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Abstract— Self-propelled particle models have been used to
study the collective behavior of animal groups such as fish
schools and bird flocks, and these models have also been useful
in designing control strategies for fleets of autonomous vehicles.
In this paper, we construct a dynamical particle model inspired
by mating swarms of wild mosquitoes. The model generates
three different behaviors (swarming, velocity alignment, and
pursuit) by switching the model parameters. Behaviors are
generated by interaction forces based on springs and dampers.
Previous studies of mosquito flight data suggest proximity
in the velocity space, as well as the spatial distance, may
determine the type of interaction. The stability properties of
the velocity-alignment behavior, which generates intermittent
parallel motion, and its effect on the success of the pursuit
behavior are studied using Lyapunov analysis. The results
presented in this paper may yield new understanding of the
function of male-male interactions observed in mating swarms.

I. INTRODUCTION

Self-propelled particle models are useful in modeling and
analyzing collective behavior of animals. Couzin et al. [1]
used a particle model to investigate the spatial dynamics
of an animal group such as a fish school or bird flock;
this model revealed the existence of major, group-level
behavioral transitions related to minor changes in individual-
level interactions. Scott and Leonard [2] studied a three-agent
model involving a single pursuer (a bear) and two evaders (a
mother caribou and her calf), and performed stability anal-
ysis on some equilibrium formations. Gazi and Passino [3]
studied a general class of attraction/repulsion functions that
can be used to achieve swarm aggregations; they presented
stability analysis to characterize swarm cohesiveness, size,
and motion.

Particle models are not only useful in investigating animal
behaviors, but have also been used to design formation
controls for multiple vehicles. For example, Leonard and
Fiorelli [4] presented a framework for coordinated and
distributed control of multiple autonomous vehicles using
artificial potentials and virtual leaders. Paley and Leonard
[5] showed the stability of the parallel and circular group
motion presented in [1], and extended it to a control law for
trajectory tracking. Olfati-Saber and Murray [6] presented a
dynamic, graph-theoretic framework for flocking and used it
to achieve obstacle avoidance. Gazi [7] considered a general
model for vehicle dynamics and used sliding-mode control
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theory to track the motion of swarm members presented in
[3].

This paper presents a particle model to investigate the
collective behavior of animals, specifically the swarming
behavior of insects such as mosquitoes or midges. Swarming
insects are different from fish schools or bird flocks in the
sense that their motion is not polarized. Nonetheless, swarms
exhibit interesting features that have attracted research inter-
est [8][9].

This study is inspired by the swarming behavior of malar-
ial mosquitoes in the Anopheles gambiae species complex
[10]. In our previous work, we observed cohesive oscillatory
motion [11], as well as local interactions represented by in-
termittent parallel flight [12]. However, the pursuit behavior,
which is one of the key aspects of a mating swarm, was not
previously modeled. In order to accommodate pursuit, we
extend the model presented in [12], while minimizing the
overall complexity of the model. We further seek to use this
model to investigate the possible role of intermittent parallel
flight performed by the males in the swarm.

The contributions of this paper are (1) construction of
a mosquito-inspired, dynamical particle model that gener-
ates swarming, velocity alignment, and pursuit behavior by
switching parameters; (2) Lyapunov analysis of the weak
stability of the velocity matching behavior, which is based
on proximity in the velocity space; and (3) the study of
the effect of velocity matching behavior on the success of
pursuit behavior. This paper may yield new understanding
of the function of male-male interactions observed in mat-
ing swarms, which could potentially be applied to control
strategies for a multi-vehicle system.

Section II describes three behaviors observed in mosquito
mating swarms in previous studies. Section III constructs a
model that generates the three behaviors of male mosquitoes
and discusses the connection to flight data. Section IV
analyzes the Lyapunov stability of the velocity-matching
behavior and studies the effect on pursuit. Section V sum-
marizes the paper and ongoing and future work.

II. BACKGROUND

The Anopheles gambiae species complex comprises the
primary vectors of malaria in much of sub-Saharan Africa,
and most of the mating in these species occurs when soli-
tary females encounter swarms composed almost entirely
of males [10]. One important area of investigation in the
mating system of these malaria vectors is the nature and
extent of male-male interactions in the swarm. Male-male
interactions are explained by theories of lek-formation [13],
including aggression or arena defense, collectively increased



signaling to females, and association with successful males.
Another important question is the mechanism that leads to
male-female coupling. Whether there is female evasion or
selection is unknown. This section reviews several studies of
the behavior of this malarial mosquito, which inspired the
subsequent analysis.

