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Abstract. Obstacles and swimming fish in flow create a wake with an
alternating left/right vortex pattern known as a Kármán vortex street and reverse
Kármán vortex street, respectively. An energy-efficient fish behavior resembling
slaloming through the vortex street is called Kármán gaiting. This paper describes
the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate
and control flow-relative position in a Kármán vortex street using potential flow
theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The
Joukowski foil is fixed in downstream position in a flowing water channel and free
to move on air bearings in the cross-stream direction by controlling its angle of
attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the
sensing and control scheme is validated using off-the-shelf pressure sensors in an
experimental testbed that includes a flapping device to create vortices. We derive
a potential flow model that describes the flow over a Joukowski foil in a Kármán
vortex street and identify an optimal path through a Kármán vortex street using
empirical observability. The optimally observable trajectory is one that passes
through each vortex in the street. The estimated vorticity and location of the
Kármán vortex street are used in a closed-loop control to track either the optimally
observable path or the energetically efficient gait exhibited by fish. Results from
the closed-loop control experiments in the flow tank show that the artificial lateral
line in conjunction with a potential flow model and Bayesian estimator allow the
robot to perform fish-like slaloming behavior in a Kármán vortex street. This
work is a precursor to an autonomous robotic fish sensing the wake of another
fish and/or performing pursuit and schooling behavior.

Keywords: flow sensing, closed-loop control, bioinspiration, vortex street, Bayesian
estimation, fish swimming
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1. Introduction

Autonomous navigation of underwater vehicles through
complex flow structures such as the turbulent wake
of another vehicle requires a sensing mechanism to
perceive variable flow patterns. Fish have a sens-
ing structure known as the lateral line, which contains
spatially distributed superficial and canal neuromasts
sensitive to flow velocity and pressure gradients respec-
tively [1,2], that provides inspiration for a similar sens-
ing system for underwater vehicles. Fish utilize lateral-
line sensing of the hydrodynamic properties of the flow
to help navigate and seek prey, even in complete dark-
ness [3–5]. Bioinspired artificial lateral lines comprised
of pressure sensors have the potential to enable robotic
platforms to estimate the flow speed and angle of at-
tack in uniform flows [6] and the location and strength
of circulating flow structures such as vortices and vor-
tex streets [7].

A frequently studied circulating structure is the
Kármán vortex street, a pattern of clockwise and anti-
clockwise vortices shed by a blunt body due to flow
separation [8]. This pattern is also produced in the
wake of fish as they swim (though with opposite vortex
strength, known as a reverse Kármán vortex street) [9],
and is investigated here as a precursor to fish-robot
multi-vehicle control including pursuit and schooling
behavior.

This work describes the use of a Bayesian
filter in conjunction with a potential flow model
and distributed pressure sensors on a fish-shaped,
underwater Joukowski foil [10, 11] to estimate the
strength, phase, and cross-stream location of a Kármán
vortex street, as well as the design of a feedback
controller to drive the foil to an arbitrary reference
trajectory through the street. The Joukowski foil
is fixed in its downstream position in a flow tank
and its angle of attack is controlled so the foil
moves in the cross-stream direction along an air-
bearing track. It can be programmed to follow
any differentiable reference trajectory through a
vortex street. Particularly, an optimal sinusoidal
path determined by empirical observability and
the slaloming path known as Kármán gaiting are
experimentally validated. Observability is a concept
that determines how well a set of states can be
reproduced from a set of measurements, if at all.

Fish in nature slalom through alternating vortices
using a combination of their lateral line and vision

system and are capable of Kármán gaiting even in
the absence of vision [12]. Research has also shown
that during Kármán gaiting behavior the tail-beat
frequency of the fish matches the vortex-shedding
frequency and muscle activity decreases compared to
station holding in uniform flow [13]. Dead (but still
flexible) trout towed behind an obstacle in the flow can
even exhibit Kármán gaiting and passively generate
thrust [14].

