
Dynamic Control of Autonomous Quadrotor Flight in an Estimated
Wind Field

Nitin Sydney, Brendan Smyth, and Derek A. Paley

Abstract— We present a nonlinear, dynamic controller for a
6DOF quadrotor operating in an estimated, spatially varying,
turbulent wind field. The quadrotor dynamics include the
aerodynamic effects of drag, rotor blade flapping, and induced
thrust due to translational velocity and external wind fields. To
control the quadrotor we use a dynamic input/output feedback
linearization controller that estimates a parametric model of
the wind field using a recursive Bayesian filter. Each rotor
experiences a possibly different wind field, which introduces
moments that are accounted for in the controller and allows
flight in wind fields that vary over the length of the vehicle. We
add noise to the wind field in the form of Dryden turbulence
to simulate the algorithm in two applications: autonomous ship
landing and quadrotor proximity flight.

I. INTRODUCTION

In the past decade there has been growing interest in the
use of unmanned aerial vehicles for both government [1]
and commercial applications [2]. One of the concerns with
small unmanned aerial vehicles such as quadrotors is their
susceptibility to wind fields and gusts, which can not only
degrade the performance of the vehicle but can also make
them dangerous to operate in populated areas. Even without
external wind gusts, quadrotors operating in proximity to one
another are affected by the downwash from other quadrotors.
In this paper, we present a strategy for controlling quadrotors
in proximity to one another and/or in the presence of an
estimated wind field. We illustrate the utility of our control
strategy in two applications: autonomous control for landing
on a ship and proximity flight of two quadrotors.

Many prior works in the area of quadrotor control, e.g.,
[3], [4], approximate the quadrotor dynamics by a linear
system, for which standard linear controllers can be designed.
More recent papers [5], [6], [7] use nonlinear control tech-
niques like feedback linearization, backstepping, and sliding
mode control. It is common for linear and nonlinear control
techniques applied in the literature to use a six-degree-of-
freedom (6DOF) model for the quadrotor dynamics that
neglects the effects of aerodynamic forces on the vehicle.
Some notable exceptions ([8], [9]) model rotor effects such
as blade flapping and induced thrust, which are important to
the results in this paper. Other papers ([10], [11]) account
for wind gust disturbances, but only as linear perturbations.
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In this paper, we develop a dynamic 6DOF model for a
quadrotor that includes rotor blade flapping, induced thrust
due to forward flight and climb, and aerodynamic drag.
Unlike previous work, we allow the wind to vary from rotor
to rotor, which is especially important for flight in close
proximity to another quadrotor. A single rotor may lose thrust
due to downwash impingement, causing a moment about the
center of mass that can undesirably pitch and/or roll the ve-
hicle. The model described here can also address wind fields
in which the variation of the wind occurs at the length scale
of the quadrotor (∼0.5 m). We design a layered feedback
linearization controller to transform the quadrotor dynamics
to a linear system, at which point standard regulation/tracking
algorithms are used. The controller uses a Bayesian estimator
that uses airspeed and position measurements (using, e.g.,
GPS and pitot tubes) to determine the parameters of an
unknown wind field. The feedback linearization is split into
an inner loop, for which the feedback linearization is exact,
and an outer loop, for which we assume that the desired
pitch and roll angles of the vehicle are small. We validate the
algorithm by simulating proximity flight of two quadrotors
and an autonomous ship landing, where the vehicle must
travel in the turbulent air wake of a moving ship.

The contributions of this paper are (1) a 6DOF dynamic
model for a quadrotor in wind that includes rotor blade
flapping, induced thrust from translation, and aerodynamic
drag; (2) a dynamic, feedback linearization controller that
stabilizes a quadrotor in the presence of an unknown wind
field. The controller incorporates a recursive Bayesian esti-
mator that uses measurements of ground and air speed to
provide an estimate of the wind field. One of the novel parts
of the controller is that it treats the wind field on each rotor
individually, so we can fly in wind fields that vary across
the length of the quadrotor. The controller and estimator
are validated in numerical simulations of reduced-order wind
models with added (unmodeled) turbulence. Because of the
virtues of the nonlinear control and nonlinear estimator
design, we expect the control framework to have a variety
applications to individual and multi-vehicle tasks in wind.

