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Three-Dimensional Motion Coordination in a Time-Invariant Flowfield

Sonia Hernandez and Derek A. Paley

Abstract— Three-dimensional motion coordination in a flow-
field has applications in environmental monitoring with au-
tonomous vehicles. Motion-coordination algorithms designed
using a flow-free motion model often fail to converge in even
moderate flow speeds. We apply Lyapunov-based methods
to design decentralized feedback laws for use in a three-
dimensional, time-invariant flowfield that does not exceed the
speed of each platform relative to the flow. The control laws
stabilize moving formations in a dynamic model of identical
particles that travel at constant speed relative to the flow.
Specifically, we provide theoretically justified algorithms to
stabilize parallel, helical, and circular formations in a three
dimensional flowfield. In ongoing work, we seek to extend the
three-dimensional motion-coordination framework to address
strong and time-varying flowfields that represent more realistic
environmental dynamics in the atmosphere and ocean.

I. INTRODUCTION

Stabilization of collective motion in three dimensions
using feedback control provides a robust sensing method-
ology for synoptic and adaptive sampling in the air [1] and
sea [2]. For example, Areosonde unmanned aerial vehicles
have flown into hurricanes to obtain flow data [3]. Also,
autonomous underwater gliders provide a robust platform
for synoptic data collection of spatiotemporal processes in
the ocean [4]. In environmental monitoring applications, it
is often difficult to coordinate the motion of autonomous
vehicles due to external flowfields such as ocean currents
and atmospheric winds. This challenge highlights the need
to develop theoretically justified algorithms that stabilize
three-dimensional collective motion in the presence of a
flowfield [5], [6].

Previous work on collective motion in a flowfield has
focused on a planar model of self-propelled particles [6], [7],
[8]. A planar model is sufficient for stabilizing collective mo-
tion in a small-scale operating domain. However, motivated
by unmanned vehicles that perform volumetric sampling—
such as underwater gliders and unmanned aircraft—we are
interested in studying a three-dimensional model. For con-
stant altitude/depth surveys on scales where the curvature
and/or rotation of the earth are relevant, a two-dimensional
model in which particles are constrained to the surface of
a sphere has been studied [9], [10]. Most of the work done
in three-dimensional collective motion has focused on flow-
free models with possibly limited communication [11], [12],
[9]. We extend this work by studying collective motion in a
time-invariant, three-dimensional flowfield.
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This paper extends [11], [12] (also see [13]), which
use geometric-control methods to provide decentralized al-
gorithms that stabilize relative equilibria in a flow-free,
three-dimensional model of self-propelled particles. Three-
dimensional motion coordination using geometric control has
also been studied in [14]. We follow the development in [6]
and [10] (also see [15], [8]), which describe a planar frame-
work for stabilizing collective motion in a time-invariant
flow. Although we assume that all-to-all communication is
available, this framework is easily extended to networks with
limited communication [16].

The contributions of the paper are as follows. First, we
add a time-invariant flowfield to a model courtesy of [11]
of self-propelled particles that travel in three dimensions.
Second, we adapt for operation in a time-invariant flowfield
theoretically justified decentralized control laws that steer the
particles into parallel, helical, or circular formations [12].
These formations are relative equilibria of the flow-free
three-dimensional particle model [11]. We assume that the
flowfield is known locally by each particle, continuously
differentiable, and has magnitude everywhere less than the
particle speed relative to the flow.

Studying particles that converge to helical motion under a
flowfield draws particular interest because unmanned aerial
vehicles in a helical formation can be used to obtain real-time
hurricane data. We use numerical simulations to illustrate the
application of the proposed control algorithms in circulating
flows that resemble a hurricane model.

The paper is organized as follows. In Section II we
describe the flow-free model of self-propelled particles in
three dimensions. In Section III, we introduce the three-
dimensional motion model with a time-invariant flowfield.
In Section IV we provide control laws that stabilize parallel,
helical, and circular formations. Section V summarizes our
results and discusses future work.