A. Velocity Fluctuation

Butail et al. [11] obtained three-dimensional positions and
velocities of swarming mosquitoes from stereoscopic video
sequences and described the oscillatory motion of male
mosquitoes in the swarm. Let ri,vi, and ai be the position,
velocity, and acceleration, respectively, of mosquito i with
respect to an inertial point O, and let m denote the mass.
Using the dynamic model of Okubo [14], the force on
mosquito i was modeled as a linear combination of an
external force F(ext)

i , a drag force F(drag)
i , and an interaction

force F(int)
i , i.e.,

mai = F(ext)
i + F(drag)

i + F(int)
i . (1)

Velocity fluctuation was modeled as a damped oscillator
whose frequency ω0 and damping ratio ξ were gleaned from
velocity-autocorrelation analysis of reconstructed flight data.
The first two components in (1) resulted from a damped
spring that connects each mosquito to the swarm centroid,
assumed to be fixed in an inertial frame. That is,

F(ext)
i + F(drag)

i = −diag{k}ri − diag{b} (vi · r̂i) r̂i, (2)

where r̂i = ri/ ‖ri‖, and the parameters k and b denote
the three-dimensional spring and damping constants, respec-
tively. Since the internal interaction force is unknown, white
noise was used instead, i.e., F(int) = w. The noise intensity
was also determined by the autocorrelation data analysis.

B. Velocity Alignment

Evidence for male-male interactions in mosquito swarms
was provided in [11] using velocity disagreement between
neighbors as a metric. In [12], we applied the unit-velocity
cross correlation to further study the interaction between
males in the swarm. Let Cij(t) ∈ [−1, 1] denote the unit-
velocity cross correlation between the ith and jth mosquitoes
at time t, and let m∗ denote the lag value that maximizes
the correlation value. The definition is

Cij(t) , C̃ij(m
∗, t)

=
1

2

(
r̃ij(m

∗, t) + r̃ji(−m∗, t)
)
, where

r̃ij(m, t) =
1

T + 1

T
2∑

n=−T
2

vi(t+ n+m) · vj(t+ n).

The unit-velocity cross correlation measures the degree of
interaction (if any) between two mosquitoes according to
the alignment in their direction of motion (see Figure 1a).
Analyses of the unit-velocity cross correlation led to two
findings: (1) males form synchronized subgroups whose size
and membership change rapidly; and (2) an interacting pair
is likely to fly closer together than a non-interacting pair,
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Fig. 1. Features of the flight patterns exhibited in mosquito mating swarms
[10][11][12]. (a) Distribution of the unit-velocity cross correlation used to
detect interactions represented by parallel flight. (b) Probability distribution
of the distance between interacting and non-interacting pairs. (c) The range
(i.e., the distance from a male to the female) and the range rate (i.e., the time
derivative of the range) shown for focal male (i.e., successful in forming a
mating couple with a female) and all other males. (d) An example of the
trajectory in a coupling flight. The close encounter that appears to trigger
the males’s pursuit behavior is indicated by the arrow.

but the velocity-matching interaction does not appear to be
based on spatial proximity (see Figure 1b).

In [12], we constructed the following interaction force
model represented by a velocity damper that connects each
interacting pair:

F(int)
i = λ

∑
j∈S

bint (vji · r̂ji) r̂ji + (1− λ)wi, (3)

where λ ∈ (0, 1] creates a convex combination of the
damping force and the random force when mosquito i is in
the interacting state. The topology of directed interaction was
determined as follows: males interact if the disagreement in
the direction of their motion is less than a specified threshold;
one is picked randomly to be the follower for the duration
of interaction (see [12] for details). Hence, the interaction is
initiated based on the proximity in the unit-velocity space.
This model showed a good agreement with the actual flight
data in terms of the probability distribution of the unit-
velocity cross correlation.

C. Coupling Flight

A female mosquito is attracted to the mating swarm and
typically flies through it several times before coupling with
a single male and leaving the swarm. Evidence for the role
of pheromone in this behavior has been studied for a related
species of mosquito [15]. The Anopheles female flies faster
than the male, but the female slows down—and the male



speeds up—so their speeds match at the time of coupling.
Anopheles are also known to synchronize harmonics of their
wing-beat frequency during coupling flight [16].