The rest of the paper is organized as follows. Section II
discusses relevant background information, including feed-
back linearization, parametric wind field modeling of (turbu-
lent) air wakes and rotor downwash, and recursive Bayesian
estimation. Section III develops the 6DOF quadrotor dy-
namics, derives the feedback linearization controller, and
presents the recursive Bayesian wind field estimator. Section
IV presents simulation examples to demonstrate the control
system. Section V summarizes the paper and ongoing work.



II. BACKGROUND INFORMATION

A. Feedback Linearization

In this paper we use input/ouput feedback linearization of
the nonlinear dynamics of the quadrotor [12]. Let x ∈ Rn

be the state vector of the quadrotor, u ∈ Rm be the control,
and y ∈ Rm be the output. Consider (nonlinear) system
dynamics of the form

ẋ = f(x) +

m∑
i=1

gi(x)ui (1)

y = [y1, ..., ym], (2)

where f, g ∈ Rn. The feedback linearization technique
described next allows us to design u to linearize (2) using
state feedback control.

Let rk be the relative degree of the kth output, where
k = 1, ...,m, and let Lk

f (yi(x)) denote the kth Lie derivative
of yi(x) with respect to f [12]. A control that linearizes the
system (1)–(2) is [12]

u = ∆−1(x)(ν − b(x)), (3)

where

∆ij(x) = LgjL
ri−1
f yi(x), and bi(x) = Lri−1

f yi(x). (4)

∆(x) is the decoupling matrix for the system and the (linear)
control ν can be designed to achieve the desired closed-loop
behavior of the new system [12]

dr1y

dtr1
...

drmy

dtrm

 =

 ν1...
νm

 .
Note that u requires the inverse ∆−1(x) of the decoupling

matrix, which means that ∆(x) must be invertible for all
x ∈ Rn in order for (1) to be feedback linearizable. Since
our model quadrotor system does not meet this requirement,
a two-layer feedback linearization approach is presented in
Section III-B.

B. Wind Field Model

One of the novel contributions of this paper is the in-
clusion of aerodynamic effects in the feedback linearization
controller, for which we need knowledge of any external
wind fields or gusts. Since we may not know the precise
wind field a priori, it is estimated online. In this section, we
focus on parametric wind field models: first, a model for the
air wake behind a ship that is a hybrid between potential
flow and statistical turbulence; and second, a model for the
downwash of a quadrotor helicopter. We estimate the wind
parameters online using methods described in Section II-C.

We adopt an approach [13] to model a separated flow
behind the ship using a complex potential in a simplified
domain, called the Z-domain. The flow in the Z-domain
contains elementary potentials, such as uniform flows, to rep-
resent ambient motion and vortices to represent separation.

This flow is transformed to the physical domain, called the z-
domain, using a conformal mapping designed so that vortices
in the Z-domain are placed after sharp bends or in notches
in the z-domain. Note that without vortices, this technique
would not produce separated flow in the z-domain.

Locations in the Z-domain are represented in complex
coordinates as Z = X+iY . Adding the potential of a vortex
pair and a uniform flow yields

Ω(Z) =
U∞
2π

{
Z − p− i (p+ 1)2 + s2

2s
log

[
Z − p+ is

Z − p− is

]}
,

(5)
where p±is are the locations of the vortex centers. Since the
vortices are of equal and opposite strength, there is a virtual
surface on the real line through which flow cannot pass. The
uniform flow represents the ambient flow and the vortex at
p+ is produces the separated flow in the z-domain.