II. FLOW-FREE PARTICLE MODEL

The model presented in Section III adds a three-
dimensional flowfield to the flow-free, three-dimensional
model introduced in [11] and further studied in [12]. We
summarize the flow-free model here. It consists of N iden-
tical particles moving at unit speed (Fig. 1(a)).

The position of particle k, where k ∈ {1, . . . , N}, is
represented by rk ∈ R3 and its velocity relative to an inertial
frame I by ṙk. Control uk = [wk −hk qk]T ∈ R3 steers each
particle by rotating the velocity about the unit vectors of a
path frame, Ck = (k,xk,yk, zk), where xk,yk, zk ∈ R3. Ck
is fixed to particle k such that the unit vector xk points in the
direction of the velocity of particle k. (Ck is a right-handed
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Fig. 1. Schematic of vectors used in the 3D motion models. (a) In the
flow-free model (1), a path frame Ck is aligned with the velocity of particle
k relative to an inertial frame I. (b) In the model (4) with flow f , the inertial
velocity of particle k is xk + fk (not used until Section III).

reference frame.) The equations of motion are [11]

ṙk = xk
ẋk = qkyk + hkzk
ẏk = −qkxk + wkzk
żk = −hkxk − wkyk,

(1)

where qk (resp. hk) represents the curvature control of the
kth particle about the yk (resp. zk) axis. The torsion control
wk allows the velocity of particle k to rotate about the xk
axis.

The dynamics in (1) represent a control system on the Lie
group SE(3) [11], [12] and, consequently, can be expressed
in terms of the group variable

gk =
[
Rk rk
0 1

]
∈ SE(3),

where Rk = [xk yk zk]. The dynamics (1) are equivalent
to ġk = gkξ̂k, where ξ̂k ∈ se(3) is an element of the Lie
algebra of SE(3) given by

ξ̂k =
[

ûk e1

0 0

]
and e1 = [1 0 0]T . ûk is the 3 × 3 skew-symmetric
matrix that represents an element of so(3), the Lie Algebra
of SO(3).

III. PARTICLE MOTION IN A FLOWFIELD

In this section, we introduce a model of N particles
traveling in a three-dimensional, time-invariant flowfield f .
The velocity of the flow at rk is denoted by fk = f(rk).
Expressed in vector components with respect to the path
frame Ck, the flow is

fk = pkxk + tkyk + vkzk, (2)

where pk = fk ·xk, tk = fk ·yk, and vk = fk ·zk. We assume
that the flow is known locally by each particle, continuously
differentiable, and ||fk|| < 1 ∀ k. The last assumption ensures
that a particle can always make forward progress as measured
from an inertial frame. The inertial velocity of particle k is
the sum of its velocity relative to the flow and the velocity
of the flow,

ṙk = xk + fk = (1 + pk)xk + tkyk + vkzk. (3)

Note, the speed of particle k relative to the flow is always
one.

We associate frame Ck with motion relative to the flow-
field. In order to find a control law to stabilize a forma-
tion in a time-invariant flow, we express the dynamics (1)
with ṙk given by (3) using a second path frame, Dk =
(k, x̃k, ỹk, z̃k), which is aligned with the inertial velocity
of particle k, i.e., x̃k is parallel to ṙk. (The mapping from
Ck to Dk is given below). Let sk = ||xk+ fk|| be the inertial
speed of particle k. The dynamics expressed as components
in the inertial path frame are

ṙk = skx̃k
˙̃xk = q̃kỹk + h̃kz̃k
˙̃yk = −q̃kx̃k + w̃kz̃k
˙̃zk = −h̃kx̃k − w̃kỹk,

(4)

where ũk = [w̃k −h̃k q̃k]
T

are the steering controls
relative to frame Dk. Note that the dynamics in (4) still
represent a model in SE(3), since

˙̃gk = g̃k
ˆ̃
ξk =

[
R̃k r̃k
0 1

] [ ˆ̃uk ske1

0 0

]
, (5)

where R̃k = [x̃k ỹk z̃k] and ˆ̃u ∈ se(3). We will later
make use of the fact that (4) implies

˙̃xk = R̃kũk × x̃k. (6)

A. Transformation between relative and inertial path frames
We use (3) and (4) to derive the relationship between

frames Ck and Dk. Also, since we design the steering con-
trols ũk using (4) and the platform dynamics are presumed
to obey (1), it is important for applications to find uk in
terms of ũk and fk.