The mechanism that triggers the male (or female) to
transition from swarming to pursuit behavior is unknown,
however, field data suggests that it may be related to spatial
proximity. Figure 1c shows the proximity between the female
and all other males, indicating that unsuccessful males are
rarely as close to the female as the successful male. Figure
1d shows the trajectory of the male-female coupling flight.
The space between the dashed lines increases after the
close encounter with the female (shown by the arrow),
indicating the acceleration of the male. These data suggest
the possibility that the male’s pursuit behavior is triggered
by a close encounter with the female.

The forces (or, presumably, feedback behaviors) that gov-
ern pursuit are also unknown. Nonetheless, observations of
motion from flight data (Figure 1d) suggest interactions in
the coupling stage result from a damped-spring force.

III. PARTICLE MODEL

The goal of this section is to add flexibility to the existing
swarming models (see Section II), in order to accommodate,
with minimal complexity, the following three behaviors in a
single model: swarming, velocity-matching, and pursuit.

A. Force Model

Consider the following continuous-time, dynamical model of
N identical, unit-mass particles subject to (planar) forces:

ai = F
(space)
i + F

(align)
i + F

(ext)
i (i = 1, 2, ..., N), (4)

where F
(space)
i and F

(align)
i are the spacing and alignment

forces that arise from interactions, respectively, and F
(ext)
i

denotes all other external forces, including air resistance and
random disturbances. One difference from prior models [11],
[12], [14] is that here we divide the interaction force into two
terms and combine the drag force and unknown disturbance
into one term.

Let rji , rj − ri and vji , vj − vi denote the relative
position and relative velocity, respectively, of particles i and
j in an inertial frame. Let Q(i)

s = {k| ‖rki‖ ≤ ρs} denote
the set of particles within the perceptual range ρs > 0 of
the ith particle, and Q

(i)
a = {k| ‖vki‖ ≤ ρa, ‖rki‖ ≤ ρs}

denote the set of particles that are also within interaction
range ρa > 0 in the velocity space. We model each force
term as follows:

F
(space)
i = c

∑
j∈Q(i)

s

(1− x0/‖rji‖) rji (5)

F
(align)
i = b

∑
j∈Q(i)

a

vji (6)

F
(ext)
i = −dvi + wi, (7)

where wi represents random noise, and c, x0, b, and d are the
spring, rest length, damping, and drag constants, respectively.
Figure 2 illustrates the model parameters.
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Fig. 2. Illustration of the model parameters. Particle i is in the velocity
alignment state and j ∈ Q

(i)
a . The velocity damper produces a force in any

direction.

In order to generate oscillatory motion, the spacing-force
connects interacting particles as opposed to connecting each
particle to a fixed point, as was considered previously [12]
(see (2)). The previous model was valid for swarms that form
above a fixed marker on the ground (this behavior is known
to occur for only one of the two anopheline genetic types
[10]). The new model accommodates swarming above a fixed
point by adding a fixed, virtual particle. Noting that ‖rji‖ <
x0 results in repulsion and ‖rji‖ > x0 in attraction, F(space)

is a dynamical analogue of existing models with attraction
and repulsion zones [1]. As mentioned in [3], each agent
does not have to know the positions of all other agents in
the swarm.

For the set Q(i)
a , an annular region around the agent was

considered in [1]. In [12], interactions were determined by
proximity in the unit-velocity space (i.e., disagreement in
the direction of motion), based on the idea that insects
may be able to recognize other insects’ motion and perform
velocity matching only if their relative velocity is sufficiently
small. The use of the dot product in [12] was convenient,
because of the compatibility with the unit-velocity cross
correlation. However, even when the distance is small in the
unit-velocity space, the relative velocity can still be large if
the speeds are sufficiently different. Using distance in the
velocity space avoids this problem, and it is also convenient
for the Lyapunov analysis presented in Section IV.

The relative velocity vji is generally not easy to measure
(e.g., by sensing) for a moving agent if it has non-zero
rotational velocity. However, mosquitoes do not rely heavily
on yawing when they change their direction of motion
[17]. In a planar problem, this condition makes the relative
velocity in a body-fixed frame equivalent to the relative
velocity in the inertial frame, which justifies the use of vji

in the interaction model.
The alignment force F(align) was previously modeled as a

damper that connects interacting particles [12]. While intu-
itively straightforward, its function as a velocity damper was
limited because the force was constrained along the direction
parallel to the line connecting those two particles. In the
modified model (6), the alignment force is generated by
two dampers that act independently in orthogonal directions,
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Fig. 3. The pursuit state from start to end. Blue and red represent the
male and female, respectively. The male in the pursuit state is highlighted
in green.

so that the force in the position space is arbitrary. This
modification improves the velocity-matching function and
also simplifies the model compared to the first term in (3).

B. Female Model and Pursuit

In order to consider pursuit behavior, we include one or
more particles that represent M female mosquitoes, denoted
i = N + 1, ..., N + M . As mentioned in Section II, a
female mosquito is attracted to the swarm and typically
passes through it several times before coupling with a male.
Therefore, we model the female as a particle attracted to
its estimate of the centroid of the swarm. Let rG denote
the swarm centroid as estimated by the female: i.e., rG =
1
nf

∑
j∈Nf

rj , where Nf = {k | ‖rkf‖ ≤ ρf} denotes the
set of males in the perceptual range ρf of the female and nf
denotes the number of elements in Nf . Also let rf denote
the position of the female and rGf = rG − rf . The spacing
and external forces on the female are (there is no alignment
force)

F
(space)
f = cfrGf and F

(ext)
f = −dvf + wf , (8)

where cf denotes the spring constant.
Inspired by observations of coupling flight, we impose the

following rules on the male’s pursuit behavior. A male starts
pursuit when the female is within the range ρp, and continues
as long as the female is in the range ρ′p, where ρp ≤ ρ′p ≤ ρs.
All other interactions are ignored during pursuit, i.e., Q(i)

s

and Q
(i)
a are replaced by Q

(i)
p = {f}, where f denotes the

index of the pursued female. Figure 3 summarizes the use
of parameters ρp and ρ′p.

C. Parameter Switching

In order to generate different behaviors, we switch the
constants in the force model (5) and (6). Let ∅ denote an
empty set. Particle i is in the

1) swarming state, if Q(i)
s 6= ∅ and Q(i)

a = Q
(i)
p = ∅;

2) alignment state, if Q(i)
a 6= ∅ and Q(i)

p = ∅; and
3) pursuit state, if Q(i)

p 6= ∅.
By definition, the states are mutually exclusive, and the tran-
sitions between the states are summarized with the relevant
parameters in Figure 4. The switching is summarized in Table
I, and Figure 5 shows a simulation snapshot of each behavior
generated by the model (4)—(7).

In the alignment behavior, the rest length of the spring is
decreased relative to the swarming behavior (i.e., xa ≤ xs).

Swarming
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No interaction ⇢s
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⇢0p
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Coupling

?
⇢s

Fig. 4. State transition diagram for male mosquito. The parameters
associated with the transition are shown. The male-female coupling phase
is not shown.

cba

Fig. 5. (a) Swarming behavior. The alignment behavior is turned off by
choosing ρa=0. (b) Velocity alignment behavior. Particles in the alignment
state are highlighted in magenta. (c) Pursuit behavior. The red particle is
the female and the green particles are in the pursuit state.

This switch is inspired by the decreased distance between
interacting pairs shown in Figure 1b. When the pursuit
behavior is triggered by a close encounter with the female,
the spring constant is increased relative to the swarming
behavior (i.e., cp ≥ cs).

IV. LYAPUNOV STABLITY ANALYSIS

One of the features in the collective behaviors of male
mosquitoes is intermittent parallel flight that lasts for only
a short duration of time. We hypothesize that weak stability
of male-male interaction is key to the success in the mating.
We first consider the cohesiveness of the swarm by looking
at the total energy of the swarm. Then we analyze the Lya-
punov stability of the velocity-alignment behavior. Finally,
we consider how the velocity-matching behavior could be
beneficial for subsequent pursuit.

A. Total Energy of the Swarm

As was studied in [3], the cohesiveness and size of the
swarm are important considerations. Here, we use an energy
function to show that a model swarm subject to interaction
forces (5) and (6) is inherently stable. Consider the total
energy of the system:

E =
cs
2

∑
i,j∈Qs

(‖rij‖ − xs)2

+
cs
2

∑
i,j∈Qa

(‖rij‖ − xa)2 +
1

2

∑
i

‖vi‖2 , (9)

TABLE I
PARAMETER SWITCHING BETWEEN THREE BEHAVIORAL STATES.

