

∗
N) for all N , which implies that

J∗(Pc1)(p
∗) ≤ lim inf

N→∞
J(Pc1)(p

∗
N). (A.46)

To prove (3.3), what remains to be shown is J∗(Pc1)(p
∗) ≥ lim supN→∞ J(Pc1)(p

∗
N).

Choose a convergent subsequence {J(Pc1)(p
∗
Nj

)}∞j=1 such that limj→∞ J(Pc1)(p
∗
Nj

) =

lim supN→∞ J(Pc1)(p
∗
N). Since {p∗Nj

}∞j=1 ⊂ P(pmax, amax) is uniformly equicontinu-

ous and uniformly bounded, by Arzelà-Ascoli Theorem [67], the sequence has a

(uniformly) convergent subsequence which we denote with the same indices Nj to

simplify notation. Denote the limit of {p∗Nj
}∞j=1 by p∗sup such that

lim
j→∞

∥∥∥p∗Nj
− p∗sup

∥∥∥
C([0,tf ];Rm)

= 0. (A.47)
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Due to the continuity of J(Pc1)(·) (see Lemma A.1-1), we have

J(Pc1)(p
∗
sup) = lim

j→∞
J(Pc1)(p

∗
Nj

) = lim sup
N→∞

J(Pc1)(p
∗
N). (A.48)

It follows that

J(Pc1)(p
∗
sup) ≤|J(Pc1)(p

∗
sup)− J∗(Pc1)(p

∗)|+ J∗(Pc1)(p
∗)

=|J(Pc1)(p
∗
sup)− lim

N→∞
J∗(APc1)(p

∗
N)|+ J∗(Pc1)(p

∗)

=|J(Pc1)(p
∗
sup)− lim

j→∞
J∗(APc1)(p

∗
Nj

)|+ J∗(Pc1)(p
∗). (A.49)

Since the sequence of approximated PDE cost {〈ZN(0), ΠN(0)ZN(0)〉}∞N=1 is mono-

tonically increasing, the sequence {J(APc1)N
(p)}∞N=1 is a monotonically increasing

sequence for each p on the compact set P(pmax, amax). Since limN→∞ J(APc1)N
(p) =

J(Pc1)(p) for all p ∈ P(pmax, amax) (see Lemma A.1-1), by Dini’s Theorem [68, The-

orem 7.13], the limit holds uniformly on P(pmax, amax) as N → ∞. By Moore-

Osgood Theorem [68, Theorem 7.11], this uniform convergence and the convergence

p∗Nj
→ p∗sup as j →∞ (see (A.47)) imply that

J(Pc1)(p
∗
sup) = lim

k→∞
lim
j→∞

J∗(APc1)k
(p∗Nj

). (A.50)

Furthermore, the iterated limit equals the double limit [78, p. 140], i.e.,

lim
k→∞

lim
j→∞

J∗(APc1)k
(p∗Nj

) = lim
j→∞
k→∞

J∗(APc1)k
(p∗Nj

) = lim
j→∞

J∗(APc1)(p
∗
Nj

). (A.51)
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Hence, combining (A.49)–(A.51), we have

J∗(Pc1)(p
∗) ≥ J(Pc1)(p

∗
sup) = lim sup

N→∞
J(Pc1)(p

∗
N), (A.52)

from which and (A.46) we conclude the desired convergence limN→∞ J(Pc1)(p
∗
N) =

J∗(Pc1)(p
∗).

A.9 Proof of Theorem 4.1

Proof. Since we have proved that the uncertainty cost
∫ tf

0
Tr(Π(t))dt is a continuous

mapping Ke(·) of the sensor state ζ (see Lemma 2.5), the existence of optimal

guidance of (Pe) can be proved using the techniques of proving existence of solution

to an optimal control (guidance) problem, for which we refer to Theorem A.1.

Without loss of generality, we consider the case of one mobile sensor, i.e.,

ms = 1. The case of ms ≥ 2 follows naturally.