The lateral line in fish is an important sensing
mechanism for navigating the underwater space,
particularly for Kármán gaiting, but also for schooling
[15], predator/prey detection [16, 17], and wall
following [4]. The effective sensing range of the lateral
line is on the order of one body length [18]. An artificial
lateral line has the capability of providing the same
sensing mechanism to robotic fish and marine vessels.
The signal on the nerve fibers in fish associated with
the lateral line carries enough information to determine
the vortex-shedding frequency of a Kármán vortex
street and can also be decoded to locate the source
of a vibrating dipole [19,20].

In prior work on an artificial lateral line, Yang
et al. showed that a MEMS-based lateral line was
capable of localizing a vibrating dipole [21]. Gao and
Triantafyllou further describe sensing and controlling
the yaw of a robotic underwater vehicle equipped with
an artificial lateral line composed of pressure sensors
[22]. Lagor et al. equipped a Joukowski foil with
commercial pressure sensors to estimate angle of attack
and flow speed in uniform flow and used the estimate
in a closed-loop control to demonstrate rheotaxis [6].
DeVries et al. used pressure sensors with ionic polymer-
metal composites (IPMC) velocity sensors in a bi-
modal artificial lateral line to estimate the location of
an upstream obstacle and performed station holding
behind the obstacle using feedback control [23]. Lagor
et al. determined the best path of an underwater glider
to tour an ocean-scale, two-vortex system using the
local unobservability index [24].

There is a large body of work on artificial lateral
lines used as a sensing mechanism to detect vortices
or estimate associated parameters. Li and Saimek
estimated the strength of free vortices in the flow
with pressure sensors distributed on an underwater foil
and a Kalman filter [25]. Fernandez used pressure
sensors on a flat plate as well as a streamlined body to
estimate the location of moving vortices, but performed
no closed-loop control [26]. In simulation, Ren and
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Mohseni show that the lateral line sensing carries
enough information to determine all parameters of the
potential flow model of a vortex street by modeling the
lateral line as an infinite flat plate and perforning a
numerical approximation to the flow over a Joukowski
airfoil [27]. Salumäe and Kruusmaa created a fish
robot capable of detecting whether or not it is in a
Kármán vortex street using an artificial lateral line
and navigating to the turbulent wake, but the authors
did not provide an analytical model for the flow or
an estimate of vortex positions within the street [28].
In a similar vein, Venturelli et al. demonstrate that
an artificial lateral line can be used to distinguish
uniform flow from a Kármán vortex street, as well as
the vortex-shedding frequency, travelling speed, and
downstream vortex spacing [29]. Using an artificial
lateral line comprised of optical flow sensors, Klein and
Bleckmann localize a cylinder producing a Kármán
vortex street by comparing the time history of the
distributed sensors, but provide no estimate of the
position of vortices within the street and perform no
closed-loop control [30]. Most recently, Wang et al.
equipped a robotic fish with an artificial lateral line and
were able to determine the swimming frequency and
distance to an upstream robotic fish that was shedding
a reverse Kármán vortex street, but did not investigate
the case where the robot was not colinear with the
vortex street [31].

In our previous work [7], pressure sensors were
used to estimate the state of a vortex street and
demonstrate closed-loop control to an optimally
observable reference trajectory, but there was no
Joukowski foil in the flow and the sensor array position
was controlled directly through a stepper motor. The
optimally observable trajectory was a sinusoidal path
180◦ out of phase from Kármán gaiting behavior,
meaning that the sensor array was to collide with each
vortex in the street. A Bayesian filter using a potential
flow model of a Kármán vortex street estimated the
strength, phase, and cross-stream position of the street
relative to the sensor array.

This paper, building on our previous work [7],
aims to use feedback control to track reference
trajectories through a Kármán vortex street. This
aim requires an estimate of the location of vortices
within the street, represented by the estimated phase
and cross-stream location of the street. This fish-
inspired behavior has applications in pursuit and
schooling behavior of autonomous underwater vehicles.
The optimally observable path may be desirable for
platforms with larger sensor noise or where certainty in
the estimate is of prime importance. Kármán gaiting
may be desirable in cases where energy conservation
is important. Matching the tail-beat frequency of a
robotic fish to the vortex shedding frequency has shown

to increase swimming efficiency [32]. This work does
not investigate the efficiency of the biological Kármán
gaiting trajectory, but develops the necessary tools to
follow it.

A model free approach [21, 28–31] relies on
examining the data from an artificial lateral line and
establishing heuristic methods to determine various
parameters of a vortex street. The analytical model
developed herein is independent of the shape of the
Joukowski foil and sensor placement so it is easily
adaptable to a variety of platforms, whereas a model-
free approach requires new heuristics for each sensor or
body configuration.

The methodology of this work is outlined below
and uses tools from potential flow theory, nonlinear
estimation, and nonlinear observability. Estimates of
the strength, phase, and cross-stream location of a
vortex street are formed using pressure measurements
from an artificial lateral line and used in closed-
loop, trajectory-tracking feedback control. The
Kármán vortex street is modeled as a potential flow
with two parallel infinite lines of vortices [8]. The
Joukowski foil is placed in the flow model using the
Joukowski transformation on a cylinder [10] and the
Milne-Thomson Circle Theorem [33]. Measurement
equations formed with the potential flow model and
Bernoulli’s principle output the predicted pressure
reading according to three states (vortex strength of
the street, cross-stream position of the street, and a
phase angle that represents the downstream position
of the primary vortex in the street). In line with
the goal of a fully autonomous vehicle, all parameters
and calculations are in a reference frame fixed to the
Joukowski foil. The measurement equations, in
conjunction with real-time sensor readings, are used in
a nonlinear, recursive, grid-based Bayesian framework
to estimate the three states. The estimate is used in
feedback control of the angle of attack of the Joukowski
foil to generate lift in the cross-stream direction and to
track a reference trajectory through the street.

The techniques developed in this paper are
demonstrated in an experimental testbed. The testbed
includes a 185 L flow tank, an air-bearing system to
allow movement of the Joukowski foil in the cross-
stream direction, and a system to generate vortices in
the desired Kármán vortex street pattern. The system
was successful in estimating the state of the vortex
street as well as tracking the reference trajectories.
This work has applications in autonomous underwater
navigation in cluttered environments and sensing or
pursuing other fish or robots in water.

The contributions of this paper are (1) a potential
flow model of the flow over an airfoil in a Kármán
vortex street including a solution to the Kutta
condition, which guarantees flow leaves smoothly at the
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Figure 1. Illustration of sensor and control system for the
Kármán vortex street. Red circles are pressure sensors.

trailing edge of the foil and (2) closed-loop feedback
control of a Joukowski foil with an artificial lateral
line along an arbitrary trajectory using angle of attack
regulation to produce lift in the flow. Additionally,
we extend the results of our previous work [7] by
deriving a new potential flow model that includes a
foil in the flow. With this extension, we present here a
Bayesian filter framework using pressure measurements
to estimate the vortex strength, location, and phase
of a Kármán vortex street as well as the calculation
of an optimally observable path through a vortex
street based on empirical observability, which yields a
sinusoidal path 180◦ out of phase from Kármán gaiting
behavior.

The paper proceeds as follows. Section 2 presents
the model for the flow over a Joukowski airfoil
subject to a Kármán vortex street and derives the
measurement equation for the artificial lateral line.
Section 3 describes the Bayesian framework used to
estimate the location and strength of the vortex street.
Section 4 covers the dynamics of the Joukowski
foil and the controller for the angle of attack of
the Joukowski foil. Section 5 presents the work on
empirical observability-based path planning. Section 6
describes results from the experimental demonstration
and Section 7 summarizes the paper and ongoing work.

2. Modeling flow over a Joukowski airfoil in a
Kármán vortex street

Figure 1 shows the physical layout of the modeling
framework and the goal of the sensing and control
design below. The Joukowski foil has four pressure
sensors distributed on the forefront of the body. The
Kármán vortex street is modeled with potential flow
theory. The inertial reference frame I = (O, e1, e2)
is aligned such that e1 = a1 is pointing downstream.
The body-fixed, non-rotating frame A = (B,a1,a2)
is aligned with I and centered on the origin of the
Joukowski foil. The body-fixed frame B = (B,b1,b2)
is aligned with b1 pointing to the tail of the Joukowski
foil and is rotated from frame A by the angle of

attack α. The closest anti-clockwise vortex to the
Joukowski foil, i.e., the primary vortex, has coordinates
zv = xve1+yve2 = xv+jyv in frameA, where j =

√
−1

is the imaginary number. Each vortex has strength γ or
−γ and the vortex street moves to the right with speed
U . Every like-signed vortex in the street is spaced
horizontally by a units. The two lines of vortices are
separated vertically by h units. The Joukowski foil is
fixed in the a1 direction and actuates in the a2 direction
by controlling its angle of attack α to generate lift.

The Joukowski foil shape of the robot allows
the use of a potential flow model. A potential flow
model produces the flow velocity at any point from
the derivative of a scalar potential function [10,33,34].
Potential flow theory characterizes invisid, irrotational,
incompressible flows at low speed flows where viscous
effects are minimal. Though the flow may separate at
large angles of attack, the pressure sensors are grouped
towards the head of the Joukowski foil where the flow
is attached and the model remains valid [10]. Section
2.1 presents the flow over a cylinder at a non-zero
angle of attack and the corresponding flow induced
by a Kármán vortex street. An altered version of the
Milne-Thomson Circle Theorem maintains the cylinder
as a boundary condition. Section 2.2 presents the
Joukowski transformation that converts flow past a
cylinder to flow past an airfoil and derives the condition
on the circulation around the cylinder to maintain the
Kutta condition. Section 2.3 uses Bernoulli’s equation
to derive the measurement equation that gives the
pressure difference between two sensors in the artificial
lateral line as a function of the three states of the vortex
street.

Figure 2 shows the flow in the pre-transform ζ-
plane and in the post-transform z-plane, in which the
cylinder is transformed into an airfoil. Note that the
vortices are in a straight line only in the ζ-plane; the
Joukowski transformation has an unintended effect of
shifting the position of vortices near the cylinder.

2.1. Flow in the ζ-plane

Modeling flow around a cylinder is a well known
application of potential flow theory. The potential flow
FC(ζ) around a cylinder centered at location ζ0 in the
complex plane is modeled as the summation of uniform
flow, a doublet, and a vortex [10]:

FC(ζ) = U(ζ−ζ0)e−jα+
Ur20
ζ − ζ0

ejα−j
ΓC

2π
ln

(
ζ − ζ0
r0

)
,(1)

where U is the flow speed, α is the angle of attack, r0
is the radius of the cylinder, and ΓC is the circulation
strength. In potential flow, the velocity field of a
potential flow f(z) is given by the complex conjugate
of the derivative of the potential f(z) [10], i.e.,

w(z) = u(z)− jv(z) =
df

dz
,
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Figure 2. Simulated flow field of a lifting cylinder near a Kármán vortex street (a) in the ζ-plane and (b) in the transformed
z-plane.

where u(z) and v(z) are the horizontal and vertical
components of the velocity. The true velocity field
is found by taking the complex conjugate, w(z) =
u(z)+ jv(z). The conjugate velocity field for the lifting
cylinder in the ζ-plane is

dFC

dζ
= Ue−jα − U

(
r0

ζ − ζ0

)2

ejα − j
ΓC

2π

1

ζ − ζ0
. (2)

From [8], the potential function for a Kármán
vortex street is

FK(ζ) = j
γ

2π

[
log sin

π

a
(ζ − ζv)

− log sin
π

a
(ζ − (

1

2
a+ jh)− ζv)

]
.

Altering this potential for a Kármán vortex street
inclined from the real axis at an angle α yields

FKα(ζ) = j
γ

2π

[
log sin

(π
a

(ζ − ζv)e−jα
)

(3)

− log sin

(
π

a

(
(ζ − ζv)e−jα − (

1

2
a+ jh)

))]
.

Potential (3) produces singularities (vortices) at ζ =
ζv +Naejα and ζ = ζv +Naejα + ( 1

2a+ jh)ejα, where
N = 0,±1,±2, . . . .

Next, add the potential for a lifting cylinder (1)
to the potential for a Kármán vortex street (3) to
obtain the potential of a cylinder in a vortex street.
To maintain the lifting cylinder as a boundary in the
flow, FKα(ζ) must be altered with the Milne-Thomson
Circle Theorem‡ [33],

w(z) = f(z) + f

(
r20
z

)
, (4)

which allows any potential flow f(z) to be augmented
to include a cylinder of arbitrary radius r0 placed

‡ Here the overline operator in f(·) indicates that j is replaced
by −j everywhere it appears in f(·). Note that this is not the

same as taking the conjugate of the result, f(·), or evaluating
the function with the conjugate of the argument, f(·). However,

it is true that f(·) = f(·).

at the origin of the coordinate system. As will be
shown in Section 2.2, we impose a cylindrical boundary
condition at an arbitrary center, not the origin. (A
thorough proof of the Circle Theorem can be found
in [35, Section 2.1].) The key to the proof of (4) is
that for a point z on a circle C centered at the origin
with radius r0, the complex conjugate is z = r20/z. To
derive the Circle Theorem about an off-origin cylinder,
we need only to find the complex conjugate of a point
on a circle centered at z0, which can be shown by
substitution to be z = r20/(z − z0) + z0. The Circle
Theorem then becomes

w(z) = f(z) + f

(
r20

z − z0
+ z0

)
. (5)

(An alternate derivation of the off-origin Circle
Theorem using stream functions can be found in [24,
Corollary 1].)

Applying (5) to the Kármán vortex street complex
potential (3) yields

FK◦
α

(ζ) = j
γ

2π

[
log sin

(π
a

(ζ − ζv)e−jα
)

− log sin

(
π

a

(
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα
)

(6)

− log sin

(
π

a

(
(ζ − ζv)e−jα − (

1

2
a+ jh)

))
+ log sin

(
π

a

((
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα − (

1

2
a− jh)

))]
,

where r0 is the radius of a cylinder centered at ζ0 as
in (1), ζv is the location of the primary vortex in the
Kármán vortex street, and γ is the vortex strength.
This complex potential represents the flow field of a
Kármán vortex street augmented to include the lifting
cylinder (which will be transformed to become an
airfoil) as a streamline of the flow. The conjugate
velocity field is

dFK◦
α

dζ
= j

γ

2a

[
cot
(π
a

(ζ − ζv)e−jα
)
e−jα
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− cot

(
π

a

(
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα
)
ejα (7)

− cot

(
π

a

(
(ζ − ζv)e−jα − (

1

2
a+ jh)

))
e−jα

+ cot

(
π

a

((
r20

ζ − ζ0
+ ζ0 − ζv

)
ejα − (

1

2
a− jh)

))
ejα
]
.

Adding (1) and (6) yields the total potential flow
of a lifting cylinder in the flow field of a Kármán vortex
street.

FT(ζ) = FC(ζ) + FK◦
α

(ζ). (8)

Similarly, adding (2) and (7) yields total conjugate
velocity

WT(ζ) =
dF (ζ)

dζ
=

dFC(ζ)

dζ
+

dFK◦
α

(ζ)

dζ
. (9)

A simulation of this flow field in the pre-transform ζ-
plane can be seen in Figure 2(a).

2.2. Flow in the z-plane

The Joukowski transformation allows the potential
flow over a cylinder to be used in order to calculate
the flow over an airfoil, the parameters of which are
chosen to resemble the cross-section of a fish. The
transformation is given by [10]

z(ζ) = ζ +
c2

ζ
, (10)

where c = `/4 is the quarter-chord length and ` is the
chord length (the length of the fish-shaped body). The
center ζ0 and radius r0 of the cylinder in the ζ-plane
determine the geometry of the airfoil produced by the
Joukowski transformation. The center and radius are
[10]

ζ0 = c

(
−4

3
√

3

ta
`

+ 2j
ha
`

)
(11)

r0 =

(
`

4
+

ta

3
√

3

)
, (12)

where ha is the max height of the camber line from the
chord line and ta is the max thickness of the airfoil. For
this work we use an inflexible and uncambered airfoil,
so ha = 0.

The conjugate velocity at a point z in the z-
plane is found using the derivative of the Joukowski
transformation [10], i.e.,

W (z) =
dFT

dζ

dζ

dz
=

dFT

dζ

(
dz

dζ

)−1
= WT(ζ(z))

(
1−

(
c

ζ(z)

)2)−1
(13)

= u(z)− jv(z).

To find the velocity around the airfoil at point z, (13)
must be evaluated at the corresponding point in the
ζ-plane by the inverse Joukowski transformation [36]

ζ(z) =
1

2

(
z + sgn (<(z))

√
z2 − 4r20

)
. (14)

A simulation of this flow field in the post-
transform z-plane is in Figure 2(b). The z-plane is
the physical plane, whereas the ζ-plane is a convenient,
non-physical space used to perform calculations. Note
that since the vortex street model is defined in
the ζ-plane, vortices are deviated slightly from the
intended pattern in the z-plane after the Joukowski
transformation. However, the error in vortex location
due to the transformation will not exceed r0−ta/2, the
maximum distance a point on the cylinder’s surface is
displaced by the Joukowski transformation.

The circulation of the lifting cylinder ΓC in (1)
remains a free parameter, but can be prescribed by
the Kutta condition [10]. In this context, the Kutta
condition states that the trailing edge of the airfoil
must be a stagnation point in order to avoid non-
physical infinite velocities around the sharp trailing
edge [10]. Through the Joukowski transformation, the
trailing edge of the airfoil corresponds to the point
in the ζ-plane where the cylinder intersects the real
axis. The angle from the center of the cylinder to
the trailing edge point is θ0 = −α − 2ha/` [10].
To solve for ΓC, we must find the tangential and
radial components of the velocity with respect to the
center of the cylinder and solve for the circulation
that results in a stagnation point at the trailing edge.
Changing to polar coordinates centered on the cylinder
by substituting ζ = ζ0 + rejθ into (9) yields

W̃T(r, θ) = WT(ζ) = WT(ζ0 + rejθ).

The radial ur and tangential uθ components of a
complex velocity are [10]

ur(r, θ)− juθ(r, θ) = W̃T(r, θ)ejθ,

which implies

ur = <
(
W̃T(r, θ)ejθ

)
(15)

uθ = −=
(
W̃T(r, θ)ejθ

)
.

Substituting r = r0 and θ = θ0 = −α − 2ha/` in (15),
ur evaluates to 0 as expected, because the cylinder was
chosen to be a boundary in the flow. Setting uθ = 0
and solving for ΓC yields the circulation that satisfies
the Kutta condition (see Appendix A).

2.3. Pressure measurement equation

Bernoulli’s equation combined with the flow velocities
modeled above predicts the pressure at a point z in
the flow field of a Joukowski foil in a vortex street. Let
p(z) denote the static pressure at z, ρ the fluid density,
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W (z) the velocity at z, g the gravitational acceleration,
and Z the elevation. Applying Bernoulli’s principle [11]
for steady, inviscid, incompressible, irrotational flow
yields

p(z) +
1

2
ρ|W (z)|2 + ρgZ = constant. (16)

In the experiment described in Section 6, four
pressure sensors are mounted on the body of the
Joukowski foil. Inspired by the function of canal
neuromasts [37], pressure differences between sensors
are measured and modeled to remove the effects
of ambient pressure, rather than using the absolute
pressure measurements. From (16), for any two sensor
locations zi and zj , we have

p(zi) +
1

2
ρ|W (zi)|2 = p(zj) +

1

2
ρ|W (zj)|2.

The pressure difference, ∆pij = p(zi)− p(zj), is

∆pij =
1

2
ρ

[
|W (zj)|2 − |W (zi)|2

]
, (17)

where W (z) is given by (13).

3. Vortex street estimation

The estimation of the states of the vortex street
is performed by a recursive, grid-based Bayesian
filter [38, 39]. The principle of this filter is to
form a measurement model that predicts what the
measurements from the sensors would be if the state
of the system were a particular value in the state
space. By comparing the measurement predictions
of every point in the state space grid with the
actual measurement, a multi-dimensional conditional
probability density function (PDF) is formed, called
the measurement likelihood function. The likelihood
function is combined with the prior PDF of the
previous time step to become the posterior PDF
according to Bayes’ theorem. The posterior then
becomes the prior of the next time step after it is
forecast forward according to the system dynamics
including process noise.

In our framework, the Bayesian filter assimilates
pressure difference measurements to estimate the
strength, phase, and cross-stream location of the vortex
street. Equations (9), (13), and (17) are used in Section
2 to model pressure measurements from the sensors.
The recursive, grid-based Bayesian filter estimates a
set X of parameters from a set Y of measurements [38].
Suppose the instantaneous measurement vector is

Y = H (X) + η, (18)

where H (X) is the (nonlinear) measurement equation
(17) and η is (Gaussian) sensor noise. With nps
pressure sensors, there are np = nps− 1 measurements
of linearly independent pressure differences. Note

that there are np = (n2ps − nps)/2 total pressure
differences among the pressure sensors, but they are
not linearly independent. Using redundant pressure
sensor differences in the Bayesian filter framework will
have the effect of mitigating sensor noise more quickly
(in fewer time steps), but each time step will take
longer. In this work, we use the minimum number
of linearly independent sensors in order to have the
maximum update rate to accomodate the real time
dynamics of the Joukowski foil under closed-loop
control. The measurement vector is

Y = [∆p1, . . . ,∆pnp ]T ∈ Rnp , (19)

where each pressure difference entry is given by (17)
evaluated using the locations of the pressure sensors in
frame B.

For the grid-based Bayesian filter with Gaussian
measurement noise, the likelihood function is the
following conditional probability of measurement Y
given state vector X [38]:

π(Y|X) =
1√

(2π)n det(R)
(20)

exp

[
− 1

2
(Y −H (X))TR−1(Y −H (X))

]
,

where n is the dimension of the state space and
R ∈ Rnp×np is the covariance matrix of the sensor
noise. Let mi be the width of the ith dimension in
the n-dimensional state space, then the discrete grid
X ∈ Rm1×m2× . . .×mn of all expected possible values of
the state space is used to evaluate the measurement
equation. (For a large number of grid points, this
calculation may be computationally intensive.)

Bayes’ formula allows each new measurement and
its likelihood function (20) to be combined with the
prior estimate, yielding the posterior estimate. Let
Yk be the set of measurements at time tk, with k =
1, 2, . . . . Then,

π(X|Yk, . . . ,Y1) = κπ(Yk|X)π(X|Yk−1, . . . ,Y1),

where κ is a normalizing factor to ensure the posterior
integrates to one. After the incorporation of each new
measurement, the posterior becomes the prior for the
next time step. For the initial time step, we choose a
uniform prior. The notation π(X|Y) is used for the
posterior π(X|Yk, . . . ,Y1) at an arbitrary value of k.

The posterior estimate π(X|Y) is an n-
dimensional matrix with each dimension corresponding
to one of the states in the parameter space. The width
mi of each dimension is determined by how fine a grid
is chosen for the Bayesian filter. The computational
time needed for each time step increases with the size
of π(X|Y). The time evolution of the posterior (in
order to become the prior of the next time step) is ac-
complished by shifting the values of the PDF according
to the continuous dynamics of Section 4. The angle of
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attack α is a known input and is assumed constant over
each time step, allowing each point in the posterior to
be forecast using a numerical solver such as ode45 in
MATLAB.

Process noise is modeled by convolving the PDF
with an n-dimensional, zero-mean Gaussian kernel
as a numerical approximation of the Fokker-Planck
equation with diffusion only [40]. This operation has
a blurring effect on the PDF as time goes on. In
the absence of new measurements, the PDF becomes
uniform as time goes to infinity.

The full flow field given in (13) is determined by
the geometry of the Joukowski airfoil, the circulation
of the airfoil found by the Kutta condition in (A.1),
and the parameters of the Kármán vortex street.
Each parameter to be estimated in the Bayesian filter
framework greatly increases the computational time
needed at each time step. It is therefore advantageous
to reduce the number of parameters in the estimation
state space as much as possible. For example, the
geometry of the foil is known by design and ΓC is a
function of the other states of the system.

There are seven parameters that uniquely deter-
mine the flow field: U (the freestream flow speed), α
(the angle of attack of the airfoil), γ (the strength of
each vortex in the street), a (the horizontal spacing of
the vortices), h (the vertical spacing of the vortices),
xv (the horizontal location of the vortex street in frame
A), and yv (the vertical location of the vortex street in
frame A). Previous work [6] demonstrated the use of
pressure sensors to estimate the free-stream speed of a
flow as well as the angle of attack. Thus, assume here
that flow speed U and angle of attack α are estimated
by an independent, parallel filter.

The stability analysis in [8] shows that the vertical
spacing h of the vortices is directly proportional to the
horizontal spacing a by h = a 1

π sinh−1(1) ≈ 0.2805a,
so h can be removed from the parameter space. The
horizontal spacing a is related to the diameter of
the upstream obstacle shedding the vortices through
the Strouhal number St. For low-frequency vortex
shedding [41],

St =
fD

U
≈ 0.2, (21)

where f is the frequency of shedding, D is the obstacle
diameter, and U is the flow speed. The frequency obeys
f = U/a, so if the obstacle diameter is known, then
a may be calculated. Finally, because xv = <(zv)
measures the horizontal distance to the closest anti-
clockwise vortex in an infinite line of vortices moving
at constant speed U , this distance is represented by a
phase angle

φ = 2π
xv
a
, φ ∈ [−π, π). (22)

A phase angle of φ = 0 corresponds to when
the primary vortex is horizontally in line with the

Joukowski foil; φ = π is when the primary vortex is
at xv = a/2 and a new vortex becomes the primary
vortex. In this way, the parameter space is reduced
to three variables: φ (the phase of the vortex street),
yv (the cross-stream distance to the primary vortex
of the street), and γ (the strength of the street).
Though only the phase and cross-stream distance are
necessary for the controller described in Section 4, the
vortex strength must be estimated to have the full
mathematical description of the vortex state that is
necessary for the Bayesian filter. For the Kármán
vortex street, the grid of all possible values is three-
dimensional with XK◦

α
∈ Rmφ×myv×mγ .

The sensor noise matrix in (20) is

R = diag(Rp . . . Rp︸ ︷︷ ︸
np

),

where Rp is the expected noise variance of the pressure-
difference measurements, found by fitting a Gaussian
density to the data collected from the pressure sensors
in uniform flow.

4. Dynamics and flow-relative control

To design a controller, perform the observability
analysis of Section 5, and perform the forecast step
of the Bayesian filter, a model of the system dynamics
is needed. We make several assumptions about the
dynamics of the Joukowski foil and vortices. The
first is that the effect of the vortex street on the
Joukowski foil is ignored. In order to account for these
dynamics, the lift L in the a1 direction (see Figure 1)
would be given by the Kutta-Joukowski Theorem [10]
as L = ρUΓC, where ΓC from (A.1) is a function of
angle of attack α. In the absence of a vortex street,
i.e., in a uniform flow, this lifting law reduces to the
thin airfoil theory below.

The second assumption is that the airfoil does not
affect the path of the vortices in the street. Each vortex
in the street deflects from its nominally straight path
as it interacts with the obstruction of the airfoil. This
effect is well modeled in potential flow using Routh’s
Rule [42, 43], but individual movement of vortices in
the vortex street is not represented in our framework
because the measurement equation (17) assumes the
entire vortex street can be represented by one set of
planar coordinates. The error due to this effect is
mitigated because the vