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Abstract— This paper describes a framework to design guid-
ance for a team of mobile sensors to estimate a distributed
parameter system modeled by a diffusion process. The diffusion
process has an abstract linear system representation with a
linear observation equation, so an infinite-dimensional version
of the Kalman filter is applied for estimation. We propose
an optimization problem that minimizes the weighted sum of
the trace of the covariance operator of the Kalman filter and
the guidance effort of the mobile sensors, whose motion is
modeled by linear dynamics. This formulation is well-suited
for limited endurance mobile sensor platforms. We provide a
solution method to solve for the optimal guidance. A finite-
dimensional approximation is applied to a simulation in which
we analyze how the performance of a single mobile sensor
depends on mobility penalty and sensor noise. We also illustrate
the application of the framework to a team of heterogeneous
sensors.

I. INTRODUCTION

The modern manufacturing industry has benefited from the
advantages of (mobile) robots for their reliability, economic
efficiency, safety, and ease of use. However, the monitoring
and control of large-scale spatiotemporal processes, e.g.,
oil spills and forest fires, have relied heavily on human
operators. These events can pose health threats, cause severe
environmental issues, and incur substantial financial costs.
Spatiotemporal processes vary in both space and time and,
hence, their dynamics can be characterized by partial differ-
ential equations (PDEs), e.g., the diffusion equation.

It is generally impossible to measure a system modeled by
a PDE, also known as a distributed parameter system (DPS),
with a finite number of sensors. Hence, an observer for the
DPS is necessary, and various designs have been proposed.
Early designs of the observer include least-square methods
that can filter and smooth systems governed by linear [1]
and nonlinear [2] partial differential equations. For system-
theoretical results on the observability of parabolic PDEs,
refer to [3], [4].

For sensors placed on the boundary of the spatial domain
of a PDE, one may design observers based on boundary
measurements. A common approach is backstepping [5],
which uses a Volterra transformation to stabilize the observer
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via a stable target system of the transformation. A Lyapunov-
based Luenberger-type observer is proposed in [6] with
H∞ performance constraints for a linear parabolic PDE.
Furthermore, optimization techniques, e.g., a linear-quadratic
estimator [7], have been proposed for boundary observers
using the method of variation.

An infinite-dimensional linear system with additive Gaus-
sian white noise also yields a Kalman filter (KF) that has
a similar structure to its finite-dimensional analog. The
infinite-dimensional version of the KF first appeared in [8].
Properties of the solution to the operator Riccati differential
equation have been discussed in [9], [10]. For numerical ap-
proximation and computational issues, [11] provides a sum-
mary of approximation results for the infinite-dimensional
Riccati equations of a linear-quadratic regulator.

When a network of sensors is deployed for estimating a
DPS, a problem arises as to how to place the sensors to yield
effective estimation. Such a problem is referred to as sensor
placement, for which various optimization criteria have been
proposed. The trace of the covariance operator of the KF is
a common choice of the objective function to be minimized.
[12] proposes a sensor-placement scheme that minimizes
this value. A similar problem is investigated in [13], which
proves the convergence of the optimal placement computed
via finite-dimensional approximation. The same criterion
has been applied to sensor placement of the Boussinesq
equation [14]. In [15], a randomized observability constant
is minimized by choosing suitable shapes and locations
of the sensors. Other criteria, e.g., enhanced observability,
optimal state estimation, and robust input-output mapping,
are discussed for a parabolic PDE in [16].

Geometric approaches can be applied to sensor placement.
[17] proposes a scheme that places sensors using the cen-
troidal Voronoi tessellation of the kernel of the observer gain
of a parabolic PDE. [18] proposes a method that combines
the transfer-function model and geometric rules to design
sensor and actuator locations for which high-gain and low-
gain proportional feedback control can reduce the influence
of pointwise disturbances.

When the sensors are allowed to move, a guidance policy
is necessary to take advantage of the additional degree of
freedom induced by mobility, which also makes the prob-
lem more complicated by introducing the dynamics of the
mobile sensors. One may design sensor guidance using the
Lyapunov-based method, where the guidance is constructed
to make the derivative of the Lyapunov function negative.
Representative work is contributed mostly by Demetriou
and collaborators [19]–[21]. The Lyapunov-based guidance



can further be used in a hazardous environment where the
regions of high information density reduce sensor life. Such
guidance is combined with a switching policy to balance the
conflicting needs of information collection and sensor life
span [22]. A similar approach uses the gradient of estimation
error to guide sensors to the region that has large estimation
error [23].