Our proof follows the proof in [88, Chapter 6.2] which proves existence of a

solution to an optimal control problem based on functional analytic theorems. Con-

sider problem (Pe)’s admissible set of guidance functions P = {p ∈ L2([0, tf ];Rm) :

p(t) ∈ P, t ∈ [0, tf ]}. Since there exists p0 ∈ P such that J(Pe)(p0) <∞ (e.g., p0 = 0

that yields a stationary sensor at ζ0), let P0 = {p ∈ P : J(Pe)(p) ≤ J(Pe)(p0)}. We

wish to prove Condition-1, Condition-2, and Condition-3 stated below:

Condition-1: The set P0 is bounded.

Condition-2: The set P0 is weakly sequentially closed.

Condition-3: The mapping J(Pe)(·) : P → R+ is weakly sequentially lower semicon-
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tinuous on P0.

Condition-1 and Condition-2 imply that P0 is weakly sequentially compact.

By Theorem A.1, problem (Pe) has a solution when Condition-1–Condition-3 hold.

We first define a mapping T : L2([0, tf ];Rm) → C([0, tf ];Rn) by (Tp)(t) =

ζ(t) = eαtζ0 +
∫ t

0
eα(t−τ)βp(τ)dτ for t ∈ [0, tf ] before we show the above three

conditions. The continuity of the map T is straightforward [88], i.e., there exists

c9 > 0 such that ‖Tp‖C([0,tf ];Rn) ≤ c9 ‖p‖L2([0,tf ];Rm).

Proof of Condition-1: Suppose p ∈ P0, then

J(Pe)(p0) ≥ J(Pe)(p)

=

∫ tf

0

h(Tp(t), t) + g(p(t), t) + Tr(Π(t))dt+ hf (Tp(tf ))

≥
∫ tf

0

d1|p(t)|22dt

= d1 ‖p‖2
L2([0,tf ];Rm) . (A.53)

Since d1 > 0, the boundedness of P0 follows.

Proof of Condition-2: Suppose {pk} ⊂ P0 and {pk} converges to p weakly

(denoted by pk ⇀ p). We wish to show p ∈ P0. We start with establishing that P

is weakly sequentially closed and, hence, p ∈ P . Subsequently, we show J(Pe)(p) ≤

J(Pe)(p0) to conclude Condition-2.

To show that the set P0 is weakly sequentially closed, by [80, Theorem 2.11], it

suffices to show that P is closed and convex. Let {qk} ⊂ P and qk → q. We want to

show q ∈ P , i.e., q ∈ L2([0, tf ];Rm) and q(t) ∈ P for t ∈ [0, tf ]. Since L2([0, tf ];Rm)

151



is complete, we can choose a subsequence {qkj} ⊂ P that converges to q pointwise

almost everywhere on [0, tf ] [92, p. 53]. Since P is closed (assumption (E9)), q(t) ∈ P

for almost all t ∈ [0, tf ]. Hence, P is closed. The convexity of P follows from that

of P (assumption (E9)), i.e., if p1, p2 ∈ P , then λp1 + (1−λ)p2 ∈ L2([0, tf ];Rm) and

λp1(t) + (1− λ)p2(t) ∈ P for t ∈ [0, tf ] and λ ∈ [0, 1].

What remain to be shown is J(Pe)(p) ≤ J(Pe)(p0). Since pk ⇀ p, by definition,

we have Tpk → Tp. We now show that the sequence {Tpk} contains a uniformly

convergent subsequence in C([0, tf ];Rn). The sequence {Tpk} ⊂ C([0, tf ];Rn) is

uniformly bounded and uniformly equicontinuous for the following reasons: Since

‖Tpk‖C([0,tf ];Rn) ≤ c4c5 ‖pk‖L2([0,tf ];Rm), it follows that ‖Tpk‖C([0,tf ];Rn) is uniformly

bounded, because {pk} ⊂ P0 which is a bounded set. For s, t ∈ [0, tf ], we have

|Tpk(s)− Tpk(t)|1 =

∣∣∣∣∫ t

s

αTpk(τ) + βpk(τ)dτ

∣∣∣∣
1

≤ |t− s||α|1 ‖Tpk‖C([0,tf ];Rn) + |t− s|1/2|β|2 ‖pk‖L2([0,tf ];Rm) .

