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Abstract—This paper presents analysis and application of For example, autonomous underwater vehicles (AUVs) are

steering control laws for a network of self-propelled, planar  ysed to collect oceanographic measurements in formations
particles. We explore together the two stably controlled group that maximize the information intake, see e.g. [10]. A

motions, parallel motion and circular motion, for modeling | t h to adanti lina is to identi
and design purposes. We show that a previously considered complementary approach to adaptive sampling is to identify

control law simultaneously stabilizes both parallel and circu- @ Sensor coverage metric and design controls that maximize
lar group motion, leading to bistability and hysteresis. We this objective, e.g. [3]. These approaches emphasize optimal
also present behavior primitives that enable piecewise-linear trajectories; the coordination may be explicit as with artifi-
network trajectory tracking. cial potentials or implicit as with strategies that minimize

. INTRODUCTION redundant coverage.

. L . In this paper, we consider a kinematic model of identical,
Collective motion is a compelling phenomenon whether

. . . . o all-to-all coupled, planar particles. In a sensor network
observed in nature or in an engineering application. Twg_ . . : -

. T . L application, this represents an all-to-all communication
guantities that distinguish coordinated motion in a Spa;

tial network are the group linear and angular momentum0p0|ogy' The particles move at constant speed and are

. . . . ubject to steerin ntrol ri in tion II. W
Parallel translation is characterized by large linear an%lUbJeC 0 steering controls as described in Sectio ©

explore feedback controls that stabilize parallel and circular
small angular momentum about the center of mass, Wherea%) . : . .
COllective motion for modeling and design purposes. In

rotation about a fixed center of mass has small line : S .
- ection 1ll, we present stability results for a previously
and large angular momentum. Individual control laws tha . . . .
. . considered two particle steering control law, showing that
stabilize these two types of group motion are useful fronj " . . o .
. X . It yields a bistable system: i.e. there is a parameter range
both modeling and design perspectives.

. . ; : for which the control law stabilizes both parallel and
Of particular interest for modeling purposes is a control. . . X
circular motion. In Section 1V, we describe a procedure for

law that stabilizes both parallel and circular group motions. o . . . .
) . iecewise-linear formation trajectory tracking using control
for the same control parameters, i.e. a bistable syster%.

. o . ) . laws that stabilize parallel or circular motion as building
Bistability is responsible for a hysteresis behavior that h .
L . . , ocks. We plan to extend these results in the future along
been observed in discrete simulations of fish schools as : .
: . . . oth the modeling and design themes.
a function of a relative alignment coupling parameter [4].
These fish schooling results suggest that gyroscopic turning 1. PARTICLE MODEL

forces, i.e. those derived from vector potentials, may be we study a continuous-time, kinematic model Nf

better suited for a continuous model of this phenomendgentical, self-propelled particles subject to planar steering

than forces derived from scalar potentials. Another moticontrols, following [6], [7]. In complex notation, the model
vation for considering gyroscopic or steering controls igs given by
an analogy with coupled phase oscillators [11]. Powerful, . "
analytical results exist for the synchronization of identical, fk = &% @
sinusoidally coupled oscillators [12]. 6k = U, (2)

In addition to thg modelmg object!ves, feedback IaW%/vhererk € R? and 6, € S' are the position and heading of
that produce collective motion of particle groups have ert;t%-I

. . o e kth particle. Unless otherwise indicatekl=1,...,N.
gineering applications such as unmanned sensor networks. . . )
e steering control law is denoted hy. If we define the
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Throughout the paper, we consider relative alignment
control of the form, |
@2 | o1

align K N : ‘I
Uy :Nglslnejk, (4) ro

where K € R is a control gain. The gairK plays an
important role in the paper: we present new analysis for o
K| = O(1) in Section Il and apply previous results for
|K| > 0 in Section IV.
Global convergence results for the model (1)-(2) are >
presented in [11]. In this earlier work, we provide feedback. _ ,
e . . . Fig. 1. Shape coordinates for a two particle system, wipere||raq|,
controls to stabilize parallel and circular collective motioryon, g).

by considering the singularly perturbed system,

i = &% (5)

r

1N wherep, > 0 is a constant spacing parameter. The first terms
€6 — guﬁpac(r]_k’ejk)+N z sinBj, (6) in the parentheses in (8)-(9) are zero for either clockwise
=1 or counter-clockwise rotation of the particle pair about its

1 . center of mass. The second terms are zero for the relative
wheree = ¢ is a small parameter. This approach decouplesq

. . ' acingp = po.
the spacing and alignment control terms into slow and fasp 9p = Po

. : Using the shape coordinates illustrated in Figure 1, the
time scales, respectively. The fast subsystem has the form . :

. ) system with the spacing controls (8)-(9) becomes
of a network of coupled phase oscillators, i.e.

