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Abstract— This paper presents a Lyapunov design for the around the (fixed) center of mass of the group, with all
stabilization of collective motion in a planar kinematic madel particles being evenly spaced on the circle. The tgphay

of N particles moving at constant speed. We derive a control law efers to the appearance of the particle phases when plotted
that achieves asymptotic stability of the splay state formgon, th it circle (i h di di di
characterized by uniform rotation of N evenly spaced particles on the unit circle (i.e. a phasor diagram) and is used in

on a circle. In designing the control law, the particle headigs the coupled phase oscillator literature, see e.g. [6], [7],
are treated as a system of coupled phase oscillators. The [8]. Our Lyapunov analysis proves asymptotic stability of

coupling function which exponentially stabilizes the splg state  the splay state formation and suggests convergence to that
of particle phases is combined with a decentralized beacon configuration from a large set of initial conditions. Theaspl
control law that stabilizes circular motion of the particles. Lo . .
state formation is relevant to the design of mobile sensor
I. INTRODUCTION networks because it ma_ximizes thfe me.asurem.ent spa}cing of
- ) ~sensors on the same circular orbit. It is also illustratife o
Feedback control laws that stabilize collective motiongnore general group formations characterized by a high level
of particle groups have a number of engineering applicaf symmetry. The applicability of the proposed design to a
tions including unmanned sensor networks. For examplgroader class of symmetric configurations is presented]in [9
autonomous underwater vehicles (AUVSs) are used to collect The general philosophy of the proposed design is de-
oceanographic measurements in formations that maximiggriped in Section I1. We treat the stabilization of the juéet
the information intake, see e.g. [1]. This can be achieved kgjative orientations in Section Il and the stabilizatioh
matching the measurement density in space and time to tBgch particle position relative to the group center of mass i
characteristic scales of the oceanographic process @ésite gection IV. Section V presents the complete control law and

Coordinated, periodic trajectories such as the one studiedthe construction of a composite Lyapunov function for the
this paper, provide a means to collect measurements with th@sed-loop dynamics.

desired spatial and temporal separation.

In this paper, we consider a kinematic model of identical, Il. PARTICLE MODEL AND CONTROL DESIGN
all-to-all coupled, planar particles [2], [3]. In a sens@tn  We consider a continuous-time kinematic modeNo$ 2
work application, this represents an all-to-all commutitea  identical particles (of unit mass) moving in the plane att uni
topology. The particles move at constant speed and aspeed [2]:
subject to steering controls that change their orientation P~ db
previous work [4], [5], we observed that the norm of the =
average linear momentum of the group is a key control & = u 1)

parameter: it is maximal in the case of parallel motions ofyherek=1,...,N. In complex notation, the vectog = X, +
the group and minimal in the case of circular motions aroungy, < C ~ R? denotes the position of partickeand the angle
a fixed point. We exploited the analogy with phase modelg, < S! denotes the orientation of its (unit) velocity vector
of coupled oscillators to design control laws that stabiliz g6 — cosg, +ising,. We use the variable without index to
either parallel or circular motions. _ _ denote the correspondimgvector, e.g8 = (61,...,6y). The

In the present paper, we further develop this desiggonfiguration space consists Nfcopies of the grouSe (2).
methodology to stabilize theplay state formation of the |n the absence of steering contrdk (= 0), each particle
group. This formation is characterized by circular motiormoves at unit speed in a fixed direction and its motion is

- ) o by i | Sationd decoupled from the other particles.
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N00014-02-1-0861, and N00014-04-1-0534. , depend on relative orientation and relative spacing, de.,
This paper presents research results of the Belgian Progean h iabl o 0 dre — k=1 N
Interuniversity Attraction Poles, initiated by the Belgidederal Science the varia esGkJ = 6— j andryj =r—"rj, J,k=4,....,N.

Policy Office. The scientific responsibility rests with itatlaors. Consequently, the closed-loop vector field is invariantarnd



an action of the symmetry groufE(2) and the closed- The synchronized state, |pg| = 1, occurs for6; = 6, =

loop dynamics evolve on a reduced quotient manifold (shape. = 6y, and, in the planar particle model (1), corresponds

space). Equilibria of the reduced dynamics are calledivelat to parallel motion. Note thadpg| =1 implies thatm|pmg| =1

equilibria and can be only of two types [Zarallel motions, for m> 1. Theantisynchronized state (or incoherent state),

characterized by a common orientation for all the particlepg| = 0, corresponds to a fixed center of mass of the group in

(with arbitrary relative spacing), andrcular motions, char- the planar particle model (1). Theplay state of the particle

acterized by circular orbits of the particles around a fixephases is characterized tf = %k k=1,...,N, i.e. the

point. phases are evenly distributed around the unit circle. The
In the present paper, we study the stabilization of aplay state corresponds to antisynchronization of the first

particular relative equilibrium characterized by a highele N—1 phase harmonics and synchronization offtlile phase

of symmetry: the splay state formation. In the spirit ofharmonic. We denote by%J the largest integer less than or

our previous work, we decompose the design into twequal to%.Anecessary and sufficient condition for the splay

parts: an orientation control, aimed at stabilizing thatieé state is [9]

orientations of the velocity vectors; and a spacing control

aimed at stabilizing the position of each particle relative Pel = [P2g| = -~ = |pL%J9| =0. ®)

the center of mass of the group. The orientation control law

is independent of the position variablgsand is designed to 1,2..... The potentialUn(8) is maximal (minimal) in the

i . NN

stabilize the splay state of the phase \_/an_alﬂes S, which .synchronized (antisynchronized) state of thié phase har-

corresponds to thé&l phases evenly distributed on the unit : " :
monic. To stabilize the splay state, we use the potential

circle. The phase dynamics evolve in a reduced configuration

space consisting dfl copies ofS' modulo the action of the N 3]

symmetry grougS of uniform rotations. ue)=—- Z | pme 2, (4)
The orientation control law, designed in Section I, 2 i1

achieves gradient dynamics with respect to a potential thhich is maximal for the synchronized state and minimal
reaches its global minimum at the splay state of the phasg the splay state (3). Thith element of the gradient of

variables. The spacing control law stabilizes the positibn this potential, grad (), is the partial derivative of (4) with
each particle relative to the center of mass of the grouspect tod,, given by

in an identical manner to the single particle beacon control N

law presented in Section IV. The main result of the paper ou 2] i,

shows that the sum of the orientation control law and the 26, Y < Pmg,ie™ >, ()

spacing control law results in stabilization of the splagtest m=1

formation. Stability of this relative equilibrium is promevith ~ With the inner produck z,z >= Re{z12}, 21,2 € C.

a composite Lyapunov function that combines the phase andTheorem 1: Gradient dynamics of the systeéh= u with

spacing potentials. respect to the potential (4) are obtained by choosing
—KgradJ (), i.e.

Consider a quadratic potentidh,(6) = %|pmg|2 for m=

[1l. SPLAY STATE STABILIZATION

N L3
In this section, we prove exponential stabilization of the Uy = K Z z lsinmekj (6)
particle phases to the splay state, originally referredso a N S M

the "antiphase” state [10] and also described as “ponies Wherek > 0 is a scalar gain. All trajectories asymptotically

a merry-go-round” [11]. The approach relies on includin o .
higher harmonics of the phase differences in the Coup"r%ﬁnnverge o the critical points of the potentid(6). In

function, as has been considered, for example, in [12 .ai‘:ilr%lﬂ;r’;??thkz;;?g“'?;; stable equilibrium and agjlo
Besides the splay state, all of the fixed points that we are P )

able to identify are unstable, which suggests that the splzﬁ){e tlr::;%cgt:o-:izg g?tigeg\ﬁ;f orfz:gép?stentlhl(e) along
state has a large region of attraction. ) P P ’

Consider the system & phasesf, k=1,...,N, subject U(8) = —K||gradJ ()| < 0. (7)
to controluy, i.e. 6 = ux. We define the centroid of theth ] ] ] )
harmonic of the particle phases to be Therefore, all trajectories converge to the largest imrdrset

for which U(6) = 0, i.e. the critical points of the potential
U(0) defined by grad (6) = 0, which includes the splay
state. The splay state (3) is the global minimum of the
potential sincaJ (8) =0 for |pmg| =0, m=1,...,[5|. =
wherem=12,..., W, c S, and 0< |pmg| < 1/m. We Theorem 1 proves asymptotic convergence of (6) to the
refer to the phase configurations for whiechipmg| = 1  set of critical points ofJ (8). Next, we address the stability
(Ipme| = 0) as having themth phase harmonic synchronizedof the critical points that we have identified. Lkt be the
(antisynchronized). Let the centroid of the = 1 phase number of clusters of synchronized phases in an arbitrary
harmonic be given byg = p1g. phase configuration. Aymmetric M-pattern hasM equally

1 N .
Pme = Nm Z M = |pm9|elwmv 2
=i



spaced clusters oll/M phases; arasymmetric M-pattern ~ which gives

hasM equally spaced clusters with a different number of

phases in each cluster. a=K,l=1..., {EJ anda/ =0, | =0, 1> {EJ . (14)
Theorem 2: The splay state is the only exponentially 2 2

stable symmetric pattern of the orientation control law. (6)ag 5 result a’ — 0 for | > 1, which, using (12), yields

All other symmetric patterns ol < N phase clusters are Eal ’ ' ’

unstable equilibria of (6). In addition, the set of asymraetr )\,SN) =-K/2<0forp=1,...,N—-1 and)\éN) =0. The only
M = 2 patterns for whict6; =0 or rtfor j,k=1,...,N are exception is for everN and p= 1§, in which casery”) =
unstable equilibria of (6). —K < 0. The zero eigenvalue corresponds to rigid rotation of
Proof: Let the control (6) be defined in terms of theall N phases [12]. Therefore, the splay state is exponentially
coupling function," (6;), i.e. stable because the remainiNg- 1 eigenvalues are negative
N definite.
5y 1 Z r(6;) (8) Next, we show that the other critical points 01 6) that
N j=1 we have identified are unstable. Symmetric patternd ef N
equally spaced clusters &f/M phases are fixed points of
where : . M h ltinlicit
£ L (8) [12]. In this case, the eigenval has multiplicity
r(6g) =K z = sinmd. 9) N—-M >0 and, usmg_(ll) and (14), is positive definite.
L m Therefore, all symmetric patterns other than the splaye stat

are unstable equilibria of the coupling function (9), which

Let I"(6;) be the derivative of (6) with respect toflj,  inclydes the synchronized statil & 1) and the symmetric

given by ) M = 2 pattern.
2 Finally, we show that the asymmetrid = 2 patterns for
/ . —_ .
M(8q) = szlcosmekj. (10) which 6 =0 ormfor j,k=1,...,N (andj # k) are unstable

. _ o _ ~equilibria of (8). Note that that this configuration existsyo

As shown in [12], the linearization of coupling functionsfor N > 3. In an asymmetritl = 2 pattern, all of the even
of this form about symmetric patterns &l < N phase phase harmonics, i.emg With meven, are synchronized. The
clusters had eigenvalues that can be described as the sugld phase harmonics, i.pmg With m odd, satisfym|pmg| =
of two sets. The first set consists of the eigenvali¥) a, wherea € (0,1). If 8 = (9_1,___79_,\,) is an asymmetric
with multiplicity N —M. These eigenvalues are associately — 2 pattern, then there exists at least one faand |
with intra-cluste(ngluctuation. The second set consists qf {1,... N} such thaté, = 6, k# |. Define the variation
M eigenvaluesip™, p=0,...,M —1. These eigenvalues 59 — (56;,...,56y). In the vicinity of the critical pointo,
are associated with inter-cluster fluctuation. Both sets @f(g) can be expanded as
eigenvalues can be expressed as functions of the Fourier _ _
coefficients ofl’(6;). For a general coupling function, the U(B+36)=U(0)+30"H30+0(|56)°), (15)
Fourier expansion of'(6;) is . ) —
whereH is the Hessian obl (0) evaluated aB. Using (2),

[ee]

[(6g) = Zi(a*l cos 6 +b{sin|9kj). equation (5) can be written
. ou 1201 N ;
The formulas for calculating the (real part of) the eigeneal — == z < M jembk >
are as follows [12]: 96 N &em | £,
A ia;\/l (11) so that the diagonal terms &f are
= [
|: A1—1)+p T A oy 1 %J < % Mo gmbk (16)
M)y _ / ~1)+p -p - - _— ’
Re(A™} = 3 (aMI - 2 ) - (12) o0 N& i fiu
Note that only thea| coefficients determine stability and that2"d the off-diagonal terms 6f are
M M
Re{Alg )} = Re{Ah(/ij}' U 1 LL}J ) )
The splay state of particle phases Mas- N evenly spaced == <M gmbc - a7
clusters of one phase each. In this cas®) has multiplicity 0806 N &

zero so allN eigenvalues are in the sé;gN). Also, since o, k£l
(8) is a gradient system, the Jacobian is symmetric and a"Assume, without loss of generality, thét = 6 = W =
the eigenvalues are real. Theg coefficients are given by o e choose two phases from the larger cluster and
Integrating this cluster is aligned with the positive real axis. Conside
, 1o, a variation with86,66, # 0 andd6¢ =0 for k=3,...,N.
& = E/WF (6j) cosl 6 db (13)  Evaluating the Hessian @ — 6, the diagonal terms (16)



Fig. 1. The coordinates used in Section IV that describe t®itipn and

we add dissipation to the constant control, so the spacing
control becomes

U = —@p — K& < T, Fie >, (19)
wherek > 0 is a scalar gain. The potenti&,(rk, 6), given
by

1 . ;
S(r, &) = §|fk—lpoe'9“|2 (20)

velocity of thekth planar particle with respect to the beacon at the originiS Nonincreasing along solution trajectories because

become
(92U 1 \_%J eimek eimek
- = - < NMpmg — , >
aekz N ngl Pmo

1|N
—Pajen — 0Ppgg+ — | =
even odd+N\‘2Ja

for k=1,2 wherePayen (Podq) is the cardinality of the positive
even (odd) integers less than or equal [§]. The off-
diagonal terms (17) become
U LIN
0606 N |2

fork,| =1,2,k#1. The upper left % 2 block of the Hessian
is

Paen— QP+ L[N 1N
Hyip = even — ' odd v 2] ea 1IN
712 —Poven — aPodd + 7 [ 7|
This matrix is negative definite faX > 4 since
2 |N
P — = 18
even > N \‘ZJ (18)

For N = 3, we obtaind8"H&6 < 0 by choosing the vari-
ation 66, = —346,. Consequentlyp is not a minimum of
U (0) since, using (15)U(6+ 66) < U(8). Therefore, all
asymmetricM = 2 patterns are unstable equilibria of (@).

STk, 6) = —K < Iy, i >?< 0.

The only invariant set for Whicl$<(rk, 6) =0 is a circle of
radius pp centered at the origin, on which theh particle
travels clockwise at constant angular spesd= po’l.

Since clockwise circular motion of particleis a relative
equilibrium of (1) with control (19), exponential stabyit
is established in the shape coordinatg, @), shown in
Figure 1. Differentiating with respect to time = p&% and
@& = 6«— Y+ /2 and using (1) gives

ke + pri e = &%
and o
@ = O — Uk
In the coordinate$p, &, W), the system (1) with control
(19) becomes

sing

Px
' — @ — Kok SiNGk + Py " COSK,

& (21)

and

Uk = — P COS.
Note that the equations of motion of the shape coordinates,
px andgy, are independent afi, which reflects the rotational
symmetry of the system.
Theorem 3: For particlek, the relative equilibrium corre-
sponding to clockwise circular motion with radipg about

Since the splay state is exponentially stable and all oth&te origin is the exponentially stable fixed point of (21)agiv
critical points ofU (6) that we have identified are unstable,by (Px, %) = (po,0) with ¢) = —ax. Furthermore, this fixed
Theorems 1 and 2 suggest a large region of attraction of tf@int is globally asymptotically stable.

dynamics (6) to the splay state.
IV. BEACON CONTROL LAW

Proof: The Jacobian of the system (21), evaluated at
the unique fixed pointpk, ¢&) = (po,0), has eigenvalueg, =

(—K /K2 —4wd) /2, with strictly negative real part. Global

In this section, we set aside the splay state control tergyractivity of this fixed point is proved using the Lyapunov
of Section Ill and derive the spacing control term for stabifynction (20) in the(py, @) coordinates which is radially

lization of the splay state formation. This is identical ket

control of a single particle circling a beacon at a fixed radiu

pPo. Consider the kinematic model (1) fot self-propelled
particles in the plane subject to steering control. Thetjmosi
r« = pk€%%, and heading8, of thekth particle, respectively,

unbounded in the coordinafs. B

V. COMPOSITE LYAPUNOV FUNCTION

In this section, we construct a composite Lyapunov func-
tion to prove stabilization of the splay state formatioe. i.

are shown in Figure 1. We consider a control law that isiniform clockwise rotation of\ evenly spaced particles on
the composition of Hamiltonian and dissipative terms. Aa circle of prescribed radius. The control law combines the

constant control such ag = —wy < 0 drives thekth particle
in a clockwise circular motion with radiugg = wgl >0
about an arbitrary fixed center.

To stabilize clockwise circular motion with radips about

orientation control from Section Il with the spacing capitr
of Section IV. Numerical simulation results of stabilizitige
splay state formation are included in Figure 3.

Define the center of mass of the particles to Re=

a fixed beacon at the origin of the inertial coordinate systenﬁ Elerk. Note that the average linear momentuRy, is



Yy results in

Tk . N du o, 2

V(r,6)=— Kwy—=—— + K < i, € <0. (28
i Vk (r,6) kz(“"’aek+ < i, >)_ (28)
k/!
I The control (27) is the composition of the orientation cohtr
., R (6) with the spacing control (19), where the coordinate
,"\Hk " (previously distance to the beacon) is now defined with
respect to the center of mass. The control law (27) can be

Fig. 2. The coordinates used in Section V that describe tisitipp and ~ written
velocity of thekth planar particle with respect to the center of mdgs,

=—wp— wo < Z rej,fk > +wON Z Z —smmGkJ

equivalent to the centroighg, of the particle headings on the
unit circle, which is defined in (2) faon= 1. The vector from Note that choosing = 1 andk = wy weights the orientation
the center of mass to particleis fy = re—R= g 3)_1rj, and spacing controls equally with the constant gagn
as shown in Figure 2. Define the distance from the center of Theorem 4: The system (1) with control (27) asymptot-
mass to thekth particle px = |[fx| and letpy = wo’l >0 be ically stabilizes all particles to clockwise circular nmti
the desired equilibrium radius. with radiuspp about a fixed center and with relative phases

Consider a composite Lyapunov function(r,8), which  determined by the critical points of the potential (4). In
combines the splay potential (4) with a modified beacoparticular, rotation in a splay state formation is a stable

potential (20), given by relative equilibrium which minimizes the Lyapunov fungtio
B V(r,8). The fixed center of rotation is the center of mass of

V(r,0) =KU(8)+kS(r,0), (22) the group.
where K > 0 and k > 0 are scalar gains as before. The  Proof: The Lyapunow (r, 8) is nonincreasing along the
potentialS(r, 8) is given by solutions and, by the LaSalle Invariance principle, solusi

converge to the largest invariant setwhere
_ 6|2 .
S(r 9 Z |rk |p0el | (23) ek — _ab’ (29)

The potentialV(r,8) is positive definite and is minimum for k=1,....N. In this set, each particle orbits a fixed circle

(zero) for clockwise circular motion with radiysy in the Of radius po. We want to show that all centers coincide.
splay state formation. Differentiating (2) along the trajectories of (29) gives

The time derivative ofJ(0) is

: : =25 M= _ 30
U(8) =< gradJ (6),6 >, (24) Pro = N Z € MG Prog- (30)
where thekth element of grad (6) is given by (5). Letl=  Form= 1, this implies that the center of maBsatisfies the
(1,...,1) € RN, Then, using (5), we observe that differential equation,
1) R=—iwR (31)

<gradJ(0),1>= Y NM< ppg,ipmg >=0. _ _ _
J © r,; P, [Pmé Another consequence of (30) is that dud@) is constant in

Consequently, (24) can be written, A since, using (5), (29), and (30),

1(0) — ' %]
U(0) =< apgradJ (6),1+ pgb > . (25) :t ZU < Do 16 > 1 < prg. ™ >
The time derivative ofS(r, 0) is &
N
§r6) = 3 <Ffic—ipoe® fi— Rt poe*f > = 3 < —imwopmg,i€™* > 4 < g, mape™* >=0
— m=1
%(1+p Gk) s (26) Combining this result with (27) and (29) yields
= 0 ks .
k=1 d. Fi, ik >=0 (32)

dt

for every solution in the invariant seét.
Using (31), we note that solutions i also satisfy

Combining (25) and (26) gives
. N ou . .
V(e =5 < Kwoﬁth < fi,d% > 14 pob > .
= : Fie = ik — R= —i ol
Choosing the controf = u, such that o ) ) o _
which, integrated twice, provides the explicit solution

ouU o
U= —ao(1+ Kangg +x<fioef>)  (@27) Filt) = F(0) + ipofic(0) (e T — 1). (33)



Similarly, integrating (31) twice yields

R(t) = R(0) +ipoR(0) (e~'®" — 1). (34)
Substituting (33) in (32) results in
5t < k(0) +ipofi(0) (e — 1), A (0)e ¥ >=0,
which can be rewritten as
d . . i
— < k(0) —ipofi(0),fk(0)e ¥ >=0 (35)

dt

since < if(0)e 19! 1 (0)e 1!t >=< ify(0),f(0) > is a
constant. But (35) can be satisfied only if

F(0) = ipofi(0)

for eachk=1,...,N.
Substituting (36) in (33) shows that solutions/insatisfy

r(t) = R(t) +ipofic(0)e ", (37)
Using (34) in (37), we thus arrive at the explicit solution

r(t) = R(0) — ipoR(0) + ipoe *

(36)

which shows that all solutions im\ circle with radius
po around the same fixed poiR(0) —ipoR(0). Because
S(r,0) = §p2|R(0)|? is constant along these solutiokks(0)

must be constant i\ and the relative phases must cor-

respond to a critical point o) (8). Rotation in the splay

state formation is a stable relative equilibrium by Theodem

since it minimizedJ (8). Furthermore, sincgg =R=10in

the splay state formation, the fixed center of rotation is thds3]

center of mass of the groum.

) ) . 4
We include a simulation for the splay state formation |n[
Figure 3. Simulations suggest a large region of attraction o

the splay state formation using the control (27).

VI. CONCLUSIONS

In this paper we provide a control law that stabilizes the

splay state formation in a kinematic model Nf particles

moving at constant velocity. The control law is the sum of[7]

an orientation control and a spacing control. The orieotati

control is independent of the position variables and assignis]
gradient dynamics for the phase variables with respect to
a potential that reaches its minimum in the splay statgq
configuration, that is, when the phase variables are evenly
spaced on the unit circle. The spacing control stabilizes t

position of each particle relative to the center of mass

stabilizes all symmetric patterns df particles in a circular

formation. One can also break the translational symmet
of the control in order to stabilize the splay state formatio
about a fixed beacon [9]. Similar studies on connected but
not complete coupling networks suggest that the splay stdf¢!
formation is can be stabilized by topologies that are net all

to-all [13], [14].

Jio

the particle system. The sum of the two controls is shown
to stabilize the splay state formation by means of Lyapund¥!
analysis. We show in [9] a generalization of this result that

&)

10F 1

-15}

_25 - 4

10

Fig. 3. The result of a numerical simulation of stabilizirige tsplay state
formation using control (27) wittN =12, pp =10,K=1, K = ap =0.1,
and random initial conditions. The particle trajectoriee ahown in grey
and their final positions are black circles. The center of griasdepicted
by the black crossed circle.
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