Swarming Alignment Pursuit

Spring constant (c) cs = cs ≤ cp
Rest length (x0) xs ≥ xa ≥ 0
Damping constant (b) ba ≤ bp



where the first summation is over all pairs in the swarming
state, the second is over all pairs in the velocity-alignment
state, and the third is over all particles. Assume that the
magnitude of the random disturbance is bounded above as
follows:

‖wi‖ ≤ w, ∀i ∈ {1, .., N +M} (10)

Proposition 1: Consider a time interval (t, t+dt) in
which the interaction topology remains constant. If w ' 0,
then the total energy of the swarm (9) is non-increasing.

Proof: The time derivative of the energy function is

Ė = −ba
∑

i,j∈Qa

‖vij‖2 − d
∑
i

‖vi‖2 +
∑
i

(vi ·wi). (11)

Therefore, if we ignore the random disturbance, Ė is negative
semidefinite.

Noting that separation ‖rij‖ is bounded if E is bounded,
Proposition 1 shows that the swarm tends to remain cohesive
rather than to disperse. If dt is sufficiently large, and ba � d,
the swarm will converge to a polarized motion in a static
formation with vij = 0, ∀i, j.

Proposition 1 notwithstanding, there are at least two ways
for E to increase. One is from a change in the interaction
topology. Let U = c(‖rij‖ − x0)2/2 denote the potential
energy between i and j. Consider the case where particles
i and j change from swarming to alignment behavior. The
discontinuous change in E from this switching is

∆E = U (align) − U (swarm)

= cs(xs − xa)

(
‖rij‖ −

xs + xa
2

)
.

Hence, E increases if ‖rij‖>(xs+xa)/2 when the switching
occurs, and decreases otherwise. (The opposite is true when
the interaction switches from alignment to swarming.)

Another way for E to increase is by a random disturbance,
which is clear from the last term in (11): i.e., Ė becomes
positive or less negative if

∑
i(vi · wi) > 0. When ‖vij‖

becomes smaller (resp. larger), the effect of the random
disturbance becomes larger (resp. smaller) compared to the
first term in (11). Hence, the energy of the system E
fluctuates around a certain value that depends on the damping
constant, the intensity of the random disturbance, and the
interaction range parameters.

The idea of bounding ‖rij‖ and ‖vij‖ using an energy
function is used to consider the stability of the swarm. In
order to reduce complexity and make the problem tractable,
in the following section we consider the stability property of
a swarm with a specific initial condition.

B. Weak Stability of Velocity Alignment

Consider a swarm S consisting of n < N particles and
having an all-to-all interaction topology, i.e.,

‖rij‖ ≤ ρs, ∀ i, j ∈ S, and (12)
‖vij‖ ≤ ρa, ∀ i, j ∈ S. (13)

Note that all-to-all interactions occur here among all particles
traveling in approximately the same direction. (The more

general case in which the interaction is not all-to-all is
the subject of ongoing work.) The question is whether the
conditions (12) and (13) remain true for future time or not.
The following two lemmas give the conditions that trap the
particles in the all-to-all alignment, which in fact may be
undesirable for mating success.

Lemma 1: Consider a set of n particles with initial con-
ditions satisfying (12) and (13). The all-to-all alignment is
stable (i.e., (13) is true ∀ t > 0) if (12) is true ∀ t > 0, and

(nba + d)ρa > ncsρs + 2w. (14)

Proof: The Lyapunov function candidate V =
1
2

∑
i,j∈Sa

‖vij‖2 is not useful since (for n > 3) one
or more of the terms in the summation can increase and
violate the condition (13), while the overall V is decreasing.
Therefore, consider pairwise stability with the Lyapunov
function candidate

V(i,j) =
1

2
‖vji‖2 . (15)

There are n(n−1)
2 of these functions. However, without loss

of generality, we investigate the stability of a single pair
(i, j) = (1, 2) and generalize it to all other pairs. Let ∆ji =

F
(space)
j − F

(space)
i + wj − wi, denote the difference in the

spacing and random forces acting on the ith and jth particles.
We have

V̇(1,2) = a21 · v21

=

[
ba
∑
j∈S

(vj2 − vj1)− d(v2 − v1) + ∆21

]
· v21

= [−(nba + d)v21 + ∆21] · v21

≤ −
(
nba + d− a

2

)
‖v21‖2 +

1

2a
‖∆21‖2

where a > 0. Using the concept of ultimate boundedness
[18], v21 remains in the interior of a ball with radius ρa
centered at 0 if

−
(
ba + d− a

2

)
ρ2a +

1

2a
‖∆21‖2 < 0

⇔ ‖∆21‖2 < 2a
(
nba + d− a

2

)
ρ2a

⇐ ‖∆21‖ < (nba + d) ρa.