Let z = F (Z) be a conformal map from the Z-domain
to the z-domain. The mapping F (Z) takes the real line and
shapes it to whatever the physical domain looks like. For
example, for a backwards step, which is an approximation
to the geometry of the deck of a ship suitable for landing an
unmanned aerial system, the map F (Z) is [13]

z =
h

π
{
√
Z2 − 1 + log[Z +

√
Z2 − 1]}. (6)

From [13], we have that the magnitude q and direction θ of
the flow at location Z are

q = Re

{
log

[
dΩ

dZ

(
dF

dZ

)−1]}
(7)

θ = −Im

{
log

[
dΩ

dZ

(
dF

dZ

)−1]}
. (8)

For the backwards step we get [13]

dΩ

dz
=

(Z − 2p− 1)
√
Z + 1

√
Z − 1

(Z − p+ is)(Z − p− is) . (9)

Using (7) and (9) the flow magnitude and direction are [13]

q =

√
(X − 2p− 1)2 + Y 2

[(X − p)2 + (Y + s)2][(X − p)2 + (Y − s)2]
×(

[(X + 1)2 + Y 2][(X − 1)2 + Y 2]
)1/4

(10)

θ = tan−1
(

Y+s
X−p

)
+ tan−1

(
Y−s
X−p

)
− 1

2 tan−1
(

Y
X−1

)
+

−tan−1
(

Y
X−2p−1

)
− 1

2 tan−1
(

Y
X+1

)
. (11)

Figure 1 illustrates the flowfield in the z-domain generated
by this transformation. Assuming that the complex plane
represents the horizontal (x) and vertical (z) directions, the
mean wind field is

wx,m = q cos θ (12)
wy,m = 0 (13)
wz,m = q sin θ. (14)

For the application of proximity flight, we derive an
expression for the downwash of a quadrotor based on [14]
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Fig. 1: Flowfield in the z-domain

momentum theory to describe the downwash of each rotor.
Let vi be the induced velocity of a rotor, which is the vertical
velocity directly underneath it. Then, the vertical velocity wc

at any point z below the rotor height zr is [14]

wc = vi + vi tanh

(
−k zr − z

h

)
, (15)

where k and h are shaping parameters that control how
rapidly the area of the streamtube below the rotor contracts
to its steady-state value. Momentum theory [15] assumes that
wc is uniform over the xy plane for a given z position.
However, we know that the boundary of the downwash
contracts as it speeds up, so we can identify the radial
condition for when the vertical velocity goes to zero. Let
ρ be the radial distance of the downwash boundary from the
rotor center (xr, yr, zr) and R be the radius of the rotor.
Using momentum theory [13]

wz,m =

{
wc if ρ < R/

√
1 + tanh

(
−k zr−z

h

)
0 otherwise.

(16)

To get the full flowfield for all four rotors we combine the
flowfield generated by all the rotors. Figure 2 shows an
example of the quadrotor downwash with vi = 4 m/s, where
negligible or zero velocity vectors have been omitted.

Fig. 2: Flow beneath a quadrotor using (16) as the downwash model.

Note that we assume that the downwash has no radial
component of velocity. The justification for this assumption
lies in the observation that the downwash tends to contract to
its steady-state condition within 1–2 rotor radii, after which
the flowfield is primarily vertical [15]. Thus, the model is

valid only for proximity flight with separation greater than
1–2 rotor radii.

Since the wind fields described above are smooth, which is
unrealistic for the air wake behind a ship or the downwash
of a quadrotor, we add frozen (spatially constant) Dryden
gust model to the mean wind field to simulate turbulence.
The turbulent component of w(·) is [16]

w(·),t =

N∑
n=1

√
∆ωΦ(ωn) sin(ωnt+ φ(·),n), (17)

where ωn is the frequency of the nth mode, ∆ω is the
spacing of the frequencies, φ(·),n is a random phase shift,
and

Φ(ωn) = σ2
t

2Lt

π

1

1 + (Ltωn)2

is the power spectral density for a Dryden gust model [16].
Thus, the total wind field is

w(·) = w(·),m +
N∑

n=1

√
∆ωΦ(ωn) sin(ωnt+ φ(·),n), (18)

where the phase shifts are different for each spatial dimen-
sion.