é B sgr(K) N o . p = singy —singy (12)
=TT 2,5 M 4 = —singucosiu + 1 (p) costy (12
K . 1
where all oscillators have the same natural frequemgys +5sin(¢2—¢1) + E(COS¢2 — COSf1)
@o. In a coordinate frame rotating af,, wx = 0. ¢2 —  _singscospr— f(p)cosp (13)

Watanabe and Strogatz, [12], utilize a coordinate trans- K 1
formation to deduceN — 3 constants of motion for the +— sin(¢1 — ¢2) + —(cosp2 — cosdy),
model (7). Consequently, they prove that the oscillators 2 p
synchronize foK > 0 and converge (anti-synchronize) to anyhere ¢, ¢, € St [6]. This control law is specified entirely
incoherent state fak < 0. In the particle model, the param- iy terms of the relative distance and orientation coordinates,
eterK drives the group linear momentum to its maximump, 1, and ¢,. As shown in [6], there are only two types
for K >0 and to zero foK <0 [11]. This corresponds 10 of rejative equilibria of the system: parallel and circular
parallel motion and rotation about a fixed center of masgnotion. The parallel motion can be divided into two cate-
respectively. In the slow time scale, spacing controls refingqries: translation perpendicular to the baseline vecier,
these two types of trajectories. We provide spacing controlg,q |eader-follower motion with arbitrary separation.

that _support the design of network trajectory tracking in Tne fixed points for the system (11)-(13) that correspond
Section IV. to these relative equilibria are given as followy,0,0)

lIl. BISTABLE CONTROL LAW and (po, 7w, ) produce parallel translation perpendicular to
the baseline vector 1y, with |[r12| = po; (p2,%,0) and
(p2,0, ) produce clockwise and counter-clockwise rotation

2;'Igr’1;;rtzgr:t?rorrla(l)-t(héla)twnah:sm|r:sg|f1tlgawihcggildeerr :ncabout the center of mass at radigs, determined by the
" what was p Wi Ver9eNGRots of f(pz) — 2 = 0; and(p, %, %) and (p, 32, 32) pro-

. . ! ; ; : . .
;?Zugi?/;g [l:?)]/ Using complex notation, the spacing COntrOIauce a leader-foflower formation at an arbitrary separation

distance,p. In the next section, we determine the local
uwPe— < 21 ooy (< 21 doy f(p)) ®) 2§1Cbr:l|:i{(g;tggisnet relative equilibria using linearization about

In this section, we study a two particle system, i.e

r L r ;
=-< fﬁe'ez > << f,é"z > f(p)> , (9 A Linear Stability Analysis

We derive the stability properties of the three relative
equilibria of the two particle control law (8)-(9) as a
function of the control gainK, by linearizing (11)-(13) at
f(p)=1— (po)z (10) the corresponding fixed points. Starting with the parallel

p)’ relative equilibrium, the characteristic polynomial of the

where< -,- > is the scalar product ang = ||r12|| = [|r21]-
The functionf(p) is defined as in [6],



Jacobian evaluated at eith@r,,0,0) or (po, 7w, ) is

4 -———ae ) (parallel)
(AM+1A%+(1+K)A+—) =0, (14) I ,
Po -——— -: -------- == === (leader-follower)
where the roots of the quadratic term a@reand A3. Thus ; : .
we havel; = —1. In addition, fork > —1, 0(A23) < 0; at »— — - = = (circular)
K=-1,0(423)=0; and forK < —1, O(423) > 0. < y : >

Similarly, the characteristic polynomial for both circular 1 0 1
relative equilibria, i.e(p,7,0) and (p»,0,x), is given by '