We consider separately three individual cases: (i) tk 6=
0 and vk 6= 0; (ii) tk = 0 and vk 6= 0 (or vk = 0 and
tk 6= 0); and (iii) tk = vk = 0. For each case, we provide
the transformation between the Ck and Dk frames and an
analytical expression for each component of uk in terms of
the components of ũk and fk.

By definition, we have

x̃k =
1 + pk
sk

xk +
tk
sk

yk +
vk
sk

zk. (7)

Let θ be the angle between xk and x̃k, such that 0 ≤ θ ≤ π
(see Fig. 1(b)), which implies

cos θ = xk · x̃k =
1 + pk
sk

sin θ = ||xk × x̃k|| =
√
t2k + v2

k

sk
. (8)

Case i: If tk 6= 0 and vk 6= 0, we define the unit vector

c =
xk × fk
||xk × fk|| =

−vkyk + tkzk
(t2k + v2

k)1/2

to be orthogonal to the plane spanned by xk and fk . The
rotation matrix DkRCk that relates frames Ck and Dk is [17]

DkRCk

k =

 cos θ c3 sin θ −c2 sin θ
−c3 sin θ c22µθ + cos θ −c2c3µθ
c2 sin θ −c2c3µθ c23µθ + cos θ

 (9)



where c2 = −(t2k + v2
k)
−1/2vk and c3 = (t2k + v2

k)
−1/2tk are

the components of c expressed in frame Ck, cos θ and sin θ
are given by (8), and µθ = 1 − cos θ. Using (9), we relate
the unit vectors in Dk and Ck by x̃Tk

ỹTk
z̃Tk

 = DkRCk

 xTk
yTk
zTk

 . (10)

To solve for the components of uk, we take the time
derivative of each side of (7) and use (1) to obtain

d

dt
x̃k =

[
d

dt

(
1 + pk
sk

)
− tk + vk

sk

]
xk

+
[
(1 + pk)qk − vkwk

sk
+
d

dt

(
tk
sk

)]
yk

+
[
d

dt

(
vk
sk

)
+

(1 + pk)hk + tkwk
sk

]
zk. (11)

We then use (10) to compare the components of (11) to the
components of ˙̃xk given in (4). The expressions for hk, qk,
and wk are

hk =
−ṡks−1

k (1 + pk) + tkq̃k + vkh̃k + ṗk − tkqk
vk

(12)

qk =
ṡks
−1
k tk + wkvk − ṫk

1 + pk
(13)

+
q̃k(skv2

k + t2k(1 + pk))− h̃kvktk(sk − (1 + pk))
(1 + pk)(t2k + v2

k)

wk =
1
tk

[
ṡks
−1
k vk − hk(1 + pk)− v̇k

]
(14)

+
h̃k(skt2k + v2

k(1 + pk)− q̃kvktk(sk − (1 + pk))
tk(t2k + v2

k)
.

Since in this case we assumed that neither tk nor vk
are equal to zero and |pk| 6= 1, the expressions (12–14)
are nonsingular. Also, the derivatives exist because fk is
differentiable.

Case ii: If tk = 0 and vk 6= 0, using (9) and (10), the
relationship between Ck and Dk reduces to[

x̃Tk
z̃Tk

]
=
[

cos θ sin θ
− sin θ cos θ

] [
xTk
zTk

]
. (15)

and yk and ỹk are equal.
To find uk in terms of ũk, we use (15) to compare the

components of (11) to the components of ˙̃xk in (4). The
expressions for hk and qk are

hk = h̃k +
sk
vk

d

dt

(
1 + pk
sk

)
(16)

qk =
skq̃k + vkwk

1 + pk
. (17)

Equations (16)–(17) are nonsingular since vk 6= 0, |pk| 6= 1,
and sk > 0 by assumption. To find wk, we use (4) and the
time derivative of z̃k to obtain

wk = v2
k

(
h̃k + hk

) 1
skv2

k

. (18)

Equation (18) is nonsingular, since we have assumed that
vk 6= 0. The case when vk = 0 and tk 6= 0 follows similarly.