C. Recursive Bayesian Filtering

With the wind fields described above, we implement
a recursive Bayesian estimator to determine the field pa-
rameters. We assume that the wind field is parameterized
by a set β of P parameters. We seek an estimator that
provides the best estimate β̂ given sensor measurements,
such as airspeed, ground velocity, and attitude. The recursive
Bayesian estimator is formulated as follows [17]. Let z(tk)
be the vector of noisy measurements at time tk from the
sensors on the vehicle. The probability of β being the correct
set of parameters at tk is [17]

p(β|z(t1), .., z(tk)) = Ap(z(tk)|β)p(β|z(t1), .., z(tk−1)),
(19)

where p(β|z(t1), .., z(tk)) is the posterior probability den-
sity, A normalizes the posterior to have unit integral, and
p(z(tk)|β) is a conditional probability called the likelihood
function, which represents the probability of receiving mea-
surement z(tk) given a set of parameters β. The maximum
likelihood estimate β̂ is the mode of (19) [17]. For mul-
tivehicle estimation with N vehicles, the posterior due to
measurements from all vehicles is obtained by

p(β|z̄(tk)) = p(β|z1(t1), .., zn(tk−1))

N∏
i=1

p(zi(tk)|β),

(20)
where p(zi(tk)|β) is the likelihood function for the ith
vehicle, zi(tk) is the measurement from the ith vehicle at
time tk and z̄(tk) is the measurements from all the vehicles
up to and including time tk.



III. DYNAMIC CONTROL OF A 6DOF QUADROTOR

This section presents a nonlinear controller for a model
quadrotor flying in an unknown, turbulent wind field. We
start by deriving the dynamics of the vehicle in Section III-
A, where we include aerodynamic loads and perturbations
not normally considered in the literature. In Section III-B
we derive a layered feedback linearization controller that
determines the thrust for each rotor. For this controller, we
assume that the desired pitch and roll angles are small.
In the final section, we present a Bayesian estimator that
determines an estimate of an unknown wind field given
(noisy) measurements of groundspeed, airspeed, and position
of the vehicle.

A. Quadrotor Dynamics

The following 6DOF model for quadrotor flight in wind
includes the effects of rotor blade flapping, induced thrust
due to translational flight, and aerodynamic drag. Also novel
is the individual treatment of blade flapping and induced
thrust on each of the rotors, which is crucial to flight in the
downwash of another vehicle or in the presence of a spatially
varying flowfield.

The free-body diagram of the quadrotor in Figure 3 shows
six forces acting on the quadrotor (gravity, aerodynamic drag,
and the four thrust forces) and two reference frames (the
inertial reference frame I, which is centered at origin O
and has unit vectors ex, ey , and ez , and the body reference
frame B, centered at G with unit vectors bx, by , and bz).
The inertial orientation of the body frame is described using
a 3-2-1 Euler angle sequence of yaw (ψ), pitch (θ), and roll
(φ) angles.

ex

ey

ez
I

B

bx

by

bz

D

W

T1

T2

T3
T4

O

Fig. 3: Reference frames and free body diagram for quadrotor.

Figure 4 shows how the thrust vector Tk is deflected away
from the bz axis due to rotor blade flapping [15], which
can be understood as follows. As the relative wind hits the
rotor, the advancing side of the blade experiences increased
flow and lift, whereas the retreating side sees decreased flow
and lift, causing the blades to tilt due to the change in
aerodynamic load. However, since the loading cycles occur
at the same frequency as the rotation of the blade, there is a
resonance effect that causes the maximum deflection to occur
90 degrees out of phase with the load location [15]. Thus,
the rotor plane tilts away from the relative velocity vector,
and redirects the thrust force.

vrel,k

Tkbz

↵k

Fig. 4: Flap angle of the rotor due to a relative wind.

