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Abstract— This paper considers the problem of global bilin-
earization of the drift and control vector fields of a control-
affine system. While there are linearization techniques like
Carleman linearization for embedding a finite-dimensional non-
linear system into an infinite-dimensional space, they depend
on the analytic property of the vector fields and work only on
polynomial space. The proposed method utilizes the Koopman
Canonical Transform to transform the dynamics and ensures
bilinearity from the projection of the Koopman operator
associated with the control vector fields on the eigenspace of the
drift Koopman operator. The resulting bilinear system is then
subjected to controllability analysis using the Myhill semigroup
method and Lie algebraic structures. The results are supported
by a numerical example.

I. INTRODUCTION

Traditionally, dynamical systems are described in terms
of trajectories defined by a flow function or iterative map on
finite dimensions. However, there is an alternative frame-
work, an operator-theoretic approach, that relies on the
(linear) operators of infinite-dimensional function spaces.
One such operator is the Koopman operator proposed by
B.O. Koopman in 1931 [1].

The Koopman operator’s action on an observable function
is to describe its evolution along the trajectory of the original
system. Despite being implicitly used in Lyapunov stability
theory for a century, operator-theoretic approach has found
its way into the description of system outputs very recently
[2], [3]. Being a linear operator, Koopman operator can
be used in spectral analysis of nonlinear flows. Koopman
eigenfunctions are directly related to the geometry of the
system dynamics, e.g., periodic partitions in an ergodic
system [2]. The nonlinear flow can be characterized by its
dominant Koopman modes as shown in [3]. The Koopman
modes may be approximated from snapshots of the system
without having knowledge of the underlying dynamics, using
the Krylov-subspace method for discrete-time systems [3].
For continuous time systems, the Koopman modes may
be approximated by Taylor series expansion or Bernstein
polynomials [4].

Operator-theoretic methods essentially work by embed-
ding finite-dimensional dynamics in an infinite-dimensional
function space in which functions evolve under a linear
operator. The Koopman operator offers effective methods
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to characterize a nonlinear system in terms of stability [4]
and linearization [5]. In [4], a framework is developed for
formulating the global stability properties of the fixed points
and limit cycles. A numerical approach to estimate the basin
of attraction of those attractors uses the Koopman method.
In addition, Koopman methods are related to numerical
algorithms like Dynamic Mode Decomposition [3], [6].

The application of the Koopman method to actuated sys-
tems has proven to be difficult, because the actuation signals
change the spectral properties of the Koopman operator.
[7] introduces a method to incorporate the control input in
Koopman framework. [8] bridges the gap of the analysis and
simulation by providing a method to determine the spectral
property of the Koopman operator of the underlying unforced
system from the data of the actuated dynamics. However,
neither of these methods permit the linearization of full-scale
actuated systems with Koopman spectra. Recently however,
[9] proposed a framework for designing an observer for a
discrete-time unactuated nonlinear system. [10] extends the
same framework into continuous time with control-affine
dynamics by introducing the Koopman Canonical Transform
(KCT) using Koopman eigenfunctions, which transform the
(nonlinear) dynamics into an observer form.

This manuscript utilizes the KCT to transform a control-
affine system into a bilinear one. The sufficient conditions are
given for such a reduction. The bilinearization thus obtained
is global and does not rely on the neighborhood of the
operating point or trajectory. The bilinear system is then used
for controllability analysis and designing stabilizing control.
For this we resorted to Myhill semigroup theory and the Lie
algebraic methods described in [11], [12].

The contributions of this work are (1) proposing a method
using the Koopman Canonical Transform (KCT) to globally
bilinearize a control-affine nonlinear system; (2) sufficient
conditions for complete bilinearization using the eigenspaces
of the Koopman operators; and (3) analysis of the con-
trollability and design of the stabilizing control using the
resulting bilinear system. Numerical simulations demonstrate
effective bilinearization of a control-affine nonlinear system.
The bilinearized system thus obtained is simpler than the
original system in terms of controllability and control design.

The manuscript is organized as follows. Section II pro-
vides a brief overview of Koopman spectral theory, describes
the motivation behind spectral bilinearization and explains
the Koopman Canonical Transform and its properties. Sec-
tion III explores the sufficient conditions for bilinearizability
for a control-affine nonlinear system under various assump-
tions. Section IV gives the reachability analysis of the Koop-



man bilinear form using a Lie algebraic setup. Section V
supports the analytical conclusions with numerical examples.
Section VI summarizes the manuscript and discusses possible
future work.

II. MATHEMATICAL BACKGROUND

A. Overview of Koopman Theory

Consider a dynamical system

ẋ = f(x), (1)

where x ∈ X ⊆ Rd and f : X → X. Let Φ(t,x) be the
flow map of the system (1). Let F be the space of all
complex-valued observables ϕ : X → C. The continuous
time Koopman operator is defined as Kt : F → F such that

(Ktϕ)(·) = ϕ ◦Φ(t, ·). (2)

Being linear over its arguments, the Koopman operator can
be characterized by its eigenvalues and eigenfunctions. A
function φ : X→ C is an eigenfunction of Kt if

(Ktφ)(·) = eλtφ(·), (3)

with eigenvalue λ ∈ C. It can be shown [4] that the

infinitesimal generator of Kt, i.e., limt→0
Kt − I
t

is f · ∇ =

Lf , where Lf is the Lie derivative with respect to f . The
infinitesimal generator satisfies the eigenvalue equation

Lfφ = λφ. (4)

Hence, the time-varying observable ψ(t,x) , Ktϕ(x) is the
solution of the PDE [4]

∂ψ

∂t
= Lfψ,

ψ(0,x) = ϕ(x0),
(5)

where x0 is the initial condition for the system (1).
Despite its linearity, the Koopman operator is infinite

dimensional. If φ1 and φ2 are eigenfunctions of Kt with
eigenvalues λ1 and λ2 respectively, then φk1φ

l
2 is also an

eigenfunction with eigenvalue kλ1 + lλ2 for any k, l ∈ N.
Moreover, the Koopman operator, being infinite dimensional,
may contain continuous and residual spectra with a general-
ized eigendistribution [13]. The discussions in this paper are
restricted to the point spectra of the Koopman operator.

Let g(·) ∈ Fp, p ∈ N be a vector-valued observable. g
can be expressed in terms of Koopman eigenfunctions φi(·)
as follows:

g(·) =
∞∑
i=1

φi(·)vg
i , (6)

where vg
i ∈ Rp, i = 1, 2, . . . are called the Koopman modes

of the observable g(·). Koopman modes form the projection
of the observable on the span of Koopman eigenfunctions
[14]. The Koopman eigenvalues and the eigenfunctions are
properties of the dynamics only, whereas the Koopman
modes depend on the observable.

B. Motivation for bilinearization: Koopman Canonical
Transform

A control affine system is

ẋ = f0(x) +
m∑
i=1

fi(x)ui

y = h(x),
(7)

where x ∈ X ⊆ Rd, ui ∈ R, for i = 1, . . . ,m and y ∈ Rp.
Let ψ(t,x) be defined as in (5). Note that ψ(t,x) gives the
evolution of an observable quantity ϕ(·) with time along the
trajectory. Applying Eq. (5) for the system (7), the evolution
PDE is given by

∂ψ

∂t
= Lf0ψ +

m∑
i=1

uiLfiψ,

ψ(0,x) = ϕ(x0),
(8)

where Lfi , fi · ∇, i = 0, . . . ,m are the corresponding
Lie derivatives and hence are linear operators on the space
of ψ. The system of PDE (8) looks quite similar to ẋ =
Ax+

∑m
i=1Bixui, i.e., the usual bilinear system. The system

(8) differs only in the fact that Lfi are infinite dimensional
operators operating over function space. The motivation
comes from the possibility of projecting these operators on
a finite-dimensional space by choosing suitable functional
basis in terms of observables.

The natural choice of the basis functions is to use
the Koopman eigenfunctions, since these functions, when
operated on by the Koopman infinitesimal generator, are
multiplied by a scalar only. For this transformation, we use
Koopman Canonical Transform (KCT) defined in [10]. The
KCT relies on the point spectra of the Koopman operator re-
lated to the drift vector field, and it suffices for most systems
because the continuous spectrum is empty for most of them
near an attractor [4]. For the system (7) we investigate the
Koopman eigenvalues and eigenfunctions of the unactuated
dynamics, i.e.,

ẋ = f0(x), (9)

and the flow associated with it. Let λi, φi(·) for i = 1, 2, . . .
be the eigenvalue-eigenfunction pairs of the Koopman oper-
ator associated with the system (9). KCT [10] transforms the
dynamics (7) using the eigenfunctions φi in a possibly higher
dimensional space. To enable use of KCT, [10] mentions the
following assumption.

Assumption 1: ∃ φi, i = 1, 2, . . . , n such that

x =

n∑
i=1

φi(x)v
x
i , h(x) =

n∑
i=1

φi(x)v
h
i ,

where vx
i ∈ Cd and vh

i ∈ Cp. This assumption in turn
tells us that the state vector and the output function can
be described in terms of a finite number of Koopman
eigenfunctions. With sufficiently large n, Assumption 1 is
likely to be satisfied. If it is not, then x and h(x) may be
well approximated by n eigenfunctions as we have in the
case of a Fourier series.

KCT consists of the transformation T (x) defined as fol-



lows [10]:

T (x) = [φ̃1(x), . . . , φ̃n(x)]
T

φ̃i(x) = φi(x), if φi : X→ R
(φ̃i(x), φ̃i+1(x))

T = (2Re(φi(x)),−2Im(φi(x)))
T ,

if φi : X→ C
and assuming φi+1 = φi.

(10)
Following the transformation z = T (x), the system (7) in

the new coordinates is [10]

x = Cxz,

ż = Dz +
m∑
i=1

LfiT (x)ui|x=Cxz,

y = Chz,

(11)

where Cx = [ṽx
1 | . . . |ṽx

n] and Ch = [ṽh
1 | . . . |ṽh

n] with ṽx
i =

vx
i if φi is real-valued, and [ṽx

i , ṽx
i+1] is [Revx

i , Imvx
i ] if

φi is complex-valued. ṽh
i are defined similarly. D ∈ Rn×n

is a block diagonal matrix with diagonal entry Di,i = λi if

φi is a real-valued eigenfunction, or
[
Di,i Di,i+1

Di+1,i Di+1,i+1

]
=

|λi|
[
cos(∠λi) sin(∠λi)
− sin(∠λi) cos(∠λi)

]
if φi is complex.

The transformed system (11) is bilinearizable with certain
conditions on the control vector fields so that their Lie-
derivative operators may be represented in terms of the
Koopman eigenfunctions of the drift vector field.

III. BILINEARIZABILITY OF THE KCT
To establish the bilinearizability of the system (11), we

need to analyze the control vector fields of the original
system. In the transformed system, the control enters through
the transformed vector field LfiT (x)|x=Cxz. Note that Lfi is
the infinitesimal Koopman operator with respect to control
vector field fi.

Theorem 1: The systems (7) and (11) are bilinearizable in
a countable (possibly infinite) basis if the eigenspace of Lf0 ,
i.e., the Koopman operator corresponding to the drift vector
field, is an invariant subspace of Lfi , i = 1, . . . ,m, i.e., the
Koopman operators related to the control vector fields.

Proof: If the hypothesis is true, then choose eigenfunctions
of Lf0 , {φj : j = 1, 2, . . .}, such that Lfiφk ∈ span{φj :
j = 1, 2, . . .}, ∀ i = 1, . . . ,m; k = 1, 2, . . .. This choice
is guaranteed, because span{φj : j = 1, 2, . . .}, i.e., the
eigenspace of Lf0 , is invariant under Lfi , i = 1, . . . ,m. So,

∀ k = 1, 2, . . . , we have Lfiφk =
∞∑
j=1

vfij φj , where vfij ∈ R.

Now taking T (x) as in Eq. (10), but without imposing the
finite n condition, we get

LfiT (x) =

∞∑
j=1

vfi
j φj(x) =

∞∑
j=1

ṽfi
j φ̃j(x),

where ṽfi
j ∈ Rd and φ̃j are defined as in Eq. (10). Define

Bi = [ṽfi
1 |ṽ

fi
2 | . . .]. Then, with z = T (x), the system (11)

becomes

ż = Dz +

m∑
i=1

Bizui. (12)

Since the system (11) is just a transformation of the (7),
bilinearization the former implies the same for the latter. �

Although Theorem 1 gives the condition for the bilin-
earizability of the control-affine system using KCT with a
countable number of eigenfunctions, it still does not solve
the problem with infinitely many eigenfunctions. However,
for an approximate result we can truncate the number of
eigenfunctions to only the dominant ones [9]. This linear
approximation, unlike the Jacobian approach, is global, i.e.,
it is valid over the manifold X on which the dynamics (7) is
defined.

Corollary 1: The systems (7) and (11) are bilinearizable
if the drift vector field f0 ≡ 0, i.e., it is a pure control-affine
system.

Proof: The proof follows from the fact that every function
φ(·) ∈ F is an eigenfunction of Lf0 with f0 ≡ 0 corre-
sponding to the zero eigenvalue. Hence the whole space F
is the eigenspace of Lf0 , which is of course invariant under
Lfi , ∀ i = 1, . . . ,m. Therefore, from Theorem 1, the system
is bilinearizable. �

Theorem 1 and Corollary 1 essentially embed the finite-
dimensional nonlinear dynamics (7) in a higher, possibly
infinite-dimensional linear system (12). There are other
embedding techniques that deal with Hermite polynomials,
e.g., Carleman embedding [15], but that works only on
analytic nonlinearities. The method with Koopman eigen-
functions works on a wide varieties of systems, and can be
characterized in terms of the range and eigenspace of the
corresponding Koopman operator.

For a finite-dimensional bilinearization of the system
(7), we need a stronger assumption than invariance of the
eigenspace of Lf0 : the invariant subspace must be spanned
by a finite number of Koopman eigenfunctions.

Theorem 2: Suppose ∃ {φj : j = 1, . . . , n}, n ∈ N, n <
∞ such that φj , j = 1, . . . , n are the Koopman eigenfunc-
tions of the unactuated system (9) and span{φ1, . . . , φn}
forms an invariant subspace of Lfi , i = 1, . . . ,m. Then the
system (7) and, in turn system (11), are bilinearizable with
an n dimensional state space.

Proof: The hypothesis dictates that Lfiφk ∈ span{φj :
j = 1, . . . , n} ∀ i = 1, . . . ,m; k = 1, . . . , n. Therefore, we
conclude

Lfiφk =

n∑
j=1

vfij φj , k = 1, . . . , n,

where vfij ∈ R. Now consider T (x) as defined in Eq. (10).
Its Lie derivatives with respect to the control vector fields
are

