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Cooperative Control of an Autonomous Sampling Network
in an External Flow Field

Derek A. Paley

Abstract— Cooperative steering controls enable mobile sam-
pling platforms to conduct synoptic, adaptive surveys of dy-
namic spatiotemporal processes by appropriately regulating the
space-time separation of their sampling trajectories. Sensing
platforms in the air and sea are often pushed off course by
strong and variable flow fields such as atmospheric winds and
ocean currents. However, many existing cooperative control
algorithms are based on simple motion models that do not
include a drift vector field. In this paper, we describe a
planar motion model that explicitly incorporates a uniform
and constant flow field. We also provide decentralized control
algorithms that stabilize circular motion, in which all of the
particles travel around a circle with a fixed center, and time-
splay circular motion, in which the vehicle velocities are
synchronized modulo a constant time delay. The proposed
time-splay circular formation algorithm—a composition of the
circular formation algorithm and a delay differential equation
on the N-torus—generates a set of vehicle trajectories that
collectively sample each point on the circle at a regular interval.

I. INTRODUCTION

Autonomous vehicles provide a robust sensing platform
for synoptic and adaptive sampling of spatiotemporal pro-
cesses in the air and sea. Decentralized control algorithms
that coordinate the sampling trajectories of multiple vehicles
enhance the sensory performance of the entire fleet by
appropriately regulating the space-time separation of sample
points [1]. A major impediment to the regulation of trajectory
separation is the presence of an external flow field—e.g.,
ocean currents and atmospheric winds. Cooperative control
algorithms that are effective in weak flow fields often fail in
moderate to strong flows. In this paper, we provide control
algorithms suitable for a moderate flow field that is constant
in time and uniform in space. (We assume that the flow field
is known.) The extension to strong and variable flows is the
subject of ongoing work.

Robust coordination of multiple vehicles in the absence of
flow can be produced by cooperative control of a dynamic
motion model in which each vehicle is represented by a
Newtonian particle moving at constant speed in a plane [2],
[3], [4]. Each particle is subject to a gyroscopic (steering)
control that determines the rate of rotation of the particle
velocity. Using the particle framework, theoretically justified
algorithms provided in [5], [6] generate symmetric forma-
tions in which the relative distance and relative orientation
of all vehicles is optimized for sampling performance—under
very mild assumptions on the inter-vehicle communication.
These algorithms have been successfully demonstrated in
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multiple at-sea experiments with autonomous underwater
vehicles [7], [8].

Analysis of ocean-sampling field experiments highlights
the need to develop theoretically justified algorithms that
stabilize collective motion in the presence of a strong and
variable flow field [9, Chapter 9]. Underwater vehicles rou-
tinely encounter ocean currents that match or exceed vehicle
speed. These currents push vehicles away from their desired
trajectories and compress/expand the space-time separation
of multiple trajectories—leading to a degradation of overall
sampling performance. Strong currents that vary substantially
in time are especially challenging because of the inherent
uncertainty in current forecasts. The derivation of cooperative
control and estimation algorithms for strong and variable
currents is beyond the scope of this paper.

In this paper, we describe a planar particle model that
explicitly incorporates a known, uniform and constant flow
field whose magnitude does not exceed the particle speed.
We provide decentralized control algorithms that stabilize
circular motion, in which all of the particles travel around
a circle with a fixed center, and time-splay circular motion,
in which the vehicle velocities are synchronized modulo a
constant time delay. The proposed time-splay circular for-
mation algorithm—a composition of the circular formation
algorithm and a delay differential equation on the N-torus—
generates a set of vehicle trajectories that collectively sample
each point on the circle at a regular interval. Algorithms
that stabilize synchronized and balanced trajectories are
provided in [10]. These motion primitives collectively form
a foundation upon which more complex mission-specific
trajectories can be constructed.

The results presented here contribute to a growing liter-
ature on motion-planning strategies for unmanned vehicles
in an external field [11], [12], [13], [14]. The problem of
stabilizing a formation of current- or wind-aided vehicles
around an inertially-fixed point very closely resembles the
problem of using a vehicle formation to orbit a moving
target; the latter problem is studied in [15], [16], [17],
[18], [19]. In [17, Chapter 5], the notion of a time-splay
configuration is introduced in the context of a sliding-mode
solution to the target-tracking problem in which vehicles
orbit the target at regular intervals. We further explore the
time-splay notion, utilizing in our control design concepts
from the literature on phase oscillators with time-delayed
coupling [20], [21], [22], [23].