Optimization can also be applied to design sensor guid-
ance. An early work [24] proposes an optimization problem
that minimizes the weighted sum of the guidance effort for
steering a sensor and mean-square estimation error at a final
time. In [25], the sensors are guided to the location that yields
a maximum value of the estimation kernel. In [26], receding
horizon guidance is proposed to find the sensor path that
maximizes mutual information.

This paper proposes an optimization framework that de-
signs guidance for a team of mobile sensors to efficiently
estimate a 1D diffusion equation using a centralized Kalman
filter. The cost to be minimized is the weighted sum of two
terms. One is the trace of the covariance operator, which
characterizes the uncertainty of the estimation error, and the
other is the guidance effort for steering the mobile sensors.
A weight is applied to penalize the guidance effort of the
mobile sensors. Our formulation minimizes the Lagrange
function—hence, is an intermediate step—of the optimiza-
tion problem that minimizes the trace of the covariance
operator subject to the constraint of upper-bounded guidance
effort and sensor dynamics. The problem formulation is
particularly motivated by having limited resources (e.g., fuel
or batteries) onboard the vehicles that carry the sensors.

Existing results in the literature that are similar to our
problem setting include minimizing the trace of the covari-
ance operator plus a cost of guidance [12], [27], [28], the
mean-square estimation error at the terminal time plus the
weighted guidance effort [24], and the trace of weighted
covariance operator [10]. Our approach is different in that the
problem in this paper minimizes the trace of the covariance
operator plus a quadratic function of the guidance (as the
guidance effort).

Our contribution is summarized as follows: this paper (1)
formulates an optimization problem that minimizes the trace
of the covariance operator combined with the guidance effort
for a heterogeneous team of mobile sensors estimating a
DPS; (2) shows the conditions of the existence of a solution
to the proposed problem; and (3) analyzes via simulation
the impact on the performance of the proposed guidance of
sensor noise and mobility penalty. The problem studied in
this paper is the dual problem of the one studied in [29],
which simultaneously designs guidance and actuation of a
team of mobile actuators to control a DPS.

The remainder of the paper is organized as follows: Sec-
tion II introduces the abstract linear-system representation
of the diffusion equation, measurement model and dynamics
of the sensors, and the infinite-dimensional Kalman filter.
Section III states the problem formulation. Section IV in-
troduces the solution method to obtain optimal guidance
and its numerical computation using Galerkin approximation.

Section V includes the simulation results of parameter studies
of a single sensor and a team of heterogeneous sensors.
Section VI summarizes the paper and discusses ongoing
work.

II. BACKGROUND

A. Notation and terminology

The paper adopts the following notation. The symbols R
and R+ denote the set of real numbers and the set of nonneg-
ative real numbers, respectively. The n-nary Cartesian power
of a set M is denoted by Mn. An embedding is denoted
by ↪→. The space of all bounded linear operators from space
X to space Y is denoted by L(X,Y ) or L(X) if Y = X .
We define the space of continuous mappings by C(I,X) =
{F : I → X such that t 7→ F (t) is continuous in ‖·‖X}
with the sup norm ‖F (·)‖C(I;X) = supt∈I ‖F (t)‖X . The
superscript ∗ denotes an optimal variable, whereas ? denotes
the adjoint of a linear operator. The transpose of a matrix A is
denoted by AT . An n×n-dimensional diagonal matrix with
elements of vector [a1, a2, . . . , an] on the main diagonal is
denoted by diag(a1, a2, . . . , an). The derivative of a function
f evaluated at x is denoted by ḟ(x). The trace of an operator
P and a square matrix P is denoted by Tr(P) and tr(P ),
respectively. The ith element of a vector v is [v]i, whereas
the element on the ith row and jth column of a matrix V is
[V ]i,j . We follow the terminology of [29]: guidance refers to
steering the dynamics of the mobile sensor, whereas control
refers to actuation of the dynamics of the DPS.

