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r.sepulchre@ulg.ac.be

Abstract— This paper presents a Lyapunov design for the
stabilization of collective motion in a planar kinematic model
of N particles moving at constant speed. We derive a control law
that achieves asymptotic stability of the splay state formation,
characterized by uniform rotation of N evenly spaced particles
on a circle. In designing the control law, the particle headings
are treated as a system of coupled phase oscillators. The
coupling function which exponentially stabilizes the splay state
of particle phases is combined with a decentralized beacon
control law that stabilizes circular motion of the particles.

I. INTRODUCTION

Feedback control laws that stabilize collective motions
of particle groups have a number of engineering applica-
tions including unmanned sensor networks. For example,
autonomous underwater vehicles (AUVs) are used to collect
oceanographic measurements in formations that maximize
the information intake, see e.g. [1]. This can be achieved by
matching the measurement density in space and time to the
characteristic scales of the oceanographic process of interest.
Coordinated, periodic trajectories such as the one studiedin
this paper, provide a means to collect measurements with the
desired spatial and temporal separation.

In this paper, we consider a kinematic model of identical,
all-to-all coupled, planar particles [2], [3]. In a sensor net-
work application, this represents an all-to-all communication
topology. The particles move at constant speed and are
subject to steering controls that change their orientation. In
previous work [4], [5], we observed that the norm of the
average linear momentum of the group is a key control
parameter: it is maximal in the case of parallel motions of
the group and minimal in the case of circular motions around
a fixed point. We exploited the analogy with phase models
of coupled oscillators to design control laws that stabilize
either parallel or circular motions.

In the present paper, we further develop this design
methodology to stabilize thesplay state formation of the
group. This formation is characterized by circular motion
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around the (fixed) center of mass of the group, with all
particles being evenly spaced on the circle. The termsplay
refers to the appearance of the particle phases when plotted
on the unit circle (i.e. a phasor diagram) and is used in
the coupled phase oscillator literature, see e.g. [6], [7],
[8]. Our Lyapunov analysis proves asymptotic stability of
the splay state formation and suggests convergence to that
configuration from a large set of initial conditions. The splay
state formation is relevant to the design of mobile sensor
networks because it maximizes the measurement spacing of
sensors on the same circular orbit. It is also illustrative of
more general group formations characterized by a high level
of symmetry. The applicability of the proposed design to a
broader class of symmetric configurations is presented in [9].

The general philosophy of the proposed design is de-
scribed in Section II. We treat the stabilization of the particle
relative orientations in Section III and the stabilizationof
each particle position relative to the group center of mass in
Section IV. Section V presents the complete control law and
the construction of a composite Lyapunov function for the
closed-loop dynamics.

II. PARTICLE MODEL AND CONTROL DESIGN

We consider a continuous-time kinematic model ofN ≥ 2
identical particles (of unit mass) moving in the plane at unit
speed [2]:

ṙk = eiθk

θ̇k = uk, (1)

wherek = 1, . . . ,N. In complex notation, the vectorrk = xk +
iyk ∈ C ≈R2 denotes the position of particlek and the angle
θk ∈ S1 denotes the orientation of its (unit) velocity vector
eiθk = cosθk + isinθk. We use the variable without index to
denote the correspondingN-vector, e.g.θ = (θ1, . . . ,θN). The
configuration space consists ofN copies of the groupSE(2).
In the absence of steering control (θ̇k = 0), each particle
moves at unit speed in a fixed direction and its motion is
decoupled from the other particles.

We study the design problem of choosing feedback con-
trols that stabilize a prescribed collective motion. The feed-
back controls are identical for all the particles and only
depend on relative orientation and relative spacing, i.e.,on
the variablesθk j = θk −θ j and rk j = rk − r j, j,k = 1, . . . ,N.
Consequently, the closed-loop vector field is invariant under



an action of the symmetry groupSE(2) and the closed-
loop dynamics evolve on a reduced quotient manifold (shape
space). Equilibria of the reduced dynamics are called relative
equilibria and can be only of two types [2]:parallel motions,
characterized by a common orientation for all the particles
(with arbitrary relative spacing), andcircular motions, char-
acterized by circular orbits of the particles around a fixed
point.

In the present paper, we study the stabilization of a
particular relative equilibrium characterized by a high level
of symmetry: the splay state formation. In the spirit of
our previous work, we decompose the design into two
parts: an orientation control, aimed at stabilizing the relative
orientations of the velocity vectors; and a spacing control,
aimed at stabilizing the position of each particle relativeto
the center of mass of the group. The orientation control law
is independent of the position variablesrk and is designed to
stabilize the splay state of the phase variablesθk ∈ S1, which
corresponds to theN phases evenly distributed on the unit
circle. The phase dynamics evolve in a reduced configuration
space consisting ofN copies ofS1 modulo the action of the
symmetry groupS1 of uniform rotations.

The orientation control law, designed in Section III,
achieves gradient dynamics with respect to a potential that
reaches its global minimum at the splay state of the phase
variables. The spacing control law stabilizes the positionof
each particle relative to the center of mass of the group
in an identical manner to the single particle beacon control
law presented in Section IV. The main result of the paper
shows that the sum of the orientation control law and the
spacing control law results in stabilization of the splay state
formation. Stability of this relative equilibrium is proven with
a composite Lyapunov function that combines the phase and
spacing potentials.

III. SPLAY STATE STABILIZATION

In this section, we prove exponential stabilization of the
particle phases to the splay state, originally referred to as
the “antiphase” state [10] and also described as “ponies on
a merry-go-round” [11]. The approach relies on including
higher harmonics of the phase differences in the coupling
function, as has been considered, for example, in [12].
Besides the splay state, all of the fixed points that we are
able to identify are unstable, which suggests that the splay
state has a large region of attraction.

Consider the system ofN phases,θk, k = 1, . . . ,N, subject
to controluk, i.e. θ̇k = uk. We define the centroid of themth
harmonic of the particle phases to be

pmθ =
1

Nm

N

∑
j=1

eimθ j = |pmθ |e
iΨm , (2)

where m = 1,2, . . ., Ψm ∈ S1, and 0≤ |pmθ | ≤ 1/m. We
refer to the phase configurations for whichm|pmθ | = 1
(|pmθ | = 0) as having themth phase harmonic synchronized
(antisynchronized). Let the centroid of them = 1 phase
harmonic be given bypθ = p1θ .

The synchronized state, |pθ | = 1, occurs forθ1 = θ2 =
. . . = θN , and, in the planar particle model (1), corresponds
to parallel motion. Note that|pθ |= 1 implies thatm|pmθ |= 1
for m > 1. Theantisynchronized state (or incoherent state),
|pθ |= 0, corresponds to a fixed center of mass of the group in
the planar particle model (1). Thesplay state of the particle
phases is characterized byθk = 2πk

N , k = 1, . . . ,N, i.e. the
phases are evenly distributed around the unit circle. The
splay state corresponds to antisynchronization of the first
N−1 phase harmonics and synchronization of theNth phase
harmonic. We denote by

⌊

N
2

⌋

the largest integer less than or
equal toN

2 . A necessary and sufficient condition for the splay
state is [9]

|pθ | = |p2θ | = · · · = |p⌊N
2 ⌋θ | = 0. (3)

Consider a quadratic potentialUm(θ ) = N
2 |pmθ |

2 for m =
1,2, . . .. The potentialUm(θ ) is maximal (minimal) in the
synchronized (antisynchronized) state of themth phase har-
monic. To stabilize the splay state, we use the potential

U(θ ) =
N
2

⌊ N
2 ⌋

∑
m=1

|pmθ |
2, (4)

which is maximal for the synchronized state and minimal
in the splay state (3). Thekth element of the gradient of
this potential, gradU(θ ), is the partial derivative of (4) with
respect toθk, given by

∂U
∂θk

=
⌊ N

2 ⌋

∑
m=1

< pmθ , ieimθk >, (5)

with the inner product< z1,z2 >= Re{z1z̄2}, z1,z2 ∈ C.
Theorem 1: Gradient dynamics of the systeṁθ = u with

respect to the potential (4) are obtained by choosingu =
−KgradU(θ ), i.e.

uk =
K
N

N

∑
j=1

⌊ N
2 ⌋

∑
m=1

1
m

sinmθk j (6)

whereK > 0 is a scalar gain. All trajectories asymptotically
converge to the critical points of the potentialU(θ ). In
particular, the splay state is a stable equilibrium and a global
minimum of the potentialU(θ ).

Proof: The time derivative of the potentialU(θ ) along
the trajectories of the particle phases,θk, is

U̇(θ ) = −K‖gradU(θ )‖2 ≤ 0. (7)

Therefore, all trajectories converge to the largest invariant set
for which U̇(θ ) = 0, i.e. the critical points of the potential
U(θ ) defined by gradU(θ ) = 0, which includes the splay
state. The splay state (3) is the global minimum of the
potential sinceU(θ ) = 0 for |pmθ | = 0, m = 1, . . . ,

⌊

N
2

⌋

.
Theorem 1 proves asymptotic convergence of (6) to the

set of critical points ofU(θ ). Next, we address the stability
of the critical points that we have identified. LetM be the
number of clusters of synchronized phases in an arbitrary
phase configuration. Asymmetric M-pattern hasM equally



spaced clusters ofN/M phases; anasymmetric M-pattern
has M equally spaced clusters with a different number of
phases in each cluster.

Theorem 2: The splay state is the only exponentially
stable symmetric pattern of the orientation control law (6).
All other symmetric patterns ofM < N phase clusters are
unstable equilibria of (6). In addition, the set of asymmetric
M = 2 patterns for whichθk j = 0 or π for j,k = 1, . . . ,N are
unstable equilibria of (6).

Proof: Let the control (6) be defined in terms of the
coupling function,Γ(θk j), i.e.

θ̇k =
1
N

N

∑
j=1

Γ(θk j) (8)

where

Γ(θk j) = K
⌊ N

2 ⌋

∑
m=1

1
m

sinmθk j. (9)

Let Γ′(θk j) be the derivative ofΓ(θk j) with respect toθk j,
given by

Γ′(θk j) = K
⌊ N

2 ⌋

∑
m=1

cosmθk j. (10)

As shown in [12], the linearization of coupling functions
of this form about symmetric patterns ofM ≤ N phase
clusters hasN eigenvalues that can be described as the sum
of two sets. The first set consists of the eigenvalueλ̃ (M)

with multiplicity N −M. These eigenvalues are associated
with intra-cluster fluctuation. The second set consists of
M eigenvaluesλ (M)

p , p = 0, . . . ,M − 1. These eigenvalues
are associated with inter-cluster fluctuation. Both sets of
eigenvalues can be expressed as functions of the Fourier
coefficients ofΓ′(θk j). For a general coupling function, the
Fourier expansion ofΓ′(θk j) is

Γ′(θk j) =
∞

∑
l=1

(

a′l coslθk j + b′l sinlθk j
)

.

The formulas for calculating the (real part of) the eigenvalues
are as follows [12]:

λ̃ (M) =
∞

∑
l=1

a′Ml (11)

Re{λ (M)
p } =

∞

∑
l=1

(

a′Ml −
a′M(l−1)+p + a′Ml−p

2

)

. (12)

Note that only thea′l coefficients determine stability and that

Re{λ (M)
p } = Re{λ (M)

M−p}.
The splay state of particle phases hasM = N evenly spaced

clusters of one phase each. In this case,λ̃ (N) has multiplicity
zero so allN eigenvalues are in the setλ (N)

p . Also, since
(8) is a gradient system, the Jacobian is symmetric and all
the eigenvalues are real. Thea′l coefficients are given by
integrating

a′l =
1
π

∫ π

−π
Γ′(θk j)coslθk jdθk j (13)

which gives

a′l = K, l = 1, . . . ,

⌊

N
2

⌋

anda′l = 0, l = 0, l >

⌊

N
2

⌋

. (14)

As a result,a′
⌊N

2 ⌋l
= 0 for l > 1, which, using (12), yields

λ (N)
p =−K/2< 0 for p = 1, . . . ,N−1 andλ (N)

0 = 0. The only

exception is for evenN and p = N
2 , in which caseλ (N)

p =
−K < 0. The zero eigenvalue corresponds to rigid rotation of
all N phases [12]. Therefore, the splay state is exponentially
stable because the remainingN −1 eigenvalues are negative
definite.

Next, we show that the other critical points ofU(θ ) that
we have identified are unstable. Symmetric patterns ofM < N
equally spaced clusters ofN/M phases are fixed points of
(8) [12]. In this case, the eigenvalueλ̃ (M) has multiplicity
N − M > 0 and, using (11) and (14), is positive definite.
Therefore, all symmetric patterns other than the splay state
are unstable equilibria of the coupling function (9), which
includes the synchronized state (M = 1) and the symmetric
M = 2 pattern.

Finally, we show that the asymmetricM = 2 patterns for
which θk j = 0 or π for j,k = 1, . . . ,N (and j 6= k) are unstable
equilibria of (8). Note that that this configuration exists only
for N ≥ 3. In an asymmetricM = 2 pattern, all of the even
phase harmonics, i.e.pmθ with m even, are synchronized. The
odd phase harmonics, i.e.pmθ with m odd, satisfym|pmθ |=
α, whereα ∈ (0,1). If θ̄ = (θ̄1, . . . , θ̄N) is an asymmetric
M = 2 pattern, then there exists at least one pairk and l
in {1, . . . ,N} such thatθ̄k = θ̄l , k 6= l. Define the variation
δθ = (δθ1, . . . ,δθN). In the vicinity of the critical pointθ̄ ,
U(θ ) can be expanded as

U(θ̄ + δθ ) = U(θ̄)+ δθ T Hδθ +O(|δθ |3), (15)

whereH is the Hessian ofU(θ ) evaluated atθ̄ . Using (2),
equation (5) can be written

∂U
∂θk

=
1
N

⌊ N
2 ⌋

∑
m=1

1
m

<
N

∑
j=1, j 6=k

eimθ j , ieimθk >

so that the diagonal terms ofH are

∂ 2U

∂θ 2
k

= −
1
N

⌊ N
2 ⌋

∑
m=1

<
N

∑
j=1, j 6=k

eimθ j ,eimθk > (16)

and the off-diagonal terms ofH are

∂ 2U
∂θl∂θk

=
1
N

⌊ N
2 ⌋

∑
m=1

< eimθl ,eimθk >, (17)

for k 6= l.
Assume, without loss of generality, that̄θ1 = θ̄2 = Ψm =

0, i.e. we choose two phases from the larger cluster and
this cluster is aligned with the positive real axis. Consider
a variation withδθ1δθ2 6= 0 andδθk = 0 for k = 3, . . . ,N.
Evaluating the Hessian atθ = θ̄ , the diagonal terms (16)



rk

ṙk
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Fig. 1. The coordinates used in Section IV that describe the position and
velocity of thekth planar particle with respect to the beacon at the origin.

become

∂ 2U

∂θ 2
k

= −
1
N

⌊ N
2 ⌋

∑
m=1

< Nmpmθ − eimθk ,eimθk >

= −Peven −αPodd +
1
N

⌊

N
2

⌋

,

for k = 1,2 wherePeven (Podd) is the cardinality of the positive
even (odd) integers less than or equal to

