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Abstract: This paper develops a method to control the downstream position of the sensor-
equipped follower in a pair of two robotic fish swimming in an inline configuration. To swim
against the incoming flow, the follower estimates the relative flow velocity using a Bayesian
filter with pressure measurements and sets it as the reference to control its flapping amplitude.
To maintain its downstream position relative to the leader, the follower extracts the oscillation
frequency, phase, and separation distance of the leader from onboard camera images. Water
tunnel experiments confirm the feasibility of using hydrodynamic and visual measurements for
swimming speed and downstream position control.
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output feedback control, bioinspired robotics

1. INTRODUCTION

The schooling behavior of fish inspires the design of for-
mation control of autonomous underwater vehicles (Paley
et al., 2007) and has been applied to adaptive ocean
sampling (Leonard et al., 2007). One of the benefits of
schooling for fish is the increase of their propulsive effi-
ciency (Weihs, 1973; Ashraf et al., 2017). While schooling,
fish may maintain a diamond or a phalanx formation and
keep their tail motions in or out of phase with their neigh-
bors’ motions, so that they can utilize the shed vortices
generated by their neighbors. To understand how the hy-
drodynamic mechanism of schooling works, and the roles
of flapping kinematics and flow interactions, experiments
of flapping foils with inline configuration have been per-
formed (Newbolt et al., 2019). Their results show that the
temporal flapping phase between two foils and the spatial
phase shift between their trajectories are keys to achieving
group cohesion. The follower can obtain hydrodynamic
benefits inside the thrust wake generated by the leader
as it swims with the local lateral flow instead of against
it (Zhu et al., 2014). This phenomenon, also called vortex
phase matching, has been applied to a pair of fish robots
to obtain hydrodynamic benefits (Li et al., 2020).

To maintain group structure while schooling, each fish
receives the relative states of its neighbors and flowfield
information via visual and lateral line systems (Pitcher
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et al., 1976). Equipment that assists with positioning
and tracking for fish-inspired robots includes cameras and
hydrodynamic sensors. Applications of visual sensing on
fish robots include optimization of the swimming gait
(Wang et al., 2017), obstacle detection and avoidance
(Kelasidi et al., 2019), and three-dimensional formation
control (Berlinger et al., 2021). For hydrodynamic sensing,
related research includes station holding in a steady or
unsteady flow (Salumäe and Kruusmaa, 2013; Krieg et al.,
2019), relative position estimation of a nearby robot (Yen
et al., 2020), wall following (Yen et al., 2018), Kármán
gaiting (Free and Paley, 2018), and formation control of a
group of robotic fish (Wolek and Paley, 2023). Although
previous research has demonstrated the applications of
visual and hydrodynamic sensing in underwater robots,
few studies have applied both techniques to control the
formation of fish robots.

This work describes feedback control of the follower fish
in a pair of two robotic fish swimming in an inline config-
uration in a uniform flow using visual and hydrodynamic
measurements. The follower is instrumented with a cam-
era and a pressure sensor array. To estimate the relative
flow velocity, a pressure difference model based on the
two-dimensional (2D) potential flow is developed as the
measurement model of a grid-based Bayesian filter (Zhang
et al., 2015). After incorporating the pressure measure-
ments from the pressure sensors, the velocity estimate is
converted to the flapping amplitude of the follower via
inverse kinematics so that it can swim against the in-



coming flow. The oscillation frequency, phase, and relative
position of the leader are converted from the changes in the
intensity and size of the leader body in time-series images
captured by its onboard camera using contour detection, a
pin-hole camera model, and the discrete Fourier transform
(Bradski and Kaehler, 2008). To reduce the self-motion
effect on visual sensing, the follower swims intermittently
and performs visual sensing while coasting. The obtained
information is input to a central pattern generator (Seo
et al., 2010) to generate the reference flapping behavior
for the follower to maintain its downstream position and
flapping phase relative to the leader. To date, two experi-
ments have been conducted to validate the method: (1) the
follower controls its flapping amplitude to swim against the
flow using hydrodynamic feedback; and (2) the follower
maintains its downstream position relative to the leader
using visual feedback.

The contributions of this paper are (1) an image-based
method to obtain the relative distance, oscillation fre-
quency, and phase of a leader fish using an onboard camera
and (2) a perception-based feedback controller using visual
and hydrodynamic measurements to regulate the down-
stream separation of the follower fish in an inline swim-
ming configuration. These contributions help to develop
fish robots that are capable of using sensing feedback to
maintain their group structure.

This work is organized as follows. Section 2 presents the
flow field model of a single robot and Bayesian estimation
for flow sensing. Section 3 describes the image processing
procedures for measuring the separation distance, oscilla-
tion frequency, and relative phase between two fish robots.
Section 4 presents the dynamic modeling of the robot, the
design of the controllers using visual and hydrodynamic
feedback, and the experimental results. Section 5 summa-
rizes the results and ongoing work.

2. FLOW ESTIMATION BY PRESSURE SENSING

This section describes the 2D potential flow model for a
robotic fish swimming in a uniform flow and flow estima-
tion using grid-based Bayesian filtering. First, the robot
is approximated as a Joukowski foil transformed from
a circle through conformal mapping. Then, the pressure
model of this robot is derived from its complex potential
model using Bernoulli’s equation. Finally, this pressure
model is set as the measurement model of a grid-based
Bayesian filter to estimate the relative flow velocity and
angle of attack using pressure difference measurements on
the surface of the robot.

2.1 Conformal Mapping and Complex Potential Functions

To obtain the state of the flow field around the follower, a
hydrodynamic model based on two-dimensional potential
flow theory (Panton, 2005) is used. The definitions of the
coordinates are shown in Fig.1. The xy frame is located at
the center of rotation of the robot. This robot is described
as a Joukowski foil in the physical z-plane mapped from a
circle centered at ζ0 with radius R in the complex ζ-plane
through the following Joukowski transform

z = ζ +
a2

ζ
− z0O, (1)

where a = l/4 is one-quarter chord length of the foil and
R = |a− ζ0|; z0O is the origin of the xy frame described
in the z0-plane. Suppose the foil rotates with velocity Ω
about the pivot point O in a flow field with uniform flow
speed Uf , the complex potential of the foil (Zhang et al.,
2015) without considering shed vortices is
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where Γ0 = 4πRU sinα is the vortex circulation generated
on the foil.

The robot is equipped with Np pressure sensors located at
the positions zp1, ..., zpi. For steady, inviscid, incompress-
ible, and irrotational fluid, the pressure difference between
two sensors located at positions zi and zj is calculated
using Bernoulli’s equation (Panton, 2005):

∆pij =
ρ

2

(∣∣W (zpj
)
∣∣2 − |W (zpi

)|2
)
, (4)

where ρ is the density of water and W (zpi
) = dF/dz is

the complex velocity at point zpi
in the z-plane. These

measurements are used for flow estimation.

Fig. 1. Coordinate systems of the fish robot including the
locations zp1, ..., zp5 of the pressure sensors.

2.2 Flow Estimation using Bayesian Filter

A recursive, grid-based Bayesian filter (Arulampalam
et al., 2002) estimates the relative flow speed U and angle
of attack of the follower α from the flow measurements.
For the grid-based method, the state space is assumed
to be discrete and consists of a finite number of discrete
states x = [U,α]T . At each time step, flow measurements
are assimilated recursively to infer the most likely state
vector x̂ by calculating its probability. The Np pairs of
pressure differences between sensors are set as the flow



measurements y = [∆p12, ...,∆pNp−1Np
]T . Then, the in-

stantaneous measurement equation is

y = H(x) + η, (5)

where H is the nonlinear function from (4) and η is the
zero-mean Gaussian sensor noise with variance σ. For
the grid-based Bayesian filter with Gaussian measurement
noise, the likelihood function is

π(y|x) = 1√
(2π)2det(Rs)

× exp

[
−1

2
(y−H(x))TR−1

s (y−H(x))

]
,

(6)

where Rs is the covariance matrix of the measurement.
The posterior probability density function (PDF) at time
k is obtained by using the Bayesian formula with the
likelihood function and the prior PDF:

π(xk|y1:k) = κπ(yk|xk)π(xk|y1:k−1), (7)

where κ is the factor normalizing the integration of the
total posterior probability to one. After incorporating the
new measurement, the posterior becomes the prior for the
next time step.

To model the process noise of the system, the PDF is
convolved with an nc-dimensional, zero-mean Gaussian
kernel as a numerical approximation of the Fokker-Planck
equation with diffusion only (Free and Paley, 2018). This
operation has a gradual blurring effect on the PDF.
Without any new measurements, the PDF becomes a
uniform distribution as time goes to infinity.

3. LEADER ESTIMATION BY VISUAL SENSING

This section describes an image processing method for
the follower to obtain the states of the leader including
oscillation frequency, phase, and the relative distance. The
concept is to convert the pixel size of the leader body
and the changes in the image intensity due to its flapping
motion to the state information using a pinhole camera
model and the discrete-time Fourier transform.

Figure 2 shows the experimental platform and the robots.
Both robots are 43 cm in length and are composed of
a rigid head and a flexible tail. Each of the robots is
connected to a rigid shaft driven by a servo motor. The
leader is mounted on the frame of the water tunnel, so it
can only perform yaw motion. The follower is attached to
a cart with linear frictionless air bearings to generate yaw
and surge motions.

3.1 Frequency and Phase of the Leader

To obtain the flapping frequency and phase of the leader
from the video sequences, we first use the contour detection
function of OpenCV (Bradski and Kaehler, 2008) to detect
the body contour of the leader. This function is able to find
the edge of the fish body in an image, providing the related

Fig. 2. Experimental platform of two robotic fish with
inline configuration. The leader is mounted on the
frame of the water tunnel and the follower is attached
to a cart with linear air bearings.

position and size in the image frame. To ensure the fish
body is picked up by the detector, some image processing
procedures are performed as shown in Fig. 3. Since contour
detectors usually work best on binary black-and-white
images, the original image (Fig. 3(a)) is first converted
to a binary image (Fig. 3(b)) with an image threshold,
where any pixel brighter(darker) than the threshold gets
set to white(black). This binary image is then blurred to
reduce the noise from bubbles (Fig. 3(c)) and is cropped
to isolate the fish body (Fig. 3(d)).

Because the leader oscillates its body in the horizontal
plane periodically, we record the x position of its body
contour in the image frame and then extract the oscillation
frequency from these time-series signals using the discrete
Fourier transform. The discrete Fourier transform returns
a list of the frequencies with corresponding amplitudes
that make up the oscillation. The frequency with maxi-
mum amplitude is then set as the feedback frequency. The
phase between the leader and follower oscillations can be
found by using cross-correlation, which is used to find the
phase that maximizes the correlation.

Fig. 3. Edge detection of the leader. (a) Original image
captured by the camera on the follower. (b) Original
image converted to the binary image. (c) Binary
image after blurring and cropping. (d) Processed
image with the edge found by the countour detection
function.

3.2 Separation Distance between the Leader and Follower

The separation D̂ between the leader and follower from
the visual measurement can be calculated by using the
pinhole camera model based on similar triangles (Bradski
and Kaehler, 2008):



D̂ =
Hl · Fc

Pl
+Dcs, (8)

where Fc is the distance from the pinhole aperture to the
image plane in pixels, which can be can be obtained from
an object with known distance and height; Hl is the height
of the leader body in the physical plane; Pl is the pixel
height of the leader body in the image plane; and Dcs

is the distance between the camera and the shaft of the
follower.

4. FEEDBACK CONTROL IMPLEMENTATION AND
RESULTS

Experiments conducted in a circulated water tunnel us-
ing two robotic fish were carried out to demonstrate the
proposed control strategy. First, the experimental setup
and the inverse kinematics for the swimming speed of
the robot are described. Then, the control system for
the follower using visual and hydrodynamic feedback is
presented. Finally, the experiments of speed and separa-
tion controls using hydrodynamic and visual feedback are
demonstrated, respectively.

4.1 Inverse Kinematics for Robotic Fish Swimming Speed

Both robotic fish consist of a rigid head printed with
PLA and a flexible tail made up of silicone rubber. The
leader and follower are controlled by a microcontroller
and a single-board computer, respectively. The leader is
mounted on the frame of the water tunnel, and the follower
is attached to a cart with linear frictionless air bearings.
An ultrasonic distance sensor is equipped on the cart to
record the separation distance between the leader and
follower. Both leader and follower are actuated by the
brushless DC motors with speed controllers. The follower
has an endoscope camera with a frame rate of 16 fps
inside its head and five pressure sensors whose positions
are indicated in Fig. 1.

To determine feed-forward control input, experiments were
conducted to determine and verify a dynamic model for
the follower robot swimming alone. The follower starts
flapping at a predetermined frequency with a varying am-
plitude until it finds an amplitude to hold its along-stream
position to counter the flow speed. Once the flapping
response settles, the amplitude for that flow speed and
frequency is noted. A set of flapping amplitude data for
varying frequencies to counteract varying flow velocities is
obtained. When the flow velocity is set to the desired swim-
ming speed, this setup aids in determining the flapping
frequencies and amplitudes for that specific swimming
speed. The inverse relationship between flapping ampli-
tude and frequency was obtained from the experiments
with varying swimming speeds as shown in Fig, 4. To
predict the amplitude A for given swimming speed U and
frequency f , a multiple linear regression model based on
the experimental data and (Zhong et al., 2017) is derived:

A(U, f) = 5.48 + 0.49U − 6.79f. (9)

Frequency, Phase, and Separation Controls To maintain
the along-stream position and motion of the follower rel-

Fig. 4. Experimentally determined amplitude vs. frequency
for varying swimming speeds.

ative to the leader, the control system shown in Fig. 5
includes separation control and phase-following control.
For separation control, the follower controls its swimming
speed by adjusting its frequency and amplitude of oscilla-
tion using visual and hydrodynamic feedback. The control
amplitude A0 for the robot to achieve a specific swimming
speed is obtained using (9):

A0 = A(Û , fF ), (10)

where Û is the relative flow speed estimated from the grid-
based filter with pressure measurements as described in (7)
in section 2; and fF is the oscillation frequency of the
follower which is set as the oscillation frequency of the

leader f̂L obtained from the camera. To compensate for the
unmodeled dynamics, a proportional feedback controller is
set as

∆A = KP

(
Dt − D̂

)
, (11)

where ∆A is the control amplitude variation;KP < 0 is the
proportional control gain; Dt is the separation command.
Then, the angle command input to the follower is the sum
of (10) and (11), i.e.,

ρF = A0 +∆A. (12)

Since leader and follower oscillate their bodies periodically,
their reference angular positions rL and rF are generated
from Hopf oscillators (Seo et al., 2010). The benefit of
using the Hopf oscillator includes continuous and smooth
transitions among different gaits due to its limit cycle
behavior. To control the phase of the follower relative to
the leader, the oscillators can be connected by a directional
diffusive coupling and the follower receives a control input
designed based on the states of the leader.

To enable the robots follow the reference trajectories to
oscillate their bodies, PI feedback controllers are chosen
as follows:

Ii = KPi∆θi +KIi

∫
∆θi dt, i = L,F (13)

where Ii is the current command input to the motor and
∆θi = ri − θi.



Fig. 5. Block diagram of the control system. The speed control using hydrodynamic feedback (orange) and separation
control (grey) using visual feedback are inside the dotted and dash-dotted boxes, respectively.

4.2 Speed Control using Hydrodynamic Feedback

Here we present the experimental results of controlling
the oscillation amplitude of the robot to swim against the
incoming flow using hydrodynamic feedback. The block
diagram of the control system is shown inside the orange
dashed square in Fig. 5. Figure 6 (a) shows the position
of the robot recorded by the ultrasonic distance sensor
and Figs. 6 (b) and (c) show the estimation results of the
relative flow speed and angle of attack. The robot started
oscillating its body at a frequency of 2 Hz at t = 30 s
and the feedback control started at t = 40 s. The water
tunnel speed started at 0.34 m/s at t = 30 s, raised to
0.44 m/s at t = 60 s, dropped to 0.27 m/s at t = 90
s, and then stopped at t = 140 s. The processing rate of
estimation and control was 10 Hz, and the pressure signals
were filtered with a moving-average window with a window
size of 0.2 s. There is a delay in both estimated signals
due to the usage of a quasi-steady model and the delay of
filtering. The relative flow speed was estimated using the
grid-based filter described in Section 2 and was mapped
by (10) to derive the required oscillation amplitude for
the robot. Then the desired amplitude was set to the
controllers in (12–13). The underprediction of flow velocity
during t = 60 − 90 s caused the robot to be pushed back
by the flow.

4.3 Separation Control using Visual Feedback

Here we present the experimental results of controlling the
follower to maintain its separation distance relative to the
leader with inline configuration using visual feedback. The
block diagram of the control system is shown inside the
grey dash-dotted square in 5, and the control formulas
are shown in (11–13). The separation distance between
two robots is obtained by the camera on the follower
using 8 as described in Section 3. We set the follower to
swim intermittently, similar to a fish performing burst-
and-cost swimming for energy economy (Fish et al., 1991).
The follower only performs visual sensing during the coast
phase (for 1 s) such that the self-motion effect is smaller.
After another 1 s for transition, these visual measurements
were averaged and fed back during the burst phase (for 4 s)
to control the oscillating amplitude of the follower. Figure
7 shows the separation measurements from the ultrasonic
distance sensor (blue line) and the onboard camera of the
follower (orange dots). The black dashed line is the target
separation distance. There were some moments (within

Fig. 6. Experimental results of relative flow feedback con-
trol. (a) Along-stream position of the robot recorded
by the ultrasonic distance sensor. (b) Probability den-
sity of the relative flow velocity from the Bayesian
estimator with the tunnel flow velocity (white dash-
dotted line). (c) Probability density of the angle of
attack with the heading of the robot (white dash-
dotted line).

grey dashed frames) during the coast phase when the
follower could not detect the whole contour of the leader
and made an inaccurate measurement. The follower came
too close to the leader during the burst phase because its
feedback was based on measurements taken in the previous
coast phase. This issue can be mitigated by relocating the
camera closer to the nose of the head, using a smaller
control gain and shorter burst phase duration, or using
hydrodynamic feedback for close-distance control. Overall,
the follower tracks to the target distance.

5. CONCLUSION

This work develops a method that uses visual and hydro-
dynamic feedback to control the relative position of the
follower to the leader of two robotic fish swimming in an
inline configuration. The follower equipped with a pressure
sensor array is capable of sensing the relative flow speed
and adjusting its flapping amplitude to swim against the
flow. The onboard camera provides the relative position of
the leader that can be used as feedback to control the sep-
aration distance between two robots. Experimental results
show the feasibility of these two types of control. Ongoing
work focuses on incorporating visual and hydrodynamic



Fig. 7. Separation control between two robots as the
follower swims intermittently. The orange dots are the
separation measurements from the onboard camera of
the follower during the coast phase, and they were
fed back during the burst phase for the control. The
black dashed and blue lines are the target distance
and measurement from the ultrasonic distance sensor,
respectively. The inaccurate measurements occurred
(within the grey dashed frames) as the follower came
too close to the leader.

feedback to control the follower to achieve phase locking
with the leader while maintaining its downstream position.
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