One can also show that ‖∆21‖ < ncsρs + 2w, which
completes the proof.

Lemma 1 shows that the strength of the velocity-matching
interaction in terms of its robustness to the other forces
becomes stronger with larger perception range ρa, drag
constant d, and damping constant ba. As the group size n
increases, the effect of d and w becomes smaller.

Lemma 2: Consider a set of n particles with initial con-
ditions satisfying (12) and (13). Let x′a = xa + 2w/ncs.
Assume xa�ρs. The particles remain cohesive (i.e., (12) is
true ∀ t > 0) if (13) is true ∀ t > 0, and the following



conditions are satisfied:

K , (ρs − x′a)2 − 1

cs
ρ2a > 0, (16)

and ‖rij(0)‖ ≤ x′a +
√
K, ∀ i, j ∈ Sa. (17)

Proof: Let ∆21 , w2 −w1. Since we want to bound
the separation between two particles, consider the worst case
where the disturbance is always acting in the direction that
increases the separation. That is, suppose

∆21 = 2w
r21
‖r21‖

.

Under the assumption xa�ρs, one can show that this dis-
turbance effectively changes the rest length from xa to x′a.

Now, consider the Lyapunov function

V =
cs
2

(‖r21‖ − x′a)2 +
1

2
‖v21‖2 .

Since V is non-increasing (proof omitted for page con-
straints), we have the following
cs
2

(‖r21(t)‖ − x′a)2 ≤ V (t) ≤ cs
2

(‖r21(0)‖ − x′a)2 +
1

2
ρ2a.

Hence, ‖r21(t)‖ < ρs, ∀ t > 0 is guaranteed if the initial
separation r21(0) satisfies (17). Condition (16) ensures the
existence of such r21(0).

Lemma 2 shows that the strength of cohesion becomes
stronger with a larger perception range and spring constant,
and also that the particles must be initially close together.

Combining Lemma 1 and 2, cohesion and velocity align-
ment guarantee one another. In addition, conditions (14)
and (16) can be combined to specify the right balance
between the spacing and alignment force, which establishes
the following proposition.

Proposition 2: Consider a set of n particles with the
initial conditions satisfying (12), (13), and (17). Assume
xa�ρs. The all-to-all alignment is stable if

ncs
nba + d

ρs + 2w < ρa <
√
cs(ρs −

2w

ncs
). (18)

Moreover, if we assume d ' 0 and w ' 0, the condition
reduces to

csρs < baρa < ba
√
csρs. (19)

Staying in the alignment state by satisfying the conditions
given in Proposition 2 may be desirable in some cases (e.g.,
a formation control of vehicles). However, since we hypoth-
esize that the intermittent alignment behavior is important,
we want to see how the all-to-all interaction can be broken.

Unfortunately, the converse of Proposition 2 is not true:
i.e., we do not know whether the all-to-all interaction will
be broken or not when (18) is violated. This point is clear
if we look at the term ∆21 · v21 in V̇(1,2) in the proof of
Lemma 1. Depending on the angle between ∆21 and v21,
the sign of V̇(1,2) can change.

Violation of (18) potentially breaks the all-to-all alignment
by increasing either the relative velocity or the separation be-
tween the particles in the group. The only control parameters

that the particle chooses are the damping constant ba and the
spring constant cs. Thus, with the right choice of ba and cs,
the particle will exhibit parallel flights that are sufficiently
weak so as to last only for a short duration.

C. Effect of Alignment Behavior on Successful Pursuit

The velocity-matching behavior affects a male’s success in
pursuit, using the following definition:

Definition 1: Pursuit of duration T > 0 is successful if
δt = tend − tstart > T , where tstart is the time when ‖rfi‖
enters the range ρp and tend is the time it leaves the range
ρp′ .

Note that T is typically much larger than the time it
takes for a female to accidentally pass through the perceptual
region of a male, i.e., T � (ρp + ρ′p)/ ‖vf‖. Because the
female’s behavior is unknown, and because we are interested
in the male’s pursuit behavior, we define pursuit to be
successful if a male stays close to the female. We now show
that the chance of this success may be increased by the
male’s alignment behavior.

Proposition 3: Consider the pursuit behavior of male i
and female f . Let vT = (ρ′p− ρp)/T . Pursuit of duration T
is successful if

(bp + d)vT > cfρf + 2w, and (20)
‖vfi(tstart)‖ < vT . (21)

Proof: Following the proof of Lemma 1, (20) and (21)
guarantees ‖vfi(t)‖ < vT , ∀t > tstart. Then, the shortest
time for f to leave the range ρ′p of i is bounded below by

min{δt} > (ρ′p − ρp)/vT > T,

which completes the proof.
The direct contribution of the velocity alignment term

F(align) is seen in (20); i.e., condition (20) is satisfied if the
damping constant bp is sufficiently large. However, the more
important effect is that the condition (21) is more likely to
be satisfied if ‖vfi(tstart)‖ is made small by the velocity-
alignment behavior prior to the start of the pursuit behavior.

The following result provides conditions that guarantee the
success of pursuit of any duration. Consider the Lyapunov
function candidate

VP =
1

2
‖rfi‖2 +

1

2cp
‖vfi‖2 . (22)

Proposition 4: Pursuit is stable (i.e., ‖rfi‖ < ρ′p, ∀ t >
tstart) if the following are true:

cfρf + 2w < (bp + d) ‖vfi‖ , and (23)

‖vfi(tstart)‖ <
√
cp
(
ρ′2p − ρ2p

)
. (24)

Proof: Let ∆fi=F
(space)
f +wf −wi. Then we have

cpV̇P = cpvfi · rfi + afi · vfi

= cpvfi · rfi + [−(bp + d)vfi − cprfi + ∆fi] · vfi

= −(bp + d) ‖vfi‖2 + ∆fi · vfi.
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Fig. 6. The effect of velocity damping on the success of pursuit behavior.
(a) The effect of parameter ba, while bp = 4 is held fixed. (b) The effect
of parameter bp, while ba = 0 is held fixed.

Following the proof of Lemma 1, one can show that (23)
guarantees V̇P < 0, which gives the bound VP (t) <
VP (tstart) for all t > tstart. Also, from (22) the distance
between f and i is bounded by ‖rfi‖ ≤

√
2VP (t). Noting

that ‖rfi(tstart)‖ = ρp, (24) implies that

VP (0) <
1

2
ρ2p +

1

2cp
cp
(
ρ′2p − ρ2p

)
,

2VP (t) < 2VP (0) < ρ′2p .

Hence the distance never exceeds the limit ρ′p.
Condition (23) is strong since the right-hand side can be

arbitrarily small. However, even if the condition is violated
occasionally, the result of Proposition 4 remains true as
long as VP (t) stays less than its initial value VP (tstart).
The conditions (23) and (24) also suggest direct effect of
bp and the indirect effect of ba, respectively. These effects
are highlighted by the numerical results shown in Figure 6.
The success rate is calculated by dividing the total number
of successes of duration T = 1.2(s) by the total number of
close encounters; i.e., incidents with δt < T . The simulation
parameters are N = 10, ρs = 0.5, ρp = 0.05, ρ′p = 0.1, ρa =
0.1, cs = 5, cp = 15, cf = 4, xs = 0.3, xa = 0.1.

Figure 6a shows the indirect effect of velocity alignment
(i.e., the potential decrease in ‖vfi(tstart)‖) by changing
the value of ba while bp = 4 is held fixed. The success
rate increases slightly with the value of ba from 0 to 1. For
larger ba, the particles converge to polarized motion and their
mobility is decreased, which may be a reason for the drop
in the success rate. This result also shows the benefit of
swarming as compared to a polarized formation flight. Figure
6b shows the direct effect of velocity alignment in the pursuit
stage by varying the value of bp. The effect is clearer due to
a stronger interaction force in the pursuit state.

V. CONCLUSION

We present a dynamic particle model inspired by the mating
swarms of Anopheles gambiae, which exhibit swarming,
velocity alignment, and pursuit behaviors. Switching model
parameters generates these behavioral states. The interaction
topologies are inspired by flight data and prior observational
studies. Lyapunov analysis shows that velocity-alignment

behavior may improve the success rate of pursuit by de-
creasing the relative velocity prior to the onset of pursuit.
Therefore, velocity matching may be performed in order to
increase the success in mating. In ongoing work, we are
refining the model of female behavior as well as considering
the application of the model to the control of swarms of
autonomous vehicles.
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