B. Abstract linear system and associated Kalman filter

Consider the following inhomogeneous diffusion equation
over a 1D spatial domain Ω:

zt(x, t) = αzxx(x, t) +D(x, t)w(t), (1)

where x ∈ Ω, t ∈ I := [0, tf ], and α is the diffusion coef-
ficient, with initial condition z(x, 0) = z0(x) and boundary
condition z(∂Ω, t) = 0. The exact initial condition z0 is
unknown, but its estimate ẑ0 is available. The state noise w(t)
is a real-valued Gaussian white noise with variance Q and its
spatial distribution at time t is specified by D(·, t) ∈ L2(Ω).

Assume linear dynamics for sensor i, whose location ζi
can be controlled via guidance pi such that

ζ̇i(t) = aiζi(t) + bipi(t), ζi(0) = ζi0. (2)

We use a = diag(a1, a2, . . . , am), b = diag(b1, b2, . . . , bm),
p = (p1, p2, . . . , pm)T , and ζ = (ζ1, ζ2, . . . , ζm)T for
conciseness.

The set of guidance U is defined as U = {p : p is
measurable, uniformly bounded by pmax > 0, and Lipschitz
continuous |p(t1) − p(t2)| ≤ c0|t1 − t2| for t1, t2 ∈ I}.
By the Arzelà–Ascoli theorem, the set U is compact if the
distance defined on U is the max-norm such that d(f, g) =
max
t∈I
|f(t) − g(t)|, for f, g ∈ U . This definition is one of

several ways to construct a compact set of guidance. We
choose this definition because of its clear physical interpre-
tation: the bound pmax represents the maximum speed of a



vehicle, whereas the Lipschitz coefficient c0 represents the
maximum acceleration of the vehicle.

The measurement can have many types, e.g., pointwise
[3], [4], [24], interval integral [10], [21], interval average
[30], and Gaussian-type kernel [10]. Assume each sensor
measures an interval average of the state. Define the indicator
function 1 as

1[a,b](x) =

{
1, if a ≤ x ≤ b
0, otherwise

. (3)

Use Bx0,r(·) ∈ L2(Ω) to denote the interval average centered
at x0 with radius r such that

Bx0,r(x) =
1

2r
1[x0−r,x0+r](x). (4)

The measurement y(·) ∈ Rm is

y(t) =

∫
Ω

Bζ(t),r(x)z(x, t)dx+ v(t), (5)

where Bζ(t),r is a vectorized representation such that

Bζ(t),r := [Bζ1(t),r,Bζ2(t),r, . . . ,Bζm(t),r]
T . (6)

The measurement noise v(t) is a vector of Gaussian white
noise with covariance R := diag([σ2

1 , σ
2
2 , . . . , σ

2
m]) and σ2

i

is the variance of the Gaussian white noise of sensor i ∈
{1, 2, . . . ,m}.

For simplicity, represent PDE state in (1) by an abstract
linear system whose state variable Z(t) represents z(·, t)
such that {

Ż(t) = AZ(t) +D(t)w(t)

y(t) = C?ζ(t)Z(t) + v(t)
, (7)

where Z belongs to a Hilbert space H with inner product
〈·, ·〉 and induced norm ‖·‖. Here, the variable Z(t) is
the state of the DPS and space H = L2(Ω) is the state
space. The operator A is defined as Aψ = α∂2ψ(x)/∂x2

with ψ ∈ Dom(A) = {ψ ∈ H1
0 (Ω), ∇2ψ ∈ L2(Ω)} =

H2(Ω) ∩ H1
0 (Ω) [31]. The output operator C?ζ(t) ∈

L(H,Rm) specifies measurement of the state such that
C?ζ(t)ψ =

∫
Ω
Bζ(t),r(x)ψ(x)dx for all ψ ∈ H. The operator

D(·) ∈ L2(I,L(R,H)) is the operator version of D(·, ·)
in (1).

Definition 1 (Definition 4.5 of [10]): Let I be a real in-
terval and F(·) : Ωm → L(L2(Ω),Rm) be of the form
[F(x̄)φ]i =

∫
Ω
K(x, [x̄]i)φ(x)dx, where K(·, [x̄]i) ∈ L2(Ω)

is the integral kernel. We say that F(x̄) is continu-
ous with respect to location if there is a continuous
function g : R+ → R+ such that g(0) = 0 and
‖K(·, x)−K(·, y)‖L2(Ω) ≤ g(‖x− y‖R), ∀x, y ∈ Ω.

Remark 1: The interval average operator C?ζ(t) is contin-
uous with respect to location, where g(u) = (u/2r2)1/2 in
Definition 1.