(A1+1— K)()LZ+7L +4g(po)) =0, (15) Fig. 2. Hysteresis characteristics of the two particle control law for
|[K| = O(1). The horizontal solid (dashed) lines indicate stable (unstable)
where relative equilibria. The grey box indicates the bistable region.
2
P, 1
9(po) =5+ — >0, (16)
P2 P

wheref(p) = g—g and|¢2 — ¢1| # m. The time derivative of
and the roots of the quadratic term in (15) deandAs. V along the solutions of (11)-(13) is
Thus we havel(A,3) < 0. In addition, forK <1, 11 <0;

atK =1, 1; =0; and forK > 1, A; > 0. VZ_M(KJFCOS(er@))’ (20)
Lastly, the characteristic polynomial for the leader- cogg2—¢1)+1
follower relative equilibria, i.e(p,%,%) or (p,3,3%), is  which is non-positive foK > 1 and non-negative foK <
given by —1. For K > 1, the Lasalle invariance principle can be
1 used to prove that all solutions converge either to the set
A1 </12+(K—2)l + > (h(p) — K)) =0, (A7)  of parallel relative equilibria, wher¥ is minimum, or to
the set of (unstable) circular or leader-follower equilibria.
where 5 Likewise, forK < —1, the functionW = eV is nonincreas-
h(p) =1—f2(p)+ Ef(p), (18) ing along the solutions, and the Lasalle invariance principle

can be used to prove that all bounded solutions converge
and the roots of the quadratic term in (17) dreand A3.  either to the set of circular relative equilibria, whéené
Thus we havel; = 0. In addition, forK < 2, O(A23) > 0. is minimum, or to the set of (unstable) parallel or leader-
Proposition 1: The two particle control law, (8)-(9), is a follower equilibria.

bistable system fofK| < 1 and the two stable equilibria are Remark 2: The almost global convergence to parallel
parallel and circular motion. equilibria forK > 1 and to circular equilibria foK < —1,

Proof: Parallel motion is asymptotically stable fiir> combined with the bistability of the parallel and circular
—1 because the Jacobian is a Hurwitz matrix. It is unstablkquilibria in the parameter rang € [-1,1] causes a
for K < —1 becausél(A,3) > 0. Similarly, circular motion hysteresis behavior under slow variation Kf= 0(1) [8].
is asymptotically stable foK < 1 because the Jacobian isThe hysteresis characteristics are illustrated in Figure 2.
a Hurwitz matrix. It is unstable foK > 1 becausel; > 0. IV. TRAJECTORY TRACKING

Finally, the leader-follower motion is unstable f&r< 2 ) ] ) )
becausel(123) > 0. m In this section we apply previous results for the design

Remark 1:We can classify the bifurcations that occur aof feedback control laws for parallel and circular collective
K = £1. For the parallel relative equilibria, we observe thafnotion [11]. In particular, we use feedback controls in
a pair of complex eigenvalued, and s, passes through conjunction with impulsive controls to achieve trajectory
the imaginary axis aK decreases throug = —1. We tracking of the center of mass of the network. The admis-
conclude from the results of the Lyapunov analysis belowible refe_rence inputs are piecewise-linea_r paths. Note that
that this is a subcritical Hopf bifurcation. For the circularWe use different controls for parallel vs. circular control as
relative equilibria, we observe thdy € R passes through OPPosed to the single control law of Section Il.
zero asK increases througK = 1 which yields a saddle- A collective Motion Feedback Controls

node bifurcation. The collective motion feedback controls are based on the

B. Lyapunov Analysis singularly perturbed model, (5)-(6). In [11], we provide
For the control law (8)-(9), we show almost globalfeedback control laws to stabilize parallel and circular

convergence to the set of parallel relative equilibria Wiﬂ?ollectlve motion. The feedback control laws are separated

K > 1 and almost global convergence to the set of circul to relative spacing a_nd alignment control termg, as in
relative equilibria withk < —1. Using the results of [6], we 3). Both. para}llel and.cwcular controllers use the.ahgnment
consider the Lyapunov function, cqntrol given in (4), vy|tH( >>Q andK < 0, respectively. .In
this section, we provide spacing controls that are applicable
V = —log(cog¢2—¢1) +1)+F(p), (19) to trajectory tracking.