The paper has the following outline. In Section II we de-
scribe a self-propelled particle model that explicitly incorpo-
rates an external flow field. In Section III we provide decen-
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Fig. 1. Coordinates and notation for self-propelled particle model.

tralized control algorithms to stabilize circular formations in
the presence of a uniform and constant flow. We also propose
a time-splay circular formation algorithm that regulates the
temporal spacing of particles in the formation. In Section IV,
we summarize the results and provide indications of ongoing
and future work.

II. MODEL
Previous work on cooperative control of autonomous vehi-

cles has focused on a self-propelled particle model in which
N point masses move at unit speed in an inertial plane [2],
[3], [4], [5], [6]. In this model, the position of the kth particle
is denoted by rk, where k ∈ {1, . . . ,N}, and the velocity of
the kth particle is denoted by ṙk.1 In complex notation, the
velocity is ṙk = eiθk , where θk ∈ S1 describes the orientation
of the velocity. Each particle is subject to a state-feedback
control uk. The particle model is [2]

ṙk = eiθk

θ̇k = uk.
(1)

The model (3) is illustrated in Figure 1(a).
Motivated by field experiments in operationally challeng-

ing environments, it is natural to explicitly incorporate a flow
field in the particle model (1) by introducing a flow field
fk ∈ C. With flow, the particle model (1) becomes

ṙk = fk + eiθk

θ̇k = uk.
(2)

In general, the flow fk may vary in time and space, i.e. fk =
fk(t) and fk 6= f j. Furthermore, it is likely that the actual
flow is unknown and, therefore, should not be used for path
planning. In this case, one might replace fk in (2) with f̂k,
an estimate of the flow—an approach not pursued here.

Following [10], we study a special case of (2) in which the
flow is uniform in space and constant in time. We assume that
the magnitude of the flow is less than one (the particle speed).
Without loss of generality, we align the positive real axis of
an inertial reference frame (i.e., an earth-fixed frame) with
the orientation of the flow. Let β ∈ R denote the magnitude
of the flow in the inertial frame, where |β |< 1. The particle
model (2) becomes

ṙk = β + eiθk

θ̇k = uk.
(3)

1A few words about the notation used in this paper: We drop the subscript
and use bold to represent an N×1 matrix, e.g, r , [r1 · · ·rN ]T . We identify
the R2 plane with the complex C plane to facilitate our analysis. The inner
product in R2 is represented in C by 〈x,y〉= Re{x̄y}, where x,y ∈C and x̄
denotes the complex conjugate of x.

Model (3) is illustrated in Figure 1(b).
To simplify (3), let sk ∈R and γk ∈ S1 denote, respectively,

the magnitude and orientation of the inertial velocity, ṙk, i.e.,
skeiγk = β + eiθk . Since, by assumption, |β |< 1, we observe
that sk > 0. We calculate

sk =
√

(β + eiθk)(β + e−iθk)

=
√

1+β 2 +2β cosθk. (4)

However, we would like to express sk in terms of γk instead
of θk. Using Figure 1(b), we observe that

sinθk = sk sinγk (5)
cosθk = sk cosγk−β . (6)

Substituting (6) into (4) and rearranging the result yields a
quadratic equation in sk,

s2
k−2β cosγksk +β

2−1,

which has the solution (using the positive root, since sk > 0)

sk = β cosγk +
√

1−β 2 sin2
γk. (7)

The orientation γk is defined as

γk = arg{β + cosθk + isinθk}= atan
(

sinθk

β + cosθk

)
.

Differentiating with respect to time the expression

tanγk =
sinθk

β + cosθk

and solving for γ̇k, we obtain

γ̇k = (sin2
γk + cosγk sinγk cotθk)uk. (8)

Substituting (5) and (6) into (8) yields

γ̇k = (1−β s−1
k cosγk)uk , νk. (9)

We view νk ∈ R as a control input, since given νk, we
can solve for uk and integrate the model (3). The model (3)
becomes [10]

ṙk = skeiγk

γ̇k = νk,
(10)

where sk = sk(γk) is defined in (7). We use the particle
model (10) in the design of our feedback control algorithms.
It represents a self-propelled particle model in which the
particle speed depends on the orientation of its velocity.