Analogous to a finite-dimensional linear system, the
infinite-dimensional linear system (7) admits a Kalman filter
(KF). For the derivation of the KF of an abstract linear
system, one may refer to [1], [32]. The linear quadratic
optimal estimation Ẑ(t) of the state Z(t) can be updated

from the measurement y(t) by

˙̂Z(t) = AẐ(t) + P(t)Cζ(t)R−1(y(t)− ŷ(t)), (8)

Ẑ(t0) = Ẑ0, (9)

where ŷ(t) = C?ζ(t)Ẑ(t) is the observation of the esti-
mated system. Let C̄ζ C̄?ζ (t) be the compact representation
for Cζ(t)R−1C?ζ(t). The covariance P is propagated forward
in time by solving the following operator Riccati equation:

Ṗ(t) = AP(t) + P(t)A? +D(t)QD?(t)
− P(t)C̄ζ C̄?ζ (t)P(t), (10)

Assume initial condition P(0) is given as the covariance
operator P0 of the initial estimation error Z(0)− Ẑ(0).

The covariance operator P characterizes the uncertainty of
the estimation error. Specifically, consider the trace operator
Tr(·) : L(H) 7→ R defined as follows:

Tr(Π) =

∞∑
i=1

〈φi,Πφi〉, Π ∈ L(H), (11)

where {φi}∞i=1 is an arbitrary orthonormal basis that spans
H. Notice that Tr(·) is independent of the choice of the
orthonormal basis [10]. The expected value of the squared
norm of the estimation error is the trace of the covariance
operator P [10], [13]:

Tr(P(t)) = E
[
‖Z(t)− Ẑ(t)‖2

]
. (12)

Definition 2 (Definition 3.2 of [10]): Let H be a separa-
ble complex Hilbert space. For 1 ≤ p < ∞, let Jp(H)
denote the set of all bounded operators L(H) such that
Tr(|A|p) <∞, where |A| :=

√
A?A. If A ∈ Jp(H), then the

Jp-norm of A is defined as ‖A‖p := (Tr(|A|p))1/p <∞.
The class J1(H) and J2(H) are known as the space

of trace operators and the space of Hilbert-Schmidt op-
erators, respectively. Note that a continuous embedding
Jp1(H) ↪→ Jp2(H) holds if 1 ≤ p1 < p2 ≤ ∞. In
other words, if A ∈ Jp1(H), then A ∈ Jp2(H) and
‖A‖p2 ≤ ‖A‖p1 .

Assume the initial condition P0 ∈ J1(H) and P0 ≥ 0.
By Lemma 4.3 of [10], D(·)QD?(·) ∈ L1(I,J1(H)). Since
Bζ(t),r ∈ L2(Ω) and C?ζ(t) is continuous with respect to loca-
tion, by Lemma 4.6 of [10], C̄ζ C̄?ζ (·) ∈ C(I,J1(H)), which
implies C̄ζ C̄?ζ (·) ∈ C(I,L(H)). By Theorem 5.1 of [10],
the Riccati equation (10) yields a unique weak solution in
C(I,J1(H)). Moreover, by Theorem 6.2 of [10], there exists
a finite-dimensional approximation PN ∈ C(I,J1(H)) of P
such that

sup
t∈I
‖P(t)− PN (t)‖1 → 0 (13)

as N →∞.

III. PROBLEM FORMULATION

The goal is to find guidance p(·) under which multiple het-
erogeneous sensors can reduce the uncertainty of the estimate
of a DPS. The uncertainty is characterized by the trace of the
covariance operator, integrated over the horizon I := [0, tf ].



Meanwhile, the guidance effort is constrained indirectly
using a penalty term in the cost function. The optimization
problem is formulated as follows:

minimize
p(t)∈U

∫ tf

0

Tr(P(t)) +
1

2
pT (t)γp(t)dt

subject to ζ̇(t) = aζ(t) + bp(t), ζ(0) = ζ0,

(P)

where γ ∈ Rm×m is positive definite and can be chosen to
address resource constraints, such as limited fuel or battery
life. Since the set U is compact, a solution exists for problem
(P) when the cost function is continuous with respect to p.
(The proof is omitted for space constraints.)