LfiT (x) =

n∑
j=1

vfi
j φj(x) =

n∑
j=1

ṽfi
j φ̃j(x),

where ṽfi
j ∈ Rd and φ̃j are defined as in Eq. (10). Now,

as in Theorem 1, let us define Bi , [ṽfi
1 |ṽ

fi
2 | . . . |ṽfi

n ]. The
difference from the Bi in Theorem 1 is that this Bi is not
only countable but a finite-dimensional operator. Now with



coordinates z = T (x), the transformed system is

ż = Dz +

m∑
i=1

Bizui, (13)

with z ∈ Rn, n <∞. �
Though the hypothesis of Theorem 2 is difficult to satisfy,

we can always include more eigenfunctions φj in the span

so that ‖Lfiφj −
n∑
j=1

vfij φj‖ becomes sufficiently small. But

the bilinear form (13) will not be unique in that scenario
due to the lack of invertibility of KCT in most cases. Note
that usually n � d, i.e., this method of bilinearization lifts
the original dynamics (7) to a higher dimensional state-space.
The resulting bilinear system is relatively easier to work with
in terms of controllability analysis and designing a stabilizing
control, as illustrated in the next section. The bilinear system
defined by (13) will be referred as the Koopman Bilinear
Form (KBF) in the sequel.

IV. REACHABILITY OF KBF

To analyze the controllability of the KBF in (13), we
borrow the concatenation semigroup structure of control
signals defined in [11].

Let ui be an m-dimensional piecewise control signal. We
can form a semigroup from the set {ui(·)|ui : R+ →
Rm,ui piecewise continuous} with the concatenation oper-
ation. The concatenation operation looks like

u1 ◦ u2 =

{
u1(t), t ∈ [0, t1)

u2(t− t1), t ∈ [t1, t2)
(14)

Denote this semigroup as Um. Each u ∈ Um, when applied
to the dynamics (13), generates a one-to-one continuous map
from Rn into Rn in terms of a flow map. Let Tn be the
semigroup of all such maps with composition operation. The
system (13) defines a homomorphism from Um into Tn [11].
Let H : Um → Tn be the homomorphism. The image of Um

under H is called the Myhill semigroup [11] of the system.
The maps of the Myhill semigroup are, in fact, the flow maps
of the system with a particular piecewise-continuous control
signal u ∈ Um, and therefore give all the information of the
dynamics.

In general, i.e., for an arbitrary nonlinear system these
maps are difficult to obtain, and yield no practical use. But
for the bilinear system (13), the Myhill semigroup maps are
the matrices Z ∈ Rn×n, satisfying the matrix differential
equation

Ż(t) = DZ(t) +
m∑
i=1

BiZ(t)ui,

Z(0) = I,
(15)

with z(t) = Z(t)z(0) for any z(0) ∈ Rn. Therefore, given
any initial state z0, the states reachable from z0 are given
by all the points in Rn that can be generated by Z(t)z0
for some t ≥ 0, where Z(t) satisfies (15). Consequently, the
controllability of the system (13) can be characterized by the
controllability of the matrix differential equation (15). The
controllability of a bilinear matrix system has been studied

widely [11], [12], [16], [17], exploiting the characteristic of
matrices as operators and the corresponding Lie algebraic
structures.

The Lie bracket of Rn×n matrices is defined as

[·, ·] : Rn×n × Rn×n → Rn×n,

[X,Y ] 7→ XY − Y X.

Any space of matrices closed under the Lie bracket operation
forms a Lie algebra. The matrix exponentials of all elements
of a matrix Lie algebra along with usual matrix multiplication
forms a matrix Lie group associated with the algebra. Denote
{Xi : i = 1, . . . , n}A as the smallest Lie algebra containing
{Xi : i = 1, . . . , n} and {exp{Xi} : i = 1, . . . , n}G as the
smallest Lie group containing {exp{Xi} : i = 1, . . . , n}.
Also ∀A,B ∈ Rn×n and k = 0, 1, . . . we define adk+1

A B ,
[A, adkAB] with ad0

AB , B. The controllability results are
stated below using the notation of Lie groups and algebras.

Theorem 3: Consider the drift-free matrix differential
equation in Rn×n,

Ż(t) =

m∑
i=1

BiZ(t)ui(t), Z(0) = I (16)

which corresponds to the system (13) with f0 ≡ 0 and Bi as
defined in Theorem 2. Z1 ∈ Rn×n is in the reachable space
of (16) if and only if Z1 ∈ {exp{{Bi : i = 1, . . . ,m}A}}G,
i.e., it lies within the smallest group generated by the matrix
exponential of the elements of the smallest algebra generated
by the control matrices.