III. RESULTS

A. Circular Formation Control

In the absence of flow, i.e., using the model (1), setting uk
equal to a constant ω0 6= 0 drives particle k around a circle
of radius ω

−1
0 and fixed center, ck, given by [5]

ck , rk +ω
−1
0 i

ṙk

|ṙk|
. (11)

In the presence of uniform and constant flow, we have the
following result [10].



Lemma 1: The model (10) with flow speed |β | < 1 and
the control

νk = ω0sk (12)

drives particle k around a circle of radius ω
−1
0 centered at

ck(t) = rk(0)+ω
−1
0 ieiγk(0).

Proof: We derive the control νk that steers the particle
around a circle of radius ω

−1
0 by differentiating (11) along

solutions of (10). This results in

ċk = skeiγk −ω
−1
0 eiγk νk = (sk−ω

−1
0 νk)eiγk . (13)

Substituting (12) into (13) yields ċk = 0, which completes
the proof.

A circular formation is a solution of the particle model
(10) in which all of the particles orbit the same circle in
the same direction [2]. In a circular formation, ck = c j for
all pairs j and k, which implies that a circular formation
satisfies the condition Pc = 0 [5], where

P = diag{1}− 1
N

11T (14)

projects CN to the subspace complementary to the span of
1 , [1 · · ·1]T ∈ RN .

We derive a decentralized control that stabilizes a circular
formation by considering the potential [5]

S(r,γ) ,
1
2
〈c,Pc〉. (15)

Note S ≥ 0, with equality only when c = c01, c0 ∈ C. The
time derivative of S along solutions of (10) is

Ṡ =
N

∑
j=1
〈ċ j,Pjc〉=

N

∑
j=1
〈eiγ j ,Pjc〉(s j−ω

−1
0 ν j), (16)

where Pk denotes the kth row of P. The following result
provides a control algorithm to stabilize a circular formation
in a uniform and constant flow [10]. It extends [5, Theorem
2], which provides a circular-formation algorithm for the
flow-less model (1).

Theorem 1: All solutions of the particle model (10) with
flow speed |β |< 1 and the control

νk = ω0(sk +K〈Pkc,eiγk〉), K > 0, (17)

converge to a circular formation with radius ω
−1
0 and direc-

tion determined by the sign of ω0.
Proof: The potential S is positive definite and proper

in the space of relative circle centers. Substituting (17) into
(16) yields

Ṡ =−K
N

∑
j=1
〈Pkc,eiγ j〉2 ≤ 0.

By the invariance principle, all of the solutions of (10) with
control (17) converge to the largest invariant set, Λ, in which

〈Pkc,eiγk〉 ≡ 0. (18)

In this set, γ̇k = ω0sk and ċk = 0. Therefore, in order to
satisfy the invariance condition, (18), all of the solutions
in Λ must satisfy Pc = 0, which is the circular-formation
condition. Application of Lemma 1 completes the proof.
We illustrate Theorem 1 in Figure 2(a), for N = 15, β = 0.75,
K = 0.01, and ω0 = 0.1.
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Fig. 2. Stabilization of circular motion with N = 15, ω0 = 0.01, and
flow speed β = −0.75. (a) Under the control (17) with K = 0.01, the
particles converge to a circular formation with an arbitrary center. (a) Under
the control symmetry-breaking control (21) with K = 0.01, the particles
converge to a circular formation with center equal to the reference point
c0 =−5.46+ i15.19 (indicated by black dot).

B. Symmetry Breaking Control

The control algorithm described in Theorem 1 depends
only on relative positions, i.e., rk − r j, for any pair k and
j. Consequently, it preserves a symmetry of the closed-
loop particle model (10) that renders it invariant to rigid
translation of the collective [2]. This property of the con-
trol algorithm implies the steady-state center of the circle
depends only on initial conditions. For applications in path-
planning [1] and target tracking [18], [19], there exists
the need to specify the steady-state center of the vehicle
formation in the presence of flow. We describe a symmetry-
breaking algorithm that provides this capability [10].