Problem (P) can be applied to the case of limited onboard
resources of each mobile sensor when γ is diagonal. This
problem minimizes the Lagrangian function of (and, hence,
is an intermediate step to solve) the optimization problem
that minimizes the integral of the trace of the covariance
operator P subject to the constraints of bounded guidance
effort and linear dynamics of the mobile sensors.

IV. MULTISENSOR OPTIMAL GUIDANCE

A method to solve problem (P) uses Pontryagin’s maxi-
mum principle. Consider the Hamiltonian

H(t) = Tr(P(t)) +
1

2
pT (t)γp(t) + λT (t)(aζ(t) + bp(t)),

where λ(t) ∈ Rm is the costate associated with ζ(t). The
necessary conditions of (local) optimality are as follows:

ζ̇∗(t) = aζ∗(t) + bp∗(t), ζ∗(0) = ζ0, (14a)

λ̇∗(t) =− aTλ∗(t)− (∇ζ∗Tr(P(t)))T , λ∗(tf ) = 0, (14b)

p∗(t) =− γ−1bTλ∗, (14c)

where ∇ζTr(P(t)) is the gradient of Tr(P(t)) with respect
to sensors’ locations (ζ1(t), ζ2(t), . . . , ζm(t)). We have

[∇ζTr(P(t))]i =
∂Tr(P(t))

∂ζi(t)
. (15)

The necessary condition (14) essentially requires the solu-
tion to a two-point boundary value problem, which further
requires the derivation of ∇ζTr(P(t)).

By [10, Theorem 5.5], the Fréchet derivative Λ(t) of P(t)
with respect to C̄ζ C̄?ζ (t) is the unique solution to

Λh(t) = −
∫ t

0

S(t− s)
(
(Λh)C̄ζ C̄?ζP + PC̄ζ C̄?ζ (Λh)

+ PhP
)
(s)S?(t− s)ds, (16)

Λ(0) = 0, (17)

for all h ∈ C(I,J1(H)) and all t ∈ I , where S(t) is the C0-
semigroup generated by A. We use the chain rule and the
Fréchet derivative Λ(t) to derive the gradient ∇ζTr(P(t)):

[∇ζTr(P(t))]i = Tr(Λ(t) ◦Dζi(t)C̄ζ C̄
?
ζ (t)), (18)

where Dζi(t)C̄ζ C̄?ζ (t) is the Frèchet derivative of the operator
C̄ζ C̄?ζ (t) with respect to location ζi(t) of sensor i.

A finite-dimensional approximation of the infinite-
dimensional state estimation Ẑ(t) and covariance operator

P(t) is necessary for numerical computation. Consider a
finite-dimensional subspace HN ⊂ H with dimension N .
The inner product and norm of HN are inherited from that
ofH. Let TN : H → HN denote the orthogonal projection of
H onto HN . We adopt the Galerkin approximation scheme
which satisfies the standard assumption [33], [34] such that
for all φ in the Sobolev space H1

0 (Ω),

lim
N→∞

‖TNφ− φ‖H1
0 (Ω) = 0. (19)

Let {φk(·)}Nk=1 be a collection of orthonormal basis
functions in H. Let ΦN (·) be a column vector of this
base such that [ΦN (·)]k = φk(·) for k = 1, 2, . . . , N . Let
Ẑ(t) = ΦTN (·)ẑN (t), where the equality holds in the weak
sense such that∫

Ω

Ẑ(t)ψ(x)dx =

∫
Ω

ΦTN (x)ẑN (t)ψ(x)dx, ∀ψ ∈ H.

The operator P(t) ∈ J1(H) is also a Hilbert-Schmidt
operator in J2(H), which admits a kernel representation
p(x, y, t) such that [35]

(P(t)ψ) (x) =

∫
Ω

p(x, y, t)ψ(y)dy. (20)

Let PN (t) denote the Galerkin approximation of the kernel
p(·, ·, t) such that p(x, y, t) = ΦTN (x)PN (t)ΦTN (y) holds in
the weak sense.

The observation ŷ of the estimated state at the sensor
location is computed by

ŷ(t) = C?ζ Ẑ(t) ≈
∫

Ω

Bζ(t),r(x)ΦTN (x)ẑN (t)dx

=
1

2r

(
Φ̊TN (ζ(t) + r1)− Φ̊TN (ζ(t)− r1)

)
ẑN (t), (21)

where Φ̊N is the primitive function of ΦN such that
Φ̊N (x) =

∫ x
0

ΦN (y)dy for a scalar-valued x and 1 is an m-
dimensional column vector with all elements being 1. Here,
ΦN (and also Φ̊N ) admits a vectorized representation such
that for i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,m}

[ΦN (ζ(t)T )]i,j = [ΦTN (ζ(t))]j,i = φi(ζj(t)).