The air-relative velocity incident upon the kth rotor is
denoted vrel,k = ukbx+vkby+wkbz . Blade flapping occurs
due to the component of vrel,k in the body xy plane [8].
Following [18], we make the approximation that the blade
flap angle αk is proportional to the magnitude of the velocity
in the body xy plane. Thus, αk = kf

√
u2 + v2, where kf is

a proportionality constant that is common to all four rotors.
To find Tk, we use the geometry in Figure 4 with the flap
angle αk to determine

Tk = Tk(ūk sinαkbx + v̄k sinαkby + cosαkbz), (21)

where ūk , uk/
√
u2k + v2k, v̄k , vk/

√
u2k + v2k, and Tk is

the magnitude of the thrust of the kth rotor.
In addition to the tilt of the thrust vector due to blade

flapping, we also model the change in the magnitude of the
thrust due to the relative wind velocity. There are two effects
that cause this change [15]: the first is an increase in thrust
due to horizontal translation, which is known as induced
thrust; the second is a decrease in thrust if the component
of relative wind in the bz direction is negative. Essentially,
the rotor loses thrust when it is in climb and gains thrust in
horizontal translation. Note that we ignore the tilt in the rotor
plane due to blade flap, which is justified because flap angles
tend to be on the order of one degree in moderate relative
wind [8]. Let vh be the induced velocity of the rotor in hover,
which we assume is known (either using momentum theory
or experimentally). The modified thrust can be calculated
using [15]

vi,k =
v2h√

u2k + v2k + (vi,k + wk)2
and (22)

Tk =
Fkvi,k
vi,k + wk

, (23)

where Fk is the thrust applied to the airmass for a given
power (the control input) to the rotor. Equations (22)–(23)
assume that the motor dynamics are sufficiently fast so
that their transient behavior can be ignored. Note also that
the equation for vi,k produces a fourth-order polynomial in
induced velocity citehoffman. For the case of climb, there
is only one positive root, which represents the physical
solution for induced velocity and can be found numerically
or analytically [15]. In hover, the induced velocity is vh,
whereas in descent the momentum theory solution above is
not valid as the airflow through the rotor is not steady.



An important limitation of the model (22)–(23) is that it
only holds when wk ≤ 0 or wk > 2|vh| [8]; otherwise,
the rotor is in Vortex Ring State (VRS), which is a region in
which the aerodynamics are unsteady and momentum theory
results due not apply. In practice, helicopters fly quickly
through VRS to avoid any dynamic instabilities. It has also
been shown that the thrust tends not to vary greatly in descent
[8]. Ground effect is also not modeled by (22)–(23).

We assume that the drag force acts at the center of mass
of the vehicle and hence causes no moments on the vehicle.
The drag force is [8]

D = Cd||vG||2v̂G, (24)

where CD is a drag coefficient and vG = uGbx + vGby +
wGbz is the relative velocity at the center of mass (the
hat ˆ denotes a unit vector). Note that (24) is a point-
particle assumption for the drag force, which is a reasonable
approximation since the other aerodynamic effects dominate
the moments [8].

To get the equations of motion for the translational dynam-
ics we express all of the forces in terms of the unit vectors
in the inertial frame using the rotation matrix

IRB =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 .
(25)

Let

C1 =

(
CD||vrel,CM ||uCM +

4∑
k=1

ūk sinαk
Fkvi,k
vi,k + wk

)
(26)

C2 =

(
CD||vrel,CM ||vCM +

4∑
k=1

v̄k sinαk
Fkvi,k
vi,k + wk

)
(27)

C3 =

(
CD||vrel,CM ||wCM +

4∑
k=1

cosαk
Fkvi,k
vi,k + wk

)
.

(28)

Using (25) and (26)–(27), the equations of motion for
translation expressed in the inertial frame are

m

ẍÿ
z̈


I

= IRB

C1

C2

C3


B

−

 0
0
mg


I

. (29)

To determine the rotational dynamics we need the mo-
ments on the quadrotor caused by the forces in Figure 3.
Gravity acts through the center of mass, so it does not
contribute to the moments on the vehicle. (We also assume
that the drag force acts through the center of mass, so it does
not generate a moment.) Thus, the only moments are caused
by the thrust forces and a yawing moment to counteract the
rotor torques, such that the total angular momentum about
the center of mass G is conserved. Assume a symmetric
geometry, where all the rotors are a horizontal distance L
and vertical distance d from the center of mass, and that
rotors 1 and 2 are situated along the bx axis and rotors 3

and 4 are along the by axis. In order to balance the moment
produced by spinning the rotors, assume that rotors 1 and 2
spin in the opposite direction of rotors 3 and 4. Note that a
controlled imbalance of the rotor moments is what achieves
yaw rotation in a quadrotor.

Let ω , pbx + qby + rbz be the angular velocity of
the quadrotor body frame with respect to the inertial frame.
Let I , diag(Ix, Iy, Iz) is the moment of inertia matrix for
the quadrotor and My be a yawing moment produced by
spinning the motors. (Note that the up-down symmetry of
the quadrotor is sufficiently small enough that we can neglect
the off diagonal terms of the moment of inertia matrix.) The
rotational dynamics are

Iω̇ = −ω × Iω +

4∑
k=1

rk/G ×Tk +My

0
0
1

 , (30)

where rk/G is the distance vector from G to the kth rotor.
By performing the requisite cross products, we arrive at the
following rotational equations of motion:

Ixṗ = −(Iz − Iy)qr −
4∑

i=1

dv̄k sinαk
Fkvi,k
vi,k + wk

+ L(cosα3
F3vi,3
vi,3 + w3

− cosα4
F4vi,4
vi,4 + w4

) (31)

Iy q̇ = −(Ix − Iz)rp−
4∑

i=1

dū sinαk
Fkvi,k
vi,k + wk

+ L(cosα2
F2vi,2
vi,2 + w2

− cosα1
F1vi,1
vi,1 + w1

) (32)

Iz ṙ = −(Iy − Ix)pq − L(v̄1 sinα1
F1vi,1
vi,1 + w1

− v̄2 sinα2
F2vi,2
vi,2 + w2

)− L(ū3 sinα3
F3vi,3
vi,3 + w3

− ū4 sinα4
F4vi,4
vi,4 + w4

) + cm

4∑
k=1

Fk, (33)

where cm is a constant that relates the applied thrust to the
moment induced by spinning the rotor. In order to simulate
the motion of the vehicle, we use the rotational kinematics
for a 3-2-1 Euler angle sequence [19]:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (34)

θ̇ = q cosφ− r sinφ (35)

ψ̇ = q sinφ sec θ + r cosφ sec θ. (36)

Equations (31)–(33) along with (29) fully describe the
translational and rotational motion of the quadrotor. In the
case of hover with no external wind field, these equations
of motion reduce to the standard equations for a (rigid)
quadrotor, e.g., [6] (omitted due to space constraints).

B. Feedback Linearization Control

We now derive an input/output feedback linearization of
the quadrotor control system. First, the system is transformed
to the form of (1) (omitted for space constraints) using x ,



[x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]T and u , [F1, F2, F3, F4]T .
The outputs to be controlled are the 3D position and heading
(yaw) of the vehicle, i.e., y = [x, y, z, ψ]T . A calculation
of the relative degree [12] shows that each output has
relative degree two (omitted for space constraints). Since the
decoupling matrix ∆(x) defined in Section III-B is singular
for this set of outputs, we cannot determine a control u
to make the input-output system linear using position and
heading as the outputs.

As an alternative, we first feedback linearize the system
with output yin = [φ, θ, ψ, z]T , i.e., the attitude and alti-
tude of the vehicle, and then feedback linearize the planar
position. The first system represents the inner loop, whose
inputs are the desired attitude and altitude. In this case, the
relative degree for each output is two and the decoupling
matrix ∆(x) is invertible everywhere except when φ = π/2
or θ = π/2. The feedback linearized system is ÿin = νin.
We design νin to stabilize the system to a desired altitude and
(small) attitude yin,d = [φd, θd, ψd, zd]T and then transform
νin to u using (3).