Case iii: If tk = vk = 0, then frames Ck and Dk are
equal, since xk and x̃k are parallel. (xk and x̃k cannot be
antiparallel since we have assumed particle k always makes
forward progress relative to the flow.) In this case, uk = ũk.

B. Inertial speed in a 3D flowfield

Unlike in the flow-free model (1), the inertial speed of
particle k in model (4) is not constant—it depends on the
flow and the direction of motion. Using (7), the inertial speed
of particle k is

sk = ||skx̃k|| =
√

(1 + pk)2 + t2k + v2
k > 0,

where pk, tk, and vk are components of fk in frame Ck. In
order to integrate (4), we calculate an expression for sk in
terms of the components of fk in frame Dk.

Let b be a unit vector orthogonal to x̃k in the plane
spanned by xk and fk as shown in Fig. 1(b). Let φ denote
the angle between x̃k and fk. We have

cosφ =
fk · x̃k
‖fk‖

sinφ =
fk · b
‖fk‖ .

It is also true that
‖x̃k × fk‖
‖fk‖ = | sinφ|,

which implies
‖x̃k × fk‖ = |fk · b|.

Also, the fact that xk = (xk · x̃k)x̃k + (xk · b)b implies

‖xk‖2 = (xk · x̃k)2 + (xk · b)2 = 1.

Dotting both sides of the speed equation skx̃k = xk + fk
first by x̃k and then by b yields

sk = xk · x̃k + fk · x̃k
0 = xk · b + fk · b.

We have

sk = ±
√

1− (xk · b)2 + fk · x̃k
= ±

√
1− (fk · b)2 + fk · x̃k

= ±
√

1− ‖x̃k × fk‖2 + fk · x̃k (19)

Of the two solutions for sk provided by (19) only the pos-
itive root yields sk > 0. The fact that the negative root leads
to a negative solution for sk can be proven by contradiction.
Assume that sk = −√1− ‖x̃k × fk‖2+fk ·x̃k > 0. Observe
that

‖x̃k × fk‖2 + (fk · x̃k)2 = ‖fk‖ < 1.

Then we have

sk<−
√

1−(1−(fk · x̃k)2)+fk ·x̃k = −|fk ·x̃k|+fk ·x̃k ≤ 0,

which is a contradiction. Therefore, the inertial speed of
particle k in flow f is

sk =
√

1− ‖x̃k × fk‖2 + fk · x̃k. (20)
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Fig. 2. Simple hurricane model with uniform flowspeed. The flowfield is
circular with increasing radius and height.

Note, (20) is used to integrate (4) and only requires knowl-
edge of fk(t) expressed in Dk. However, to compute uk from
ũk, we need to know fk(t) in Ck.

IV. LYAPUNOV-BASED CONTROL DESIGN

In this section, we derive decentralized control laws that
stabilize parallel, helical, and circular formations in a time-
invariant flowfield, after [11], [12]. These formations are
relative equilibria of the flow-free particle model [11], which
means that they are steady motions that preserve—in the
absence of flow—the relative positions and relative orienta-
tions of the path frames C1, . . . , CN . Decentralized controls
to stabilize relative equilibria in the flow-free model are
provided in [12].

The design of a decentralized control law that stabilizes
straight lines or helical motion uses the concept of twist [12],
which is related to screw motion [17]. Following [12] we
use the operator ∨ to find a 6-dimensional vector which
parametrizes a twist of the matrix ˆ̃

ξk, given in (5) [17],

ξ̃k = ˆ̃
ξ∨k =

[ ˆ̃uk ske1

0 0

]∨
=
[
ske1

ũk

]
∈ R6.

ξ̃k is expressed in the path frame Dk. To map the twist ξ̃k
to an inertial frame, we use the adjoint transformation [17],

Adgk
=
[
R̃k r̃kR̃k
0 R̃k

]
,

which yields1:

ξ̃
a

k = Adgk
ξ̃k =

[
skx̃k + r̃k × R̃kũk

R̃kũk

]
. (21)

ξ̃
a

k plays the role of a consensus variable the sequel [12].

1Following the notation in [12], the superscript a indicates that the vector
components are expressed in a fixed (inertial) reference frame.

A. Stabilization of Parallel Formations

A parallel formation is a steady motion in which all of the
particles travel in straight, parallel lines. When the particles
travel in a parallel formation, (21) reduces to

ξak =
[
skx̃k
0

]
.

Lemma 1: Let fk = f(rk) be a three-dimensional, time-
invariant flowfield with ‖fk‖ < 1. The control ũk = 0 steers
particle k in model (4) in a straight line such that x̃k is
fixed, i.e., ˙̃xk = 0. A parallel formation is characterized by
the condition x̃k = x̃j for all pairs j, k ∈ {1, ..., N} [12].

Following [12], we choose a Lyapunov function of the
form2

S(x̃) =
N

2
(1− 〈x̃av, x̃av〉) , (22)

where x̃av = 1
N

∑N
j=1 x̃j . The control law

ũk = R̃Tk (x̃k × x̃av) (23)

ensures that the time derivative of S is non-increasing.
Using (6), we have

Ṡ = −
N∑
j=1

〈x̃av, ˙̃xj〉 = −
N∑
j=1

〈x̃av, x̃j × x̃av × x̃j〉

= −
N∑
j=1

||x̃k × x̃av|| ≤ 0.

The following result extends [12, Theorem 1] to motion in
a time-invariant flowfield.

Theorem 1: Let fk = f(rk) be a three-dimensional time-
invariant flowfield with ||fk|| < 1. All solutions of model
(4), where the control ũk is given (23) and the speed sk
by (20), converge to the set {Ṡ = 0}, where S is defined
in (22). This set consists of parallel, balanced, and anti-
parallel formations [12]. The set of parallel formations, with
direction of motion determined by the initial conditions,
is asymptotically stable. Every other positive limit set is
unstable [12].

Theorem 1 provides a decentralized algorithm to stabilize
a parallel formation in a three-dimensional flowfield. Fig. 2
shows a simple, hurricane-inspired flowfield, which is circu-
lar with increasing radius and height, i.e., it produces a cone
shape. Fig. 3 depicts a parallel formation stabilized in the
conical flowfield by control (23).

B. Stabilization of Circular and Helical Formations

In a helical formation, all of the particles converge to
circular helices with the same axis of rotation, radius of ro-
tation, and pitch (ratio of translational to rotational motion).

Following [12], we define the consensus variable

ṽak = x̃k + r̃k × ω0. (24)

2We drop the subscript to represent an 3N × 1 matrix, i.e., ṽa =
[(ṽa

1 )T , . . . , (ṽa
N )T ]T .



Fig. 3. Stabilization of particle model (4) to parallel motion in a time-
invariant flowfield using control (23) with N = 5.

Lemma 2: Let fk = f(rk) be a three-dimensional, time-
invariant flowfield with ‖fk‖ < 1. The control ũk = R̃Tk skω0

steers particle k in model (4) around a helix such that ṽak is
fixed, i.e., ˙̃vak = 0, where ṽak is defined in (24). A helical
formation of N particles is characterized by the condition
ṽak = ṽaj for all pairs j, k ∈ {1, ..., N}, with axis of rotation
parallel to ω0 and radius ‖ω0‖−1 [12].

Now, as in [12], using the quadratic potential

Q(ṽa) =
1
2

N∑
j=1

||ṽaj − ṽaav||2, (25)

where ṽaav = 1
N

∑N
j=1 ṽaj , yields

Q̇ =
N∑
j=1

〈ṽaj − ṽaav, ˙̃xj + ˙̃rj × ω0〉

=
N∑
j=1

〈ṽaj − ṽaav, x̃j × (sjω0 − R̃jũj)〉.

Choosing

ũk = R̃Tk (skω0 + (ṽk − ṽav)× x̃k), (26)

results in

Q̇ = −
N∑
j=1

||(ṽaj − ṽaav)× x̃k||2 ≤ 0.

The following result extends [12, Theorem 2] to motion in
a time-invariant flowfield.

Theorem 2: Let fk = f(rk) be a three-dimensional time-
invariant flowfield with ‖fk‖ < 1. All solutions of model (4),
where the control ũk is given by (26), the speed sk by (20),
and ‖ω0‖ 6= 0, converge to the set {Q̇ = 0}, where Q is
defined in (25). The set of helical formations with axis of
rotation parallel to ω0, radius ‖ω0‖−1, and pitch determined
by the initial conditions is asymptotically stable.

Fig. 4. The control used in [12] is implemented in the dynamics with
flow in (4) with N = 5 particles. The particles do not converge to a helical
formation.

Fig. 5. Stabilization of helical motion in a simple hurricane model using
the control (23) with N = 5 and ω0 = [0 0 1]T .

Theorem 2 provides a method to stabilize a helical for-
mation in a three-dimensional time-invariant flowfield. We
provide numerical simulations using the conical flowfield
shown in Fig. 2. Fig. 4 shows flow-induced instability of
the helical control designed using the flow-free model (1).
Fig. 5 depicts a helical formation stabilized using control
(26) in the conical flowfield.

A circular formation is a helical formation with zero pitch.
The pitch of a helical formation stabilized by control (26)
is determined by the initial conditions. To isolate helical
formations with pitch α ∈ [0, 1) we use the following method
adapted from [12].

Consider the composite potential [12]

V (ṽa) = Q(ṽa) + (N/2)β2, (27)



Fig. 6. Stabilization of circular motion in a simple motion hurricane model
using control (29) with α = 0, N = 5, and ω0 = [0 0 2]T .

where Q(ṽa) is given by (25) and

β =
〈ω0, x̃av〉
‖ω0‖ − α, α ∈ [0, 1). (28)

Using the fact that 〈ω0,ω0 × x̃k〉 = 0, we have

V̇ =
∑
j=1

〈ṽaj − ṽaav + β
ω0

‖ω0‖ , (R̃jũj − sjω0)× x̃j〉.

We ensure V̇ ≤ 0 by choosing the control

ũk = R̃Tk (skω0 + (ṽk − ṽav + β
ω0

‖ω0‖ )× x̃k). (29)

The following result extends [12, Theorem 3] to motion in
a time-invariant flowfield.

Corollary 1: Let fk = f(rk) be a three-dimensional time-
invariant flowfield with ||fk|| < 1. All solutions of model (4),
where the control ũk is given by (29), the speed sk by (20), β
by (28), and ‖ω0‖ 6= 0, converge to the set {V̇ = 0}, where
V is defined in (27). The set of helical formations with axis
of rotation parallel to ω0, radius ‖ω0‖−1, and pitch α is
asymptotically stable.

Corollary 1 provides an algorithm to isolate a set of helical
formations with prescribed pitch α. In particular, when α =
0, control (29) stabilizes a set of circular formations. This is
simulated in Fig. 6 in a time-invariant flowfield.

V. CONCLUSION

This paper provides decentralized controls to stabilize
three-dimensional collective motion of autonomous vehicles
that are subject to a time-invariant flowfield. These con-
trols are of particular interest because they can be used to
coordinate unmanned sensor platforms, such as hurricane-
observation aircraft and underwater vehicles. Specifically,
we provide theoretically justified algorithms that stabilize
parallel, helical, and circular formations. In ongoing work
we study time-varying flowfields that exceed the particle
speed relative to the flow and which represent more realistic
environmental dynamics in the atmosphere and ocean.
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