1) Parallel Motion: For K > 0, all particle headings 4 Dk
asymptotically synchronize (to first order) in the fast time
scale [11]. The design of a controller that stabilizes ap- -
proximate uniform relative spacing is given in [11] and is
summarized below.

The slow manifold of (6) is given by Tk

—uiP®9) +0(?), (21) R

wheree = % > 0. Substituting (21) into (5) gives the slow
dynamics >

Fr = €% (1+ i (uP*~ u3P*9) + O(e?). (22)

spac

6k = 91—|—€(le

Fig. 3. Shape coordinates used for the circular feedback control, where
pk = |[fk|| andR is the center of mass of the group, after [6].

Solving forry; = —fj, we obtain the slow dynamics for
the particle spacing, which are given by
i — eiei® (LGP P0) | o2 of formations that minimiz&J for the slow dynamics (23).

kj k i Linearization at any of these equilibria shows neutral modes

To design the formation spacing control we follow thdn the directions tangent to the set of equilibria (symmetry

approach developed in [1]. Consider the following interpardiréctions) and stable modes in the transverse directins.
ticle scalar potential, 2) Circular Motion: Setting K << 0 in (4) drives the

particle phases in the fast time scale to the incoherent state,
U.(rkj):log\|rkj||+&, (24) or balanced manifold which corresponds to zero linear

"kl momentum [11]. Therefore, in the slow time scale, the

which is an even function ofy;. Using % — 1, the Epacing controls may utilize the center. of mass as a fixe_d
gradient of this potential is given by eacon. T_he spacing coptrols are subject to the co_nstra}mt
of preserving zero total linear momentum. As described in

OU) (i) = ( 1 o p0||2) ”rij. [11], spacing controls which preserve exact invariance of

Ikj Ikj lkj

the balanced manifold"*’ are generated by projection
_ al . .
We define the formation spacing control in terms of th@f the so _called balanced cont_rolzé_g - Simulations show
negative of this gradient, i.e that even in the absence of projection, the balanced controls

(23)

(25)

N _
UipaC: — ;< DU.(rk,-),ie'ek >
I

(26)

Consider the following Lyapunov function candidate,

N N
U=
kzlp

Using (21)-(26), the time-derivative df (limited to first

Ui (ryj)- 27)

achieve near-invariance of the balanced manifold, which is
sufficient for the trajectory tracking objective.

The particles move in a circular trajectory about the
center of massR = § 3|L;r;. We define the vector from
the center of mass to particlke by 'y = ry — R, and its
magnitude by = ||F||, as shown in Figure 3. Consider the
following balanced control, which is a variant of a single
particle/beacon control law from [6],

Fr . fk

order terms irg) is, u?! = —f(pi) < ;t,le'ek >—< Fi’éek >, (29)

N L

U=_¢ z (uipac){ (28) Wwheref(py) is given by

=1 2
where we used the property thalt; (ri;) is an odd function flpx) =1— <ZE> : (30)
of Ikj-

Proposition 2: The steering control law of the form (3), In shape coordinates, the dynamics for particlare

with u;P*“given by (26) ands}'*" given by (4) withK > 0, . _
stabilizes parallel motion with spacings that minimize the P = sSing (31)

potential (27).

Proof: Parallel motion with approximate uniform

= — (f(Pk) - plk> COSfy — Singy. (32)

spacing corresponds to the set of relative equilibria of Convergence results for a system similar to (31)-(32) are

(5)-(6) and (26), characterized by = {(rx,6k) | 6k =
61, U(rg;) min, k=1,...,N}. Exponential stability of" for

presented in [6]. A Lyapunov function candidate for the
system ofN particles is the sum of individual functiong,,

the singularly perturbed system follows from exponentiaéiven by

stability of the set of synchronized staigs= 6, for the fast
dynamics (7) withK > 0 and exponential stability of the set