⌊

N
2

⌋

. The off-
diagonal terms (17) become

∂ 2U
∂θl∂θk

=
1
N

⌊

N
2

⌋

,

for k, l = 1,2, k 6= l. The upper left 2×2 block of the Hessian
is

H12 =

[

−Peven −αPodd + 1
N

⌊

N
2

⌋

1
N

⌊

N
2

⌋

1
N

⌊

N
2

⌋

−Peven −αPodd + 1
N

⌊

N
2

⌋

]

This matrix is negative definite forN ≥ 4 since

Peven >
2
N

⌊

N
2

⌋

(18)

For N = 3, we obtainδθ T Hδθ < 0 by choosing the vari-
ation δθ1 = −δθ2. Consequently,θ̄ is not a minimum of
U(θ ) since, using (15),U(θ̄ + δθ ) < U(θ̄ ). Therefore, all
asymmetricM = 2 patterns are unstable equilibria of (8).

Since the splay state is exponentially stable and all other
critical points ofU(θ ) that we have identified are unstable,
Theorems 1 and 2 suggest a large region of attraction of the
dynamics (6) to the splay state.

IV. BEACON CONTROL LAW

In this section, we set aside the splay state control term
of Section III and derive the spacing control term for stabi-
lization of the splay state formation. This is identical to the
control of a single particle circling a beacon at a fixed radius,
ρ0. Consider the kinematic model (1) forN self-propelled
particles in the plane subject to steering control. The position,
rk = ρkeiψk , and heading,θk, of thekth particle, respectively,
are shown in Figure 1. We consider a control law that is
the composition of Hamiltonian and dissipative terms. A
constant control such asuk =−ω0 < 0 drives thekth particle
in a clockwise circular motion with radiusρ0 = ω−1

0 > 0
about an arbitrary fixed center.

To stabilize clockwise circular motion with radiusρ0 about
a fixed beacon at the origin of the inertial coordinate system,

we add dissipation to the constant control, so the spacing
control becomes

uk = −ω0−κω0 < rk, ṙk >, (19)

whereκ > 0 is a scalar gain. The potential,Sk(rk,θk), given
by

Sk(rk,θk) =
1
2
|rk − iρ0eiθk |2 (20)

is nonincreasing along solution trajectories because

Ṡk(rk,θk) = −κ < rk, ṙk >2≤ 0.

The only invariant set for whicḣSk(rk,θk) = 0 is a circle of
radiusρ0 centered at the origin, on which thekth particle
travels clockwise at constant angular speedω0 = ρ−1

0 .
Since clockwise circular motion of particlek is a relative

equilibrium of (1) with control (19), exponential stability
is established in the shape coordinates,(ρk,φk), shown in
Figure 1. Differentiating with respect to timerk = ρkeiψk and
φk = θk −ψk + π/2 and using (1) gives

ρ̇keiψk + ρkiψ̇keiψk = eiθk

and
φ̇k = θ̇k − ψ̇k.

In the coordinates(ρk,φk,ψk), the system (1) with control
(19) becomes

ρ̇k = sinφk

φ̇k = −ω0−κω0ρk sinφk + ρ−1
k cosφk, (21)

and
ψ̇k = −ρ−1

k cosφk.

Note that the equations of motion of the shape coordinates,
ρk andφk, are independent ofψk, which reflects the rotational
symmetry of the system.

Theorem 3: For particlek, the relative equilibrium corre-
sponding to clockwise circular motion with radiusρ0 about
the origin is the exponentially stable fixed point of (21) given
by (ρk,φk) = (ρ0,0) with ψ̇k =−ω0. Furthermore, this fixed
point is globally asymptotically stable.