Since {‖pk‖L2([0,tf ];Rm)} and {‖Tpk‖C([0,tf ];Rn)} both are uniformly bounded for all

pk ∈ P0, {Tpk} is uniformly equicontinuous. By the Arzelà-Ascoli Theorem [67],

there is a uniformly convergent subsequence {Tpkj} ⊂ {Tpk}.

Without loss of generality, we assume pk ⇀ p and Tpk → Tp uniformly on
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[0, tf ], and J(Pe)(pk) ≤ J(Pe)(p0). We have

J(Pe)(p0)− J(Pe)(p) =J(Pe)(p0)− J(Pe)(pk) + J(Pe)(pk)− J(Pe)(p)

≥J(Pe)(pk)− J(Pe)(p). (A.54)

Hence, to show J(Pe)(p) ≤ J(Pe)(p0), it suffices to show J(Pe)(p) ≤ lim infk→∞ J(Pe)(pk),

which is to show

hf (Tp(tf )) +

∫ tf

0

h(Tp(t), t) + g(p(t), t) + Tr(Π(t))dt

≤ lim inf
k→∞

hf (Tpk(tf )) +

∫ tf

0

h(Tpk(t), t) + g(pk(t), t) + Tr(Πk(t))dt, (A.55)

where Πk(t) is the solution of (2.25) associated with sensor state Tpk. Since {Tpk}

converges to Tp uniformly on [0, tf ], the continuity of hf (·) implies

hf (Tp(tf )) = lim inf
k→∞

hf (Tpk(tf )); (A.56)

Fatou’s lemma [67] implies

∫ tf

0

h(Tp(t), t)dt ≤ lim inf
k→∞

∫ tf

0

h(Tpk(t), t)dt; (A.57)

and Lemma 2.5 implies

∫ tf

0

Tr(Π(t))dt = lim inf
k→∞

∫ tf

0

Tr(Πk(t))dt. (A.58)
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To prove (A.55), based on (A.56)–(A.58), it suffices to show

∫ tf

0

g(p(t), t)dt ≤ lim inf
k→∞

∫ tf

0

g(pk(t), t)dt. (A.59)

By contradiction, assume there is λ > 0 such that

lim inf
k→∞

∫ tf

o

g(pk(t), t)dt < λ <

∫ tf

0

g(p(t), t)dt. (A.60)

There exists a subsequence {pkj} ⊂ {pk} such that {pkj} ⊂ Oλ for

Oλ = {q ∈ L2([0, tf ];Rm) :

∫ tf

0

g(q(t), t)dt ≤ λ}.

We wish to show that Oλ is weakly sequentially closed. By [88, Theorem 6.1.5], it

suffices to show that Oλ is convex and closed. Since g(·, t) : Rm → R is convex for

all t ∈ [0, tf ], it follows that Oλ is convex. Let {qk} ⊂ Oλ and ‖qk − q‖L2([0,tf ];Rm)

converges to 0 as k →∞. We can choose a subsequence {qkj} ⊂ {qk} such that qkj

converges to q pointwise almost everywhere on [0, tf ] [92, p. 53]. Now we have

1. g(qkj(t), t) ≥ 0 for all t ∈ [0, tf ] (assumption (E11));

2. limj→∞ g(qkj(t), t) = g(q(t), t) almost everywhere on [0, tf ].

By Fatou’s lemma [67],

∫ tf

0

g(q(t), t)dt ≤ lim inf
k→∞

∫ tf

0

g(qkj(t), t)dt ≤ λ, (A.61)
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where the last inequality holds due to the fact that {qkj} ⊂ Oλ. Hence, q ∈ Oλ and

Oλ is closed.

Since Oλ is weakly sequentially closed, pkj ⇀ p implies that p ∈ Oλ, which con-

tradicts (A.60). Hence, J(Pe)(p) ≤ J(Pe)(p0) is proved, and we conclude Condition-2.

Proof of Condition-3: We now show that the mapping J(Pe)(·) : P → R is weakly

sequentially lower semicontinuous on P0. Suppose {pk} ⊂ P0 and pk ⇀ p ∈ P0. We

wish to establish J(Pe)(p) ≤ lim infk→∞ J(Pe)(pk), which can be shown using the

technique of proving Condition-2 (starting from (A.55)).

So we conclude the existence of a solution of problem (Pe).

A.10 Proof of Theorem 4.2

Proof. Since Tr(ΠN(t)) ≥ 0 (ΠN(t) is nonnegative and self-adjoint for all t ∈ [0, tf ])

and the mapping Ke
N : C([0, tf ];Rn)→ R is continuous (see Lemma 2.5), the proof

is analogous to that of Theorem 4.1, where Π(t) is replaced by ΠN(t).

A.11 Proof of Theorem 4.3

To prove Theorem 4.3, recall that the notation J∗(APe)(p
∗
N) means the optimal

value of (APe) evaluated at its optimal solution p∗N , where the dimension of approx-

imation applied to (APe) is N (as indicated by the subscript of p∗N). In the proof,

we attach a subscript to (APe), such as J(APe)N
(p), to indicate its dimension when it

is not reflected by the argument, e.g., J(APe)N
(p) means that the cost of (APe) using

an N -dimensional approximation evaluated at a guidance function p. The following
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lemma will be used in the proof of Theorem 4.3

Lemma A.2. Consider problems (Pe) and its approximation (APe). Let assump-

tions (E4)–(E12) hold. Then the following results hold:

1. For p ∈ C([0, tf ];Rm), limN→∞ J(APe)N
(p) = J(Pe)(p);

2. The mapping J(Pe) : C([0, tf ];Rm) → R+ such that J(Pe)(p) =
∫ tf

0
Tr(Π(t))dt +

Jm(ζ, p) is continuous, where ζ is the sensor state steered by p under the dynamics

(2.4) and Π(·) is the covariance operator obtained through (2.25) with sensor state

ζ.

Proof of Lemma A.2. 1. We first prove that for p ∈ C([0, tf ];Rm),

lim
N→∞

|J(APe)N
(p)− J(Pe)(p)| = 0. (A.62)

To establish (A.62), it suffices to show

lim
N→∞

∣∣∣∣∫ tf

0

Tr(ΠN(t))− Tr(Π(t))dt

∣∣∣∣ = 0. (A.63)

We have

∣∣∣∣∫ tf

0

Tr(ΠN(t))− Tr(Π(t))dt

∣∣∣∣ ≤∫ tf

0

∣∣∣‖ΠN(t)‖J1(H) − ‖Π(t)‖J1(H)

∣∣∣ dt
≤
∫ tf

0

‖ΠN(t)− Π(t)‖J1(H) dt

≤ sup
t∈[0,tf ]

‖ΠN(t)− Π(t)‖J1(H) tf . (A.64)
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By Lemma 2.8, supt∈[0,tf ] ‖ΠN(t)− Π(t)‖Jq(H) → 0 as N → ∞. And specifically,

when q = 1, the convergence in (A.62) holds due to (A.64).

2. The cost function of (Pe) is the sum of two parts: the uncertainty cost∫ tf
0

Tr(Π(t))dt, cast as a continuous mappingKe : C([0, tf ];Rn)→ R+ (see Lemma 2.5)

and the mobility cost Jm(ζ, p), cast as a mapping J̄m : C([0, tf ];Rm) → R+ which

we define below. The mapping J̄m is the single argument version of the original

mobility cost by defining the sensor state as a mapping of the sensor guidance.

Here, we redefine the domain of the map T in the proof of Theorem 4.1 such that

T : C([0, tf ];Rm) → C([0, tf ];Rn). The continuity of T still holds [88], i.e., for

p1, p2 ∈ C([0, tf ];Rm) there exist c9 > 0 such that

‖Tp1 − Tp2‖C([0,tf ];Rn) ≤ c9 ‖p1 − p2‖C([0,tf ];Rm) . (A.65)

Let J̄m(p) = Jm(Tp, p) and we show J̄m is continuous. Define mappings G :

C([0, tf ];Rm) → R+, H : C([0, tf ];Rn) → R+, and Hf : C([0, tf ];Rn) → R+ such

that

G(p) =

∫ tf

0

g(p(t), t)dt, (A.66)

H(p) =

∫ tf

0

h(Tp(t), t)dt, (A.67)

Hf (p) = hf (Tp(tf )). (A.68)

Since J̄m(p) = G(p)+H(p)+Hf (p), we shall proceed with showing that the mappings

G, H, and Hf are continuous.
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Let p1, p2 ∈ P(pmax, amax). Both the set of admissible guidance’s values P0 =

∪t∈[0,tf ]{p(t) : p ∈ P(pmax, amax)} and the interval [0, tf ] are closed and bounded

(hence compact). Since g : P0 × [0, tf ] → R+ is continuous, by the Heine-Cantor

Theorem [76, Proposition 5.8.2], g is uniformly continuous, i.e., for all ε > 0 there

exists δ > 0 such that for all t ∈ [0, tf ], |p1(t) − p2(t)| < δ implies |g(p1(t), t) −

g(p2(t), t)| < ε. Hence, it follows that

‖p1 − p2‖C([0,tf ];Rm) = sup
t∈[0,tf ]

|p1(t)− p2(t)| < δ,

⇒ |g(p1(t), t)− g(p2(t), t)| < ε, ∀t ∈ [0, tf ]. (A.69)

Therefore, for all ε > 0 there exists δ > 0 such that ‖p1 − p2‖C([0,tf ];Rm) < δ implies

∫ tf

0

|g(p1(t), t)− g(p2(t), t)|dt < εtf , (A.70)

which concludes the continuity of the mapping G.

Since the continuous image of a compact set is compact [76, Proposition 5.5.1],

the image set T (P(pmax, amax)) is compact, i.e., the set Ξ = {ζ ∈ C([0, tf ];Rn) :

ζ = Tp, p ∈ P(pmax, amax)} is compact. The compactness of Ξ implies that the

set of sensor state’s values ζ(t), Ξ0 = ∪t∈[0,tf ]{ζ(t)|ζ ∈ Ξ}, is closed. Further-

more, since ‖Tp‖C([0,tf ];Rn) is bounded (see (A.65)) and Ξ0 is finite dimensional,

the set Ξ0 is compact. The compactness of Ξ0 and continuity of the function

h : Ξ0 × [0, tf ] → R+ implies that h is uniformly continuous by the Heine-Cantor

Theorem [76, Proposition 5.8.2]. Hence, for all ε > 0 there exists δ > 0 such that if
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‖p1 − p2‖C([0,tf ];Rm) < δ/c9, which implies ‖Tp1 − Tp2‖C([0,tf ];Rn) < δ, then

∫ tf

0

|h(Tp1(t), t)− h(Tp2(t), t)|dt ≤ εtf , (A.71)

which concludes the continuity of the mapping H.

The mapping Hf is continuous because for all ε > 0 there exists δ > 0 such

that if ‖p1 − p2‖C([0,tf ];Rm) < δ/c9, which implies supt∈[0,tf ] |Tp1(t) − Tp2(t)| < δ,

then

|Tp1(tf )− Tp2(tf )| < δ. (A.72)

Furthermore, |Hf (p1)−Hf (p2)| = |hf (Tp1(tf ))− hf (Tp2(tf ))| < ε holds due to the

continuity of hf .