Vi (Px, §x) = —log(| cos|) +H (pk), (33)



wheref(py) — pi = d—;. The time derivative o¥ along the ThereforeV; <0 in the se = {(px, &)k >0, [¢x| > Z}.
trajectories of (31) and (32) is given by The largest invariant set id for which Vi = 0 is (px, ¢x) =
sin 1 (p1,7), wherep; is determined by (35).
_— A _
V= <cos¢k) Pt <f(pk> B Pk) Pk B. Behavior Primitives
sinzq)k The parallel and circular feedback controls are used to
T cospy (34) " define five behavior primitives which can be combined to

. . track piecewise-linear trajectories. The behavior primitives
ThereforeM <0 in the se€ = {(pk, )Pk >0, || < 5}.  use impulsive controls to align the particles with the ref-

The largest invariant set it for whichVj =0 is (pk, %) =  erence input and the feedback controls to stabilize this
(p1,0), where trajectory. The behaviors will be referred to @ndom-to-
f(p1) — 1 -0 (35) circular, circular-to-parallel, parallel-to-parallel parallel-
p1 to-circular, andcircular-to-circular. In parallel motion, the
and f(px) is given by (30) [6]. network center of mass follows a linear reference trajectory.

In the circular state, the network center of mass is fixed, i.e.

Proposition 3: The steering control law of the form (3), the group is stopped

with u3P* determined by (29) with the projection anf{®"
k R . . . . . .y
given by (4) withK < O stabilizes clockwise circular motion 1) Random-to-circular: Starting from random initial

about a fixed center of mass with radips, determined by coqd|t|ons, this behavior stab_|I|zes C|rcu_lar mOt'(.m ".ibOUt
(35) a fixed center of mass. The input to this behavior is the
. . ' spacing parameterp,, which determines the formation
Proof: Circular motion about a fixed center of mass ' . . . :
. S radius according to (35). The impulse control used to align
corresponds to the set of relative equilibria of (5)-(6) an . . : Lo T
e particles in the rotation direction is given by

(29), characterized by = {(ry,6k) | R=0, ||Fi|| = p1, k=
1,...,N}. Exponential stability ofl for the singularly A6 = arg(£ify) — 6, (39)

perturbed system follows from exponential stability of the . .
balanced manifoldR — 0, for the fast dynamics (7) with where thet corresponds to counter- and clockwise rotation,

K < 0 and exponential stability of the set of ring formaticmsrespectively. The feedback contrgplatcjsed to stabilize circular
|IFk]| = p1 for the (decoupled) slow dynamics (31)-(32).

motion is of the form (3), where,, " is given by (29) for
Exponential stability of the balanced manifold follows fromeCkV\"Se or (36) for counter-clockwise rotation. Note that
the Lyapunov analysis in [12]. Exponential stability of the

we use the balanced spacing contrgl;”= P, i.e. we
set of ring formations follows from exponential stability "€glect the projection. The alignment control tenf))",
of the rotation equilibrium about the fixed center of mas& 9iven by (4) withK < 0. _ _
for each particle, a consequence of the Lyapunov analysig2) Circular-to-parallel: Starting from circular motion,
in (33) and (34). Convergence to the balanced manifolﬁ“?‘ behawqr stablhze_s paralle] motion glong a r_eference
is almost global for the fast dynamics: only synchronizedf@jectory with approximate uniform particle spacing. The
solutions do not converge to the balanced manifold [12]"Put t0 this behavior is the spacing paramefey, which
Convergence to the set of ring formations is almost g|0b§|eterm|nes the critical points _of the |nte_rpart|cle potential
for the slow dynamics from the Lyapunov analysis. Fok24), and the reference heading,. The impulse control
the singularly perturbed system, the convergence results 4¥8ich aligns the particles in the reference direction is

therefore semiglobal, i.e. the conclusions for the fast and AB = 0 — b (40)
slow dynamics are asymptotically recovered as the small - o
parameter decreases to zerml The feedback control that stabilizes parallel motion is of

- [
Remark 3:The second term in (29) stabilizes motionthe form (3), wheraj,”*is given by (26) andi. " by (4)
perpendicular t@y. Changing the sign of this term stabilizesWith K> 0.

counter-clockwise rotation, i.e. 3) Parallel-to-parallel: Starting from parallel motion,
. - this behavior stabilizes parallel motion along a different
ubdl = —f(py) < rl’ieiek >4 < Lk7ei9k S (36) reference trajectory. The input to this behavior is the new

Pk Pk reference headingd,. The impulsive control used to align
In shape coordinates, this control law is given by the particles in the input direction is given by (40). The
feedback control used to stabilize parallel motion is of the

f=— (f(Pk) - pl) cosgy + Singy. (37) lfgrg C()3)’ whereugP*is given by (26) andj; " by (4) with
k .