The Galerkin approximation of (8) is

˙̂zN (t) =− L−1
N MN ẑN (t) +

1

2r
PN

[
Φ̊N (ζ(t)T + r1T )

− Φ̊N (ζ(t)T − r1T )
]
R−1(y(t)− ŷ(t)), (22)

where MN ∈ RN×N and LN ∈ RN×N are such that

MN =

∫
Ω

Φ̇N (x)Φ̇TN (x)dx, LN =

∫
Ω

ΦN (x)ΦTN (x)dx.

The numerical computation of Tr(P(t)) is

Tr(P(t)) =

∞∑
k=1

〈φk,P(t)φk〉

≈tr((
N∑
k=1

eke
T
k )PN (t)) = tr(PN (t)), (23)
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Fig. 1: The value of sensor noise R is fixed at 0.5 while
mobility penalty γ takes values in the range {0.5, 1, 1.5, 2}.

where ek is an N -dimensional zero vector except 1 on its
kth row.

Denote the finite-dimensional approximation of Λ(t) by
HN (t), then

Tr(Λ(t) ◦Dζi(t)C̄ζ C̄
?
ζ (t)) ≈ − 1

4r2
tr(HN (t)(Γ + ΓT )),

where

Γ =
(
ΦN (ζ̄i(t)

T + r1T )− ΦN (ζ̄i(t)
T − r1T )

)
R−1(

Φ̊TN (ζ(t) + r1)− Φ̊TN (ζ(t)− r1)
)

(24)

and we use the bar notation ζ̄i together with the subscript i
to denote an m-dimensional zero vector except for the ith
row being ζi.

V. SIMULATION RESULTS

This section shows the simulation results for a
single sensor and a team of heterogeneous sensors.
Comparison and analysis are made regarding the es-
timation performance of the mobile sensor(s) under
the optimal guidance. We use the sinusoidal basis
{φn(x) =

√
2 sin(πnx), x ∈ Ω = [0, 1], n ≥ 1} as the or-

thonormal basis for H. The parameters in the simulation are
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Fig. 2: The value of mobility penalty γ is fixed at 0.5 while
sensor noise R takes values in the range of {0.5, 1, 1.5, 2}.

as follows:

z0(x) = 4(x− x2), ẑ0(x) = erf(50x)erf(50− 50x),

D(x) = sin(πx)e−2x, p(x, y, 0) = 5χ(x, y), Q = 0.01

tf = 1, α = 0.1, N = 24, r = 0.05, ai = 0, bi = 1, for all i,

where χ(x, y) = 1 if x = y and χ(x, y) = 0 if x 6= y. The
initial guess ẑ0 is chosen as the smoothed rectangular func-
tion with unit value on Ω. And the kernel of the covariance
operator p(x, y, 0) is chosen to be arbitrarily large.

We use the shooting method [36] to find a (local) optimal
solution satisfying (14). The MATLAB function fsolve is
applied to search for the initial value λ(0) such that (14) is
met. The forward propagation of (14a) and (14b) is done via
the Runge-Kutta method.

A. Single sensor results

Two important parameters in the problem setting are the
sensor noise covariance R and mobility penalty γ. Smaller R
yields higher sensor quality, whereas smaller γ yields better
mobility of the vehicle. For example, if γ is the mass of
the vehicle, then the guidance effort is the kinetic energy
of the vehicle. These parameters influence the performance
of the estimation, as shown next. The terminologies uncer-
tainty cost and guidance effort refer to

∫ tf
0

Tr(P(t))dt and
1
2

∫ tf
0
p(t)T γp(t)dt, respectively.



First, hold either R or γ fixed and vary the other to see
the variation of the optimal trajectory. Fig. 1a displays the
trajectories when R = 0.5 and γ varies from 0.5 to 2. A
clear tendency of less maneuvering of the trajectory can be
observed as γ increases. Fig. 1b displays the amount of
uncertainty cost and guidance effort, which both grow as
γ increases, yielding performance reduction evaluated under
the metric of problem (P).

Monte Carlo simulations were conducted on four test
cases. Moreover, we compare the optimal guidance with
naive guidance (under which the sensor traverses the spatial
domain with a trigonometric trajectory) and null guidance
(under which the sensor is stationary). The mean and
standard deviation of the norm of the terminal estimation
error are shown in Fig. 1c. Observe that estimation error
grows when γ increases. Compared with the naive guidance
and the null guidance, the sensor under optimal guidance
significantly reduces the estimation uncertainty.

Fig. 2a displays the trajectories when γ = 0.5 and R
varies from 0.5 to 2. A tendency of less maneuvering also
appears as R increases, similar to the case of increasing γ
with fixed R in Fig. 1a. The uncertainty cost and total cost
grow notably, as displayed in Fig. 2b, when R increases.
The results of Monte Carlo simulation for these four cases
are shown in Fig. 2c. The optimal guidance performs better
than the naive guidance and the null guidance when evaluated
by the mean value. However, both the mean and standard
deviation of the optimal guidance grow as R increases.
This tendency does not appear in Fig. 1c, where R is fixed
while γ increases. The explanation is that the norm of the
terminal estimation error is affected directly by the sensor
noise level (through (8) and (10)) and indirectly by mobility
penalty (through the dynamics (14) and (10)). Therefore,
increasing R and holding γ fixed yields apparent growth
of the terminal estimation error compared with increasing γ
and holding R fixed.

B. Team of heterogeneous sensors

The parameters R and γ essentially relate to operational
planning: one may invest more for better sensor quality
or a swifter vehicle. Similarly, one may invest more for a
team of superior mobile sensors (R = 0.5 and γ = 0.5)
than a team of poor mobile sensors (R = 2 and γ = 1).
The latter has twice as much sensor noise (in terms of
standard deviation) and twice mobility penalty as the former.
One may balance the conflicting needs of performance and
investment by deploying a team of heterogeneous sensors,
i.e., a mixed team of superior and poor sensors. The fol-
lowing simulation compares the performance of a team of
heterogeneous sensors (mp poor sensors and 8−mp superior
sensors, for mp in the range of {1, 2, . . . , 7}) with that of
a homogeneous team (eight superior sensors). To adapt to a
total of eight sensors, we adjust Q to 0.64, of which the
standard deviation is eight times the one in the case of
a single sensor. The sensors are evenly distributed in the
interval [0.9, 0.95] at t = 0. Fig. 3 shows the normalized
uncertainty cost (Jump

− Ju0 )/Ju0 , where Jump
and Ju0 denote

1 2 3 4 5 6 7

0

5%

10%

15%

20%

Fig. 3: Normalized uncertainty cost of the heterogeneous
team with 8 − mp superior mobile sensors and mp poor
mobile sensors.

the uncertainty cost of the heterogeneous team and that of
the homogeneous team, respectively. The performance of the
heterogeneous team, evaluated by the normalized uncertainty
cost, is inferior to that of the homogeneous team: perfor-
mance degrades as mp increases. However, the degradation
is kept within 20% even when seven superior sensors are
replaced by poor sensors. Meanwhile, the investment reduces
linearly as mp increases, indicating the cost effectiveness of
the heterogeneous team.

VI. CONCLUSION

This paper proposes a guidance design method for a team
of mobile sensors to estimate a linear distributed parameter
system modeled by a diffusion equation. We formulate an
optimization problem that minimizes the weighted sum of the
trace of the covariance operator of the Kalman filter and the
guidance effort of the mobile sensors. We use Pontryagin’s
maximum principle together with Galerkin approximation to
numerically compute optimal guidance. Simulation results
show that, for a single sensor, either improving sensor
quality or reducing mobility penalty improves the perfor-
mance evaluated by the proposed cost function and terminal
estimation error. For a team of mobile sensors, degradation
of the estimation performance is kept within 20% when
several superior sensors are replaced by the poor alternatives,
indicating the cost effectiveness of a heterogeneous team.

Ongoing and future work includes extending the frame-
work to a diffusion process in a 2D domain; proving the
conditions under which the guidance computed from the
proposed numerical method converges to the optimal guid-
ance of the proposed problem; and accelerating the numerical
computation using emerging technologies, e.g., via a high-
performance graphics processing unit.
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