Hence, we conclude the continuity of J̄m, which, together with the continuity

of Ke(·) and (A.65), implies the continuity of J(Pe)(·).

Proof of Theorem 4.3. We start with proving (4.8), i.e., |J∗(APe)(p
∗
N)−J∗(Pe)(p

∗)| → 0

as N →∞. First,

J∗(APe)(p
∗
N) = min

p∈P(pmax,amax)
J(APe)N

(p)

≤ J(APe)N
(p∗)

≤ |J(APe)N
(p∗)− J∗(Pe)(p

∗)|+ J∗(Pe)(p
∗).
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It follows that

lim sup
N→∞

J∗(APe)(p
∗
N) ≤ J∗(Pe)(p

∗), (A.73)

because |J(APe)N
(p∗)− J∗(Pe)(p

∗)| → 0 as N → 0 (see Lemma A.2-1).

To proceed with proving (4.8), in addition to (A.73), we shall show

lim inf
N→∞

J∗(APe)(p
∗
N) ≥ J∗(Pe)(p

∗).

Choose a convergent subsequence {J∗(APe)(p
∗
Nk

)}∞k=1 such that

lim
k→∞

J∗(APe)(p
∗
Nk

) = lim inf
N→∞

J∗(APe)(p
∗
N). (A.74)

Since the subsequence {p∗Nk
}∞k=1 ⊂ P(pmax, amax) which is uniformly equicontinuous

and uniformly bounded, by the Arzelà-Ascoli Theorem [67], there is a (uniformly)

convergent subsequence of {p∗Nk
}∞k=1. We denote this convergent subsequence with

the same indices {Nk}∞k=1 to simplify notation. Denote the limit of {p∗Nk
}∞k=1 by p∗inf ,

i.e.,

lim
k→∞

∥∥p∗Nk
− p∗inf

∥∥
C([0,tf ];Rm)

= 0. (A.75)

Next, we show

lim
k→∞
|J∗(APe)(p

∗
Nk

)− J(Pe)(p
∗
inf)| = 0. (A.76)
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First notice that for all p ∈ P(pmax, amax), J(APe)N
(p) converges to J(Pe)(p) point-

wise as the dimension of approximation N goes to infinity (see (A.62)). Further-

more, since the sequence of approximated uncertainty cost {
∫ tf

0
Tr(ΠN(t))dt}∞N=1 is a

monotonically increasing sequence, the sequence {J(APe)N
(p)}∞N=1 is a monotonically

increasing sequence for each p on the compact set P(pmax, amax). By Dini’s Theo-

rem [68, Theorem 7.13], |J(APe)N
(p) − J(Pe)(p)| → 0 uniformly on P(pmax, amax) as

N →∞. By Moore-Osgood Theorem [68, Theorem 7.11], this uniform convergence

and the convergence p∗Nk
→ p∗inf as k →∞ (see (A.75)) imply that

lim
k→∞

J(Pe)(p
∗
Nk

) = lim
j→∞

lim
k→∞

J∗(APe)j
(p∗Nk

). (A.77)

And the iterated limit in (A.77) equals the double limit [78, p. 140], i.e.,

lim
j→∞

lim
k→∞

J∗(APe)j
(p∗Nk

) = lim
j→∞
k→∞

J∗(APe)j
(p∗Nk

) = lim
k→∞

J∗(APe)(p
∗
Nk

). (A.78)

By (A.77), (A.78), and the fact that J(Pe)(p
∗
inf) = limk→∞ J(Pe)(p

∗
Nk

) holds (due to

the continuity of J(Pe)(·), see Lemma A.2-2), we conclude that (A.76) holds and

lim inf
N→∞

J∗(APe)(p
∗
N) = lim

k→∞
J∗(APe)(p

∗
Nk

)

= J(Pe)(p
∗
inf)