Proof: The Jacobian of the system (21), evaluated at
the unique fixed point(ρk,φk) = (ρ0,0), has eigenvalues,λ =

(−κ±
√

κ2−4ω2
0)/2, with strictly negative real part. Global

attractivity of this fixed point is proved using the Lyapunov
function (20) in the(ρk,φk) coordinates which is radially
unbounded in the coordinateρk.

V. COMPOSITE LYAPUNOV FUNCTION

In this section, we construct a composite Lyapunov func-
tion to prove stabilization of the splay state formation: i.e.
uniform clockwise rotation ofN evenly spaced particles on
a circle of prescribed radius. The control law combines the
orientation control from Section III with the spacing control
of Section IV. Numerical simulation results of stabilizingthe
splay state formation are included in Figure 3.

Define the center of mass of the particles to beR =
1
N ∑N

k=1 rk. Note that the average linear momentum,Ṙ, is
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Fig. 2. The coordinates used in Section V that describe the position and
velocity of thekth planar particle with respect to the center of mass,R.

equivalent to the centroid,pθ , of the particle headings on the
unit circle, which is defined in (2) form = 1. The vector from
the center of mass to particlek is r̃k = rk −R = 1

N ∑N
j=1 rk j,

as shown in Figure 2. Define the distance from the center of
mass to thekth particleρk = |r̃k| and letρ0 = ω−1

0 > 0 be
the desired equilibrium radius.

Consider a composite Lyapunov function,V (r,θ ), which
combines the splay potential (4) with a modified beacon
potential (20), given by

V (r,θ ) = KU(θ )+ κS(r,θ ), (22)

where K > 0 and κ > 0 are scalar gains as before. The
potentialS(r,θ ) is given by

S(r,θ ) =
1
2

N

∑
k=1

|r̃k − iρ0eiθk |2. (23)

The potentialV (r,θ ) is positive definite and is minimum
(zero) for clockwise circular motion with radiusρ0 in the
splay state formation.

The time derivative ofU(θ ) is

U̇(θ ) =< gradU(θ ), θ̇ >, (24)

where thekth element of gradU(θ ) is given by (5). Let1 =
(1, . . . ,1) ∈ RN . Then, using (5), we observe that

< gradU(θ ),1 >=
⌊ N

2 ⌋

∑
m=1

Nm < pmθ , ipmθ >= 0.

Consequently, (24) can be written,

U̇(θ ) =< ω0gradU(θ ),1+ ρ0θ̇ > . (25)

The time derivative ofS(r,θ ) is

Ṡ(r,θ ) =
N

∑
k=1

< r̃k − iρ0eiθk , ṙk − Ṙ+ ρ0eiθk θ̇k >

=
N

∑
k=1

(1+ ρ0θ̇k) < r̃k,e
iθk > . (26)

Combining (25) and (26) gives

V̇ (r,θ ) =
N

∑
k=1

< Kω0
∂U
∂θk

+ κ < r̃k,e
iθk >,1+ ρ0θ̇k > .

Choosing the control̇θ = u, such that

uk = −ω0(1+ Kω0
∂U
∂θk

+ κ < r̃k,e
iθk >) (27)

results in

V̇ (r,θ ) = −
N

∑
k=1

(

Kω0
∂U
∂θk

+ κ < r̃k,e
iθk >

)2

≤ 0. (28)

The control (27) is the composition of the orientation control
(6) with the spacing control (19), where the coordinateρk

(previously distance to the beacon) is now defined with
respect to the center of mass. The control law (27) can be
written

uk = −ω0−ω0
κ
N

<
N

∑
j=1

rk j, ṙk > +ω2
0

K
N

N

∑
j=1

⌊ N
2 ⌋

∑
m=1

1
m

sinmθk j

Note that choosingK = 1 andκ = ω0 weights the orientation
and spacing controls equally with the constant gainω2

0 .
Theorem 4: The system (1) with control (27) asymptot-

ically stabilizes all particles to clockwise circular motion
with radiusρ0 about a fixed center and with relative phases
determined by the critical points of the potential (4). In
particular, rotation in a splay state formation is a stable
relative equilibrium which minimizes the Lyapunov function
V (r,θ ). The fixed center of rotation is the center of mass of
the group.