To see that this stabilizes counter-clockwise motion, obser\{ﬁ.A')bpﬁral.lel't(i'(;.rf ular: _Stalrtlng ftr.om Earatlllelf mc()jtlon, i
that the time derivative of (33) becomes is behavior stabilizes circular motion about a fixed center

of mass. The input to this behavior is the spacing parameter,
Vi — Sir? ¢y Po, Which determines the formation radius according to (35).
= cosfy The impulsive control used to align the particles in the

(38)



V. CONCLUSIONS AND FUTURE WORK

In this paper, we extend the analysis of a previously
considered two particle control law to show that it is
bistable for|K| = O(1), whereK is the relative alignment
coupling parameter. This behavior is preserved in numerical
simulations for many particles. However, fof > 2, the
control law stabilizes both clockwise and counter-clockwise
rotations, which is undesirable for modeling natural groups,
e.g. fish schools. We plan to complete the analysis for the
two particle system and investigate the stability properties
of a many particle system governed by a modified control
Fig. 4. Trajectory tracking withN = 20 starting from random initial  SCheme.
conditions. The reference input is a piecewise-linear curve. The behavior We also apply previous results for feedback control

sequence starts in the vicinity of A witrandom-to-circularand then of networks of many particles to trajectory tracking of
follows A circular-to-parallel, B parallel-to-parallel and C parallel-to-

circular. This sequence repeats for the points C, D, and E and then enBd€CEWise-linear paths. We use impulsive controls to input
with the circular-to-circular behavior at E. the reference trajectory and feedback controls to stabilize

both parallel motion along the reference heading and cir-
cular motion around a fixed center of mass. We plan to
rotation direction is given by (39). The feedback controkxtend the circular control law so that it is possible to
Ussig to stabilize circular motion is of tgﬁ Eorm (3), wherestabilize particular configurations (formations) within the
U= upd is given by (29) or (36) andy " by (4) with  family of incoherent states, see e.g. [2]. For example, in
thesplay statethe particles have uniform phase differences,

K «0.

5) Circular-to-circular: Starting from circular motion, which corresponds to regular spacing around the circle. The
this behavior stabilizes circular motion with a differentdilation/contraction behavior may be extended to perform
radius, i.e. dilation/contraction. The input to this behaviomore elaborate formation shape control. We also plan to
is the new spacing parametgy,, which determines the consider robustness to perturbations in the network topology

formation radius according to (35). There is no impulsivesuch as those explored in [5] and [9].

control used to realign the particles. The feedback control
used to stabilize circular motion is of the form (3), where
uSP2e— ybal is given by (29) or (36) and?'" by (4) with
K« 0.

(1]

(2]
C. Trajectory Tracking Example

In this section, we use the behavior primitives to construct®!
a behavior sequence that tracks an input reference trajec-
tory. The admissible references are piecewise-linear pathdl
specified by a list of desired heading and duration pairs. An
example of trajectory tracking is shown in Figure 4. 5]

In this example, twenty particles start from random initial
conditions in the vicinity of the point A. We observe
that in simulation,|K| = O(1) is sufficient to stabilize the
desired collective motion. The behavior sequence starts
with random-to-circularwith K = —1 and po = 25. This
stabilizes circular motion at radiys; = 25.5 determined
by (35). The next behavior in the sequenceitgular-to-
parallel with parameterK =1, p, = 25.5, and6, = 22.5°,
which takes the sensor network from point A to point B
in Figure 4. At point B, the behavioparallel-to-parallel  [10]
with K =1 is used to track the reference inpigt= —67.5°
to point C. Then thearallel-to-circular behavior stabilizes
circular motion about a fixed center of mass with= —1  [11]
and p, = 25. The sequence is repeated for the points C, D,
and E. Lastly, thecircular-to-circular behavior stabilizes
circular motion with the radiup, = 50 (p1 = 50.5) using
K=-1.

(8]

[12]
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