≥ J∗(Pe)(p
∗). (A.79)
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Therefore, we conclude from (A.73) and (A.79)

lim
N→∞

J∗(APe)(p
∗
N) = J∗(Pe)(p

∗). (A.80)

Next, we prove (4.9), i.e., |J(Pe)(p
∗
N) − J∗(Pe)(p

∗)| → 0 as N → ∞. We start

with J∗(Pe)(p
∗) ≤ J(Pe)(p

∗
N) for all N , which implies that

J∗(Pe)(p
∗) ≤ lim inf

N→∞
J(Pe)(p

∗
N). (A.81)

To prove (4.9), what remains to be shown is J∗(Pe)(p
∗) ≥ lim supN→∞ J(Pe)(p

∗
N).

Choose a convergent subsequence {J(Pe)(p
∗
Nj

)}∞j=1 such that

lim
j→∞

J(Pe)(p
∗
Nj

) = lim sup
N→∞

J(Pe)(p
∗
N). (A.82)

Since {p∗Nj
}∞j=1 ⊂ P(pmax, amax) is uniformly equicontinuous and uniformly bounded,

by Arzelà-Ascoli Theorem [67], {p∗Nj
}∞j=1 has a (uniformly) convergent subsequence

which we denote with the same indices {Nj}∞j=1 to simplify notation. Denote the

limit of {p∗Nj
}∞j=1 by p∗sup such that

lim
j→∞

∥∥∥p∗Nj
− p∗sup

∥∥∥
C([0,tf ];Rm)

= 0. (A.83)

Due to the continuity of J(Pe)(·) (see Lemma A.2-1):

J(Pe)(p
∗
sup) = lim

j→∞
J(Pe)(p

∗
Nj

) = lim sup
N→∞

J(Pe)(p
∗
N). (A.84)
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Now we have

J(Pe)(p
∗
sup) ≤|J(Pe)(p

∗
sup)− J∗(Pe)(p

∗)|+ J∗(Pe)(p
∗)

=|J(Pe)(p
∗
sup)− lim

N→∞
J∗(APe)(p

∗
N)|+ J∗(Pe)(p

∗)

=|J(Pe)(p
∗
sup)− lim

j→∞
J∗(APe)(p

∗
Nj

)|+ J∗(Pe)(p
∗). (A.85)

Since the sequence of approximated uncertainty cost {
∫ tf

0
ΠN(t)dt}∞N=1 is a monoton-

ically increasing sequence, the sequence {J(APe)N
(p)}∞N=1 is a monotonically increas-

ing sequence for each p on the compact set P(pmax, amax). Since limN→∞ J(APe)N
(p) =

J(Pe)(p) for all p ∈ P(pmax, amax) (see Lemma A.2-1), by Dini’s Theorem [68, The-

orem 7.13], the limit holds uniformly on P(pmax, amax) as N → ∞. By Moore-

Osgood Theorem [68, Theorem 7.11], this uniform convergence and the convergence

p∗Nj
→ p∗sup as j →∞ (see (A.83)) imply that

J(Pe)(p
∗
sup) = lim

k→∞
lim
j→∞

J∗(APe)k
(p∗Nj

). (A.86)

Furthermore, the iterated limit equals the double limit [78, p. 140], i.e.,

lim
k→∞

lim
j→∞

J∗(APe)k
(p∗Nj

) = lim
j→∞
k→∞

J∗(APe)k
(p∗Nj

) = lim
j→∞

J∗(APe)(p
∗
Nj

).

Hence,

J(Pe)(p
∗
sup) = lim

j→∞
J∗(APe)(p

∗
Nj

), (A.87)
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which, combined with (A.85), implies

J∗(Pe)(p
∗) ≥ J(Pe)(p

∗
sup) = lim sup

N→∞
J(Pe)(p

∗
N). (A.88)

The desired convergence limN→∞ J(Pe)(p
∗
N) = J∗(Pe)(p

∗) follows from (A.81) and

(A.88).
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