Proof: The LyapunovV (r,θ ) is nonincreasing along the
solutions and, by the LaSalle Invariance principle, solutions
converge to the largest invariant setΛ where

θ̇k = −ω0, (29)

for k = 1, . . . ,N. In this set, each particle orbits a fixed circle
of radius ρ0. We want to show that all centers coincide.
Differentiating (2) along the trajectories of (29) gives

ṗmθ = −
iω0

N

N

∑
k=1

eimθk = −imω0pmθ . (30)

For m = 1, this implies that the center of massR satisfies the
differential equation,

R̈ = −iω0Ṙ. (31)

Another consequence of (30) is that gradU(θ ) is constant in
Λ since, using (5), (29), and (30),

d
dt

∂U
∂θk

=
⌊ N

2 ⌋

∑
m=1

< ṗmθ , ieimθk > + < pmθ ,−meimθk θ̇k >

=
⌊ N

2 ⌋

∑
m=1

< −imω0pmθ , ieimθk > + < pmθ ,mω0eimθk >= 0

Combining this result with (27) and (29) yields

d
dt

< r̃k, ṙk >= 0 (32)

for every solution in the invariant setΛ.
Using (31), we note that solutions inΛ also satisfy

¨̃rk = r̈k − R̈ = −iω0 ˙̃rk,

which, integrated twice, provides the explicit solution

r̃k(t) = r̃k(0)+ iρ0 ˙̃rk(0)(e−iω0t −1). (33)



Similarly, integrating (31) twice yields

R(t) = R(0)+ iρ0Ṙ(0)(e−iω0t −1). (34)

Substituting (33) in (32) results in

d
dt

< r̃k(0)+ iρ0 ˙̃rk(0)(e−iω0t −1), ṙk(0)e−iω0t >= 0,

which can be rewritten as

d
dt

< r̃k(0)− iρ0 ˙̃rk(0), ṙk(0)e−iω0t >= 0 (35)

since < i ˙̃rk(0)e−iω0t , ṙk(0)e−iω0t >=< i ˙̃rk(0), ṙk(0) > is a
constant. But (35) can be satisfied only if

r̃k(0) = iρ0 ˙̃rk(0) (36)

for eachk = 1, . . . ,N.
Substituting (36) in (33) shows that solutions inΛ satisfy

rk(t) = R(t)+ iρ0 ˙̃rk(0)e−iω0t . (37)

Using (34) in (37), we thus arrive at the explicit solution

rk(t) = R(0)− iρ0Ṙ(0)+ iρ0eiθk

which shows that all solutions inΛ circle with radius
ρ0 around the same fixed pointR(0)− iρ0Ṙ(0). Because
S(r,θ ) = N

2 ρ2
0|Ṙ(0)|2 is constant along these solutions,U(θ )

must be constant inΛ and the relative phases must cor-
respond to a critical point ofU(θ ). Rotation in the splay
state formation is a stable relative equilibrium by Theorem1
since it minimizesU(θ ). Furthermore, sincepθ = Ṙ = 0 in
the splay state formation, the fixed center of rotation is the
center of mass of the group.

We include a simulation for the splay state formation in
Figure 3. Simulations suggest a large region of attraction of
the splay state formation using the control (27).

VI. CONCLUSIONS

In this paper we provide a control law that stabilizes the
splay state formation in a kinematic model ofN particles
moving at constant velocity. The control law is the sum of
an orientation control and a spacing control. The orientation
control is independent of the position variables and assigns
gradient dynamics for the phase variables with respect to
a potential that reaches its minimum in the splay state
configuration, that is, when the phase variables are evenly
spaced on the unit circle. The spacing control stabilizes the
position of each particle relative to the center of mass of
the particle system. The sum of the two controls is shown
to stabilize the splay state formation by means of Lyapunov
analysis. We show in [9] a generalization of this result that
stabilizes all symmetric patterns ofN particles in a circular
formation. One can also break the translational symmetry
of the control in order to stabilize the splay state formation
about a fixed beacon [9]. Similar studies on connected but
not complete coupling networks suggest that the splay state
formation is can be stabilized by topologies that are not all-
to-all [13], [14].

−30 −20 −10 0 10

−25

−20

−15

−10

−5

0

5

10

x

y

Fig. 3. The result of a numerical simulation of stabilizing the splay state
formation using control (27) withN = 12, ρ0 = 10, K = 1, κ = ω0 = 0.1,
and random initial conditions. The particle trajectories are shown in grey
and their final positions are black circles. The center of mass is depicted
by the black crossed circle.

REFERENCES

[1] N. E. Leonard, D. Paley, F. Lekien, and R. Sepulchre, “Collective
motion, sensor networks and ocean sampling,”Proceedings of the
IEEE, 2005, special issue on “The Emerging Technology of Networked
Control Systems,” under review.

[2] E. Justh and P. Krishnaprasad, “A simple control law for UAV
formation flying,” Institute for Systems Research, Univ. Maryland,
Tech. Rep. 2002-38, 2002.

[3] ——, “Equilibria and steering laws for planar formations,” Systems
and Control Letters, vol. 52, no. 1, pp. 25–38, 2004.

[4] R. Sepulchre, D. Paley, and N. Leonard, “Collective motion and
oscillator synchronization,” inCooperative Control: 2003 Block Is-
land Workshop on Cooperative Control, V. Kumar, N. Leonard, and
A. Morse, Eds. Springer-Verlag, 2005, pp. 189–228.

[5] D. Paley, N. Leonard, and R. Sepulchre, “Collective motion: Bistability
and trajectory tracking,” inProc. 43rd IEEE Conf. Decision and
Control, 2004, pp. 1932–1937.

[6] K. Tsang, R. Mirollo, S. Strogatz, and K. Wiesenfeld, “Dynamics of
a globally coupled oscillator array,”Physica D, vol. 48, pp. 102–112,
1991.

[7] S. Strogatz and R. Mirollo, “Splay states in globally coupled Josephson
arrays: Analytical predictions of Floquet multipliers,”Phys. Rev. E,
vol. 47, no. 1, pp. 220–227, 1993.

[8] S. Nichols and K. Wiesenfeld, “Non-neutral dynamics of splay states
in Josephson-junction arrays,”Phys. Rev. E, vol. 50, no. 1, pp. 205–
212, 1994.

[9] R. Sepulchre, D. Paley, and N. Leonard, “Stabilization of planar
collective motion, part I: All-to-all communication,” 2005, submitted
to IEEE Trans. Automatic Control.

[10] P. Hadley and M. Beasley, “Dynamical states and stability of linear
arrays of Josephson junctions,”Appl. Phys. Letters, vol. 50, no. 10,
pp. 621–623, 1987.

[11] D. Aronson, M. Golubitsky, and J. Mallet-Paret, “Ponies on a merry-
go-round in large arrays of Josephson junctions,”Nonlinearity, vol. 4,
pp. 903–910, 1991.

[12] K. Okuda, “Variety and generality of clustering in globally coupled
oscillators,” Physica D, vol. 63, pp. 424–436, 1993.

[13] J. Jeanne, N. Leonard, and D. Paley, “Collective motionof ring-
coupled planar particles,” inProc. 44th IEEE Conf. Decision and
Control, 2005.

[14] R. Sepulchre, D. Paley, and N. Leonard, “Stabilizationof planar
collective motion, part II: Limited communication,” in preparation.