The outer loop takes as input the desired (planar) position
and yaw, and outputs the desired pitch and roll values to be
used by the inner loop. We seek planar position dynamics
of the form ẍ = νout1 and ÿ = νout2 , where νout is the
outer loop control. Let φd = φd(νout1 , νout2) and θd =
θd(νout1 , νout2). Assuming that the desired pitch θd and roll
φd are small, the desired mapping (using (29)) is

φd = (sinψνout1 − cosψνout2 + C2)/C3 (37)

θd =
(cosψνout1 + sinψνout2 − C1)

(C2 sinφd + C3 cosφd)
. (38)

The full control architecture is shown in Figure 5. The
inputs to the closed-loop system are xd, yd, zd, and ψd.
Given xd and yd we calculate νout, which are the (linear)
control for the outer loop. Then we use νout to calculate φd
and θd according to (37)–(38), which are used along with
zd and ψd to calculate the linear control νin for the inner-
tracking loop.

Linear Controller

Linear Controller

⌫in

xd, yd

zd, d

✓d,�d

x

Eq. (37)-(38)

��1

��1b

ẋ = f(x) + G(x)u

⌫out

Inner Loop

Fig. 5: Two-layer feedback linearization control system for 6DOF quadrotor.

The following two-vehicle simulation illustrates the benefit
of accounting for the aerodynamics of the vehicle in the
feedback linearization. The vehicles are commanded using

PID controllers on the inner and outer loops to a waypoint at
the origin. Both vehicles start at the waypoint, and encounter
a wind with a profile of u = 2 m/s, v = 2 m/s, and
w = −2(1 − cos(x)) m/s. The first vehicle accounts for
the aerodynamic loads, whereas the second vehicle does
not, i.e., it neglects the flap angles, drag, and the thrust
modification. Figure 6 shows that the vehicle accounting for
the aerodynamics has a lower overshoot and a smaller settling
time.
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Fig. 6: Waypoint holding with (solid) and without (dashed) accounting for
aerodynamic loads.

C. Bayesian Estimation of Wind
The control system described above allows us to stabilize

a quadrotor in the presence of a known wind field; however,
in general, this wind field will not be known. We now present
a recursive Bayesian filter that produces an estimated wind
field for use in the controller. To implement the recursive
filter developed in Section II-C, we need a likelihood func-
tion, which relates the measurements to the wind and vehicle
state. Assume the wind field is parameterized by parameter
set β, e.g. wind magnitude and direction for a uniform
wind. Assume the ground velocity v = ẋex + ẏey + żez
is available from GPS measurements (outdoors) or motion
capture (indoors) and air velocity vrel = ubx + vby +wbz

is measured by a pitot tube array (pitot tubes pointing along
all axes so relative wind can be determined in each direction).
(If the GPS updates are too slow for realtime control, a
combination of GPS and an IMU could be used to determine
position.) The expected air velocity measurement is

vrel,e(β,v) ,

ueve
we

 = IRB

wx,m(β)− ẋ
wy,m(β)− ẏ
wz,m(β)− ż

 , (39)

where we have used the observation that the vehicle ground
speed is the wind velocity plus the vehicle velocity relative
to the wind. We assume that the pitot tubes are mounted
orthogonally to the rotation of the vehicle such that vehicle
rotation does not induce a velocity in the sensors. Using (39),
we choose the following (Gaussian) likelihood function

p(zi(tk)|β) = exp
[
−(vrel − vrel)

T (vrel − vrel,e)/σ
2
]
,

(40)



where zi(tk) = [ẋ ẏ ż u v w]T and σ2 represents
measurement noise variance. This form for the likelihood
function produces the desired behavior, namely that the
likelihood increases when the parameters are close to the
true value, and decreases when they are not.

As an example of using (40) and (20) to estimate a uniform
wind, Figure 7 shows the estimator performance for a single
quadrotor. In the simulation, the quadrotor is subjected to a
uniform wind of 1 m/s directed along the positive y axis (π/2
rad). Figure 7 shows the probability marginal distributions
of wind speed (left) and direction (right) as measurements
are incorporated in time. The dashed white line indicates the
maximum likelihood estimate, which converges to the correct
value, despite a noise level of σ = 0.1 m/s.
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Fig. 7: Estimation marginals of wind speed (left) and direction (right).

IV. APPLICATION EXAMPLES

In this section we apply the estimation and control tech-
nique developed in Section III to an autonomous ship landing
and to quadrotor proximity flight.

A. Autonomous Ship Landing

The task of landing autonomously onboard a moving ship
is made challenging by the separated flow that occurs on the
deck of the ship, which can cause the autonomous vehicle
to pitch and roll undesirably. The geometry of this situation
is shown in Figure 8(a). Air flows over the forward section
of the ship and then passes a sharp corner, where the flow
separates and produces a vortex in the rear section of the ship
where the quadrotor seeks to land. We use the potential flow
methodology from Section II-B to generate the flowfield.
The flowfield parameters β are the speed of the prevailing
wind and the location of the vortex to determine the mean
(nonuniform) wind field. As detailed in Section II-B, we
add frozen Dryden turbulence to the mean wind field to
simulate random eddies and flow fluctuations with a range of
frequencies from 1-10 rad/s and randomly generated phase
shifts.

In the simulation, the vehicle is commanded to go from
(x, y, z) = (4, 0, 2) to a landing location of (xd, yd, zd) =
(2, 0, 0). Figure 8 shows the controller performance. The
colormap on the far right shows the estimation result for
the wind speed. Observe that the vehicle converges to the
desired landing location despite the unknown turbulence and
the time it takes for the the parameter estimates to converge.

B. Quadrotor Proximity Flight

In this application we show how the dynamic controller
in Section III can be used to fly one quadrotor directly un-
derneath another, e.g., for formation flight. In the simulation,
one quadrotor is commanded to hover at (x, y, z) = (0, 0, 1)
and a second quadrotor is commanded to fly underneath it to
the origin. For comparison, we show a third (virtual) vehicle
that does not compensate for the aerodynamics, i.e., the flap
angles, drag coefficient, and climb velocity are all set to zero.
In this simulation, β is the induced velocity of the hovering
quadrotor. In addition, (frozen) Dryden turbulence affects all
three vehicles. The results of the simulation are shown in
Figure 9. The vehicle accounting for the aerodynamic loads
settles at the appropriate location with no adverse affects,
while estimating the induced velocity and shaping parameters
of the downwash flowfield of the first vehicle (See Section II-
B). The probability density is flat for the first three seconds
before the quadrotor enters the downwash, then converges
quickly once it enters the field. The third vehicle, however,
experiences a sharp decent rate once it hits the flowfield as it
has no knowledge of the wind (dashed lines in Figure 9(b)).
In reality, this would likely put the rotors in VRS, which is
not modeled here, and would cause the vehicle to become
unstable.

V. CONCLUSIONS AND ONGOING WORK

This paper presents a control strategy for a 6DOF quadro-
tor in an estimated, spatially varying, turbulent wind field.
The control strategy involves the use of a recursive Bayesian
filter to estimate the wind field, which is incorporated into an
input/output feedback linearization controller that includes
aerodynamic effects on the vehicle such as blade flapping
and drag. The novelty of the approach is that we formulate
the dynamics to incorporate the effects of blade flapping,
aerodynamic drag, and induced thrust in translation and due
to external wind fields. We treat each rotor individually, so
that the external wind can vary from rotor to rotor. We
show that the inclusion of the flow compensation in the
controller design improves the quadrotors ability to perform
simple control objectives. We illustrate the dynamic control
strategy in two applications: autonomous ship landing and
proximity flight. The inclusion of the aerodynamics in the
control scheme enables the stabilization of a quadrotor in
the downwash of another quadrotor, even in the presence
of unknown turbulence. In addition to the ongoing work
mentioned in the paper, we are exploring more accurate
methods for modeling the quadrotor downwash, including
the effects of flow diffusion that occur downstream of the
rotor and for motions other than hover and climb.
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