The proof of Theorem 3 goes according to Theorem 5 in
[12]. For brevity we omit the proof.

Theorem 3 gives the reachable set for systems without drift
in terms of the Koopman modes of LfiT (x), because the
matrices Bi are the column-wise collection of the Koopman
modes vfi

j . So if the system is approximately bilinearized,

i.e., if ‖Lfiφj −
n∑
j=1

vfij φj‖ is sufficiently small, then the

reachable set of the bilinearized dynamics (12) is a subset
of the reachable set for the original dynamics (7). However,
with drift, the problem becomes more difficult and we need
more assumptions to get a reachable set. For systems with
drift, the reachable set is specified below.

Theorem 4: Consider the matrix differential equation in
Rn×n,

Ż(t) = DZ(t) +

m∑
i=1

BiZ(t)ui(t), Z(0) = I (17)

where D and Bi are defined as in the proof of Theorem
2. Assume [adkDBi, Bj ] = 0 for i, j = 1, . . . ,m and k =
0, 1, . . . , n2 − 1. Let L = span{adkDBi : i = 1, . . . ,m, k =
0, 1, . . . , n2 − 1}. Then Z1 is reachable at time t1 through
continuous controls if and only if ∃L ∈ L such that

Z1 = exp(t1D) exp(L).

The proof of Theorem 4 relies on defining a new system
of differential equation on Y (t) = e−DtZ(t). For the
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complete proof see [12].

The condition of Theorem 4 seems conservative, but is
usually satisfied with sparse Bi when n� m.

V. NUMERICAL SIMULATION

To demonstrate the effectiveness of the bilinearization
technique described consider the system

ẋ = f0(x) + g1(x)u1 + g2(x)u2, (18)

where the drift f0 is

f0(x) =

(
λx1

µx2 + (2λ− µ)cx21.

)
This choice of f0 is inspired from [3] so that the eigenfunc-
tions may be obtained by inspection. For the demonstration,
we choose various g1 and g2 for different cases.

It can be verified that the Koopman eigenvalue-
eigenfunction pairs for Lf0 are as follows:
• φ1(x) = x1 with eigenvalue λ,
• φ2(x) = x2 − cx21 with eigenvalue µ,
• φ3(x) = x21 with eigenvalue 2λ, and
• φ4(x) = 1 with eigenvalue 0.

Any multiplicative combination of these eigenfunctions will
yield another eigenfunction with a suitable eigenvalue. How-
ever, for our discussion it is sufficient to consider only
these four. φ4 is the trivial constant eigenfunction with zero
eigenvalue, introduced to deal with constant control vector
fields.

The Koopman canonical transformation is

z = T (x) =
[
φ1(x) φ2(x) φ3(x) φ4(x)

]T
=
[
x1 x2 − cx21 x21 1

]T
and matrix D is given by D = diag(λ, µ, 2λ, 0).

A. Completely bilinearizable system

Now let us choose g1 and g2 such that the system becomes
completely bilinearizable in four dimensions according to
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Theorem 2. Let

g1(x) =
[
1 x21

]T
and g2(x) =

[
0 1

]T
Then

Lg1T (x) =
[
1 −2cx1 + x21 2x1 0

]T
= B1z,

and Lg2T (x) = B2z, where

B1 =


0 0 0 1
−2c 0 1 0
2 0 0 0
0 0 0 0

 , B2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
For this simulation, we set λ = 0.3, µ = 0.2 and c =

−0.5. We applied u1 = cos(2πt), a sinusoidal excitation, and
u2 = −x2 = −(z2 + cz21) = −(z2 + cz3), a state feedback.
Fig. 1 shows the original system response and the response
from the bilinearized system after transforming back to the
original coordinates. The responses are identical.