Following [6], we introduce a virtual particle k = 0 that
serves as a reference. The virtual particle dynamics,

ṙ0 = s0eiγ0

γ̇0 = ω0s0,
(19)

where ω0 6= 0, are independent of the dynamics of the
particles; they drive particle 0 in a circle with fixed center



c0 = r0(0)+ω
−1
0 ieiγ0(0). The virtual-particle states are avail-

able to a subset of the particles, called informed particles.
Let ak0 = 1 if particle k is an informed particle and ak0 = 0
otherwise.

Consider augmenting the potential S defined in (15) with
the quadratic potential [6]

S0 =
1
2

N

∑
j=1

a j0|c j− c0|2,

which is minimized when c j = c0 for all { j | j ∈
1, . . . ,N, a j0 = 1}. The time-derivative of S̃ , S + S0 along
solutions of (10) is

˙̃S =
N

∑
j=1

(
〈eiγ j ,Pjc〉+a j0〈eiγ j ,c j− c0〉

)
(s j−ω

−1
0 ν j) (20)

This leads to the following result [10], which is illustrated
in Figure 2(b).

Corollary 1: Let c0 = r0(0)+ω
−1
0 ieiγ0(0) be the fixed ref-

erence provided by the virtual particle k = 0 with dynamics
(19). Let ak0, k = 1, . . . ,N, equal one if particle k is informed
of this reference and zero otherwise. If there is at least one
informed particle and no more than N−1 informed particles,
then all solutions of the particle model (10) with the control

νk = ω0(sk +K(〈eiγk ,Pkc〉+ak0〈eiγk ,ck−c0〉)), K > 0, (21)

converge to a circular formation with radius ω
−1
0 , direction

determined by the sign of ω0, and center c0.
Proof: With the control (21), the time-derivative of the

augmented potential S̃ satisfies

˙̃S =−K
N

∑
j=1

(〈eiγ j ,Pjc〉+a j0〈eiγ j ,c j− c0〉)2 ≤ 0.

By the invariance principle, all solutions converge to the
largest invariant set, Λ, for which

〈eiγk ,Pkc〉+ak0〈eiγk ,ck− c0〉 ≡ 0 (22)

for k = 1, . . . ,N. In this set, γ̇k = ω0sk and ċk = 0. For ak0 = 0,
then the invariance condition (22) is satisfied only if Pkc = 0.
This implies c is in the span of 1, i.e. ck = c j for all pairs k
and j. For ak0 = 1, the invariance condition becomes

〈eiγk ,ck− c0〉 ≡ 0,

which holds only if ck = c0. This implies c = c01, which
completes the proof.

C. Time-Splay Circular Formation Control

Both algorithms presented thus far stabilize circular for-
mations with arbitrary spacing of particles along the circle.
In sensing applications, it is often of interest to regulate
the spatiotemporal characteristics of sampling trajectories by
driving the sensing platforms in symmetric formations [1].
Symmetric circular formations are circular formations in
which the particles are arranged in a symmetric pattern that
mirrors their phase configuration [5], [6]. For example, the
symmetric pattern in which all of the particles are uniformly
spaced around the circle is called a splay formation, named

after the splay phase configuration [24], [25]. In the absence
of flow, i.e., for model (1), symmetric circular formations
are generated by combining a circular formation control
with a phase control algorithm [5]. In the presence of
moderate uniform and constant flow, i.e., for model (10),
we also pursue a composite approach to the stabilization of
symmetric circular formations, albeit with a different notion
of a symmetric phase configuration.

The approach to stabilization of symmetric phase configu-
rations provided in [5], [6] is based on rotationally-invariant
gradient controls that either synchronize or balance (i.e.,
drive the phasor centroid to zero) multiple phase harmonics.
For the splay configuration, each phase harmonic is balanced
up to the Nth harmonic, which is synchronized. It is possible
to perform phase synchronization and balancing in a circular
formation because the phase control algorithms are rotation-
ally invariant.