B. Approximately bilinearized system

Now choose g1(x) =
[
1 cosx1

]T
and keep everything

else the same as Section V.A. But now Lg1T (x) does not lie
in the span of φi, i = 1, . . . , 4. So we can only approximately
bilinearize the system (18) by taking the projection of
Lg1

T (x) into the span of these four eigenfunctions. Here

Lg1
T (x) =

[
1 −2cx1 + cosx1 2x1 0

]T
.

From cosine series expansion, approximate cosx1 = 1 −
x21
2

= φ4(x)−
1

2
φ3(x). With this approximation

B1 =


0 0 0 1

−2c 0 −1

2
1

2 0 0 0
0 0 0 0

 .
The transformed bilinearized system and the original system

do not give exactly the same response, but they closely
follow each other. The resultant responses are shown in



Fig. 2. The accuracy can be increased by including higher-
order eigenfunctions, thereby increasing the number of terms
in the cosine series. The bilinearization by KBF performs
better compared to classical bilinearization techniques since
the former is valid globally. Due to the lack of space, the
comparison results are omitted here.

C. Controllability of the system

The controllability and reachable sets of the system (7)
may be characterized by the transformed bilinearized system
with D, B1, and B2 from the completely bilinearizable
system in Section V.A. However, because the transformed
KBF has more dimensions, it may not achieve complete
controllability even when the original system does. It can
be shown that the bilinearized system ż(t) = Dz(t) +
B1z(t)u1(t) + B2z(t)u2(t) satisfies the hypothesis of The-
orem 4. So we resort to finding Z(t) ∈ Rn×n, where Z(t)
satisfies the matrix differential equation (15) with m = 2
and z(t) = Z(t)z(0). According to Theorem 4, Z(t) must
take the form

Z(t) = exp(tD) exp(L),

where L ∈ L = span{adkDBi : i = 1, . . . ,m, k =
0, 1, . . . , n2−1}. By explicitly calculating exp(tD) exp(L1),
where L1 = c1B1 + c2B2 ∈ span{adkDBi : i =
1, . . . ,m, k = 0, 1, . . . , n2 − 1}, the resultant Z(t) is

eλt 0 0 c1e
λt

−c1eµt
(
2c− c1

2

)
eµt c1e

µt eµt
(
c2 − cc21 +

c31
3

)
2c1e

2λt 0 e2λt c21e
2λt

0 0 0 1

 .
(19)

From any z0, we can achieve z(t) = Z(t)z(0) and, therefore,
any z1(t) and z2(t) can achieved by varying the scalars
c1 and c2 as z4 ≡ 1. So we have global controllability
for the original system (18). However, the transformed
system is not globally controllable because we have no
control authority over z4(t) ≡ 1. To stabilize the system
we choose u1(t) = −(λ + 0.5) z1(t) = −(λ + 0.5)x1(t)
and u2(t) = −(2cz1(t) − z3(t))u1(t) − (µ + 0.5) z2(t) =
(2cx1(t) − x21(t))u1(t) − (µ + 0.5)(x2(t) − cx21(t)). This
effectively reduces the transformed system into ż = Az
where A = diag(−0.5,−0.5,−0.5, 1). This input in turn
feedback linearizes the original system (18) giving a strong
connection between KBF and feedback linearizability of the
system. The system response under this feedback is shown
in Fig. 3.

VI. CONCLUSION
This paper presents an effective method to globally bilin-

earize control-affine nonlinear systems using the Koopman
Canonical Transform. The sufficient conditions for bilineariz-
ablity in both countable and finite bases have been provided.
The Koopman Bilinear Form is analyzed for controllability
and reachability using the Myhill semigroup formation and
Lie algebraic methods. The theoretical justification of the
bilinearizability and controllability has been demonstrated
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Fig. 3: Original and transformed system response for com-
plete bilinearization with feedback

using numerical simulations. The future work includes de-
veloping an optimal control strategy using KBF and the
investigation its relation with feedback linearization.
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