Although phase synchronization and balancing of the
model (10) is possible [10], the existence of balanced circular
motion is not guaranteed because of the lack of rotational
invariance. For example, consider the balanced configuration
for N = 2, given by γ1(t) = γ2(t)+π . By Lemma 1, the phase
dynamics of a particle orbiting a circle is

γ̇k = ω0sk, (23)

where sk = sk(γk) is defined in (7). Along solutions of (23),
the quantity γ1(t)− γ2(t) is not conserved for any initial
conditions other than synchronization.

For phase oscillators with the dynamics (23), an alternate
notion of a balanced phase configuration is to consider the
temporal phase separation. For N = 2, the configuration
γ1(t) = γ2(t− τ), where τ > 0 is a time delay, is preserved
under (23). The time-delay τ represents the temporal sep-
aration of phases γ1 and γ2. Therefore, a quasi-balanced
phase configuration is to set τ = T/2, where T is the period
of revolution. (We find T by integrating (23) over one
revolution. Using separation of variables, we have∫ 2π

0

dγk

sk
=
∫ T

0
ω0dt = ω0T.

Integrating and solving for T yields T = 4E(β )/(ω0(1−
β 2)), where E(·) is Legendre’s complete elliptic integral of
the second kind [26].)

Generally, a time-splay configuration is defined as [17,
Chapter 5]

γk(t) = γk+1(t−T/N), k = 1, . . . ,N−1,
γN(t) = γ1(t−T/N), (24)

where T is the period of oscillation). The main result of this
section is to propose a control algorithm that stabilizes the
set of time-splay phase configurations. This algorithm, when
combined with a circular formation algorithm, yields a time-
splay circular formation in a uniform and constant flow (see
Figure 3(a)).

Consider the closed-loop phase model

γ̇k = ω0sk +K sin(γk+1(t− τ)− γk), k = 1, . . . ,N−1,
γ̇N = ω0sN +K sin(γ1(t− τ)− γN),

(25)
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Fig. 3. Stabilization of time-splay circular motion with N = 15, ω0 = 0.1,
and flow speed β = −0.75. (a) Under the composite control (33) with
K0 = K1 = 0.01, the particles converge to a timne-splay circular formation.
(b) Convergence of the phases γk , k = 1, . . . ,N, to a time-splay phase
configuration.

where τ , T/N, K > 0, and γk(t) = γk(0), for all t < 0.
The system (25) is a delay differential equation on the N-
torus that sinusoidally couples γk(t) to γ j(k)(t − τ) over a
directed-ring topology, i.e., j(k) = k mod N +1. The goal of
this coupling is to (locally) synchronize γk(t) with a time-
delayed representation of γ j(k)(t), i.e., γ j(k)(t − τ). Time-
delayed sinusoidal coupling over an undirected graph is
known to locally synchronize γk(t) and γ j(k)(t) [21], [22];
however, we are not aware of any previous examination of
the stability of the time-splay phase configuration over a
directed ring.

In order to examine the stability of the time-splay phase-
configuration, let γ(t) represent a solution to the uncoupled
system (23). We are concerned with the stability of periodic
solutions to (25) of the form

γ1(t) = γ(t−δ )+φ1(t)
γk(t− (k−1)τ) = γ(t−δ )+φk(t− (k−1)τ), k = 2, . . . ,N,

(26)
where δ ≥ 0 is an unknown time lag. The φk variables
represent angular displacements from the periodic solution
γ . (When φk(t) = 0, k = 1, . . . ,N, the phase configuration
γ is time-splayed.) The time-lag δ is independent of k. (We

need to include δ because of the lack of rotational symmetry
of the system (25).)

We determine the dynamics of φ by time-differentiating
(26) along solutions of (23) and (23), which yields the non-
autonomous delay differential equation

φ̇k = ω0(sk(γ(t−δ )+φk)− sk(γ(t−δ ))+
K sin(φ j(k)(t− τ)−φk), k = 1, . . . ,N.

(27)

To first order, the dynamics (27) are

φ̇k = ξ (t)φk +K(φ j(k)(t− τ)−φk), (28)

where ξ (t) = ω0
∂ sk
∂γk

∣∣∣
γ(t−δ )

is odd and T -periodic. (It is also

straightforward to show that |ξ (t)| ≤ 2|ω0| for all t, although
that fact is not used here.)

Following [21], we evaluate the stability of (28) by con-
sidering solutions of the form φk(t) = ρkeλ t . The eigenvalues
of (28) are the roots of

ρkλeλ t = ξ (t)ρkeλ t +K(s j(k)e
λ (t−τ −ρkeλ t). (29)

Rearranging (29) yields [21]

As = σs, (30)

where s = (s1, . . . ,sN)T , A is the adjacency matrix of a
directed ring graph with N nodes, and σ is an eigenvalue
of A given by

σ =
eλτ

K
(λ +K−ξ (t)). (31)

Note, A is an N ×N circulant matrix whose first row is
(0,1,0, . . . ,0) ∈RN . As observed in [21], we conclude from
the Gersgorin circle theorem that |σ | ≤ 1 since the diagonal
entries of A are zero and the deleted absolute row sums of
A are equal to one. Letting σ = |σ |eiα , we rearrange (31) to
obtain

|σ |Keiα = eλτ(λ +K−ξ (t)), (32)

which enables us obtain the following result by applying [21,
Proposition 1].

Lemma 2: For β = 0, the time-splay phase configuration
defined in (24) is an exponentially stable equilibrium point
of (25) in the reduced space of relative phases.

Proof: This result is a direct consequence of [21,
Proposition 1]. When β = 0, then sk = 1 and ξ (t) = 0, in
which case (28) becomes an autonomous linear delay dif-
ferential equation. According to [21, Proposition], equation
(28) with ξ (t) = 0 and |σ | ≤ 1 implies that Re(λ ) ≤ 0 and
the multiplicity of zero as an eigenvalue is one. The zero
eigenvalue is associated to the rotational symmetry of the
model (25) with ξ (t) = 0; the real part of every eigenvalue
other than zero is strictly negative.

As a consequence of Lemma 2, the time-splay phase
configuration (24) is a locally asymptotically stable set
of the closed loop model (25) with β = 0, i.e., with no
flow. Simulations strongly suggest that the set of time-
splay configurations is asymptotically stable for any |β |< 1.
Analysis of this case is complicated by the fact that the
first-order dynamics (27) are non-autonomous, which implies



that its spectral properties alone are insufficient to determine
stability. Therefore, the stability analysis of the nonlinear
delay differential equation (25) with |β | < 1 is the subject
of ongoing work. The objective of this ongoing work is to
determine a Lyapunov functional that, when combined with
the circular-formation potential in Section III-A, supports the
following proposition. (An alternate version of Proposition 1
is proven in [27].)

Proposition 1: Consider the composite control algorithm

νk = ω0(sk +K0〈Pkc,eiγk〉)+K1 sin(γ j(k)(t− τ)− γk), (33)

where K0 > 0, K1 > 0, γk(t) = γk(0), for all t < 0, and j =
k mod N +1. (Pk is the kth row of the matrix, P, defined in
14.) All solutions of the particle model (10) with flow speed
|β |< 1 and the control (33) converge to a circular formation
with radius ω

−1
0 and direction determined by the sign of

ω0. The set of circular formations in which the phases γ are
arranged in a time-splay configuration as defined in (24) is
asymptotically stable.

A numerical simulation of Proposition 1 is illustrated
in Figure 3. In Figure 3(a), the particles bunch together
when they slow down and spread out when they speed up.
In Figure 3(b), the particle phases achieve the time-splay
configuration by synchronizing modulo the time-delay T/N.

IV. CONCLUSIONS

Distributed sensing with multiple, mobile platforms re-
quires cooperative-control algorithms that generate coordi-
nated sampling trajectories in the presence of strong and
variable flow fields. The design of these algorithms is based
on simple models of platform motion that often ignore the
presence of flow. In this paper, we describe a self-propelled
particle model that explicitly incorporates the presence of a
uniform and constant flow field. We provide a decentralized
control algorithm that stabilize circular formations. We also
propose a time-delay control that stabilizes the set of circular
formations in which the temporal-separation between particle
trajectories is uniform. These motion primitives will be
essential in constructing a cooperative-control framework for
autonomous and distributed sensing in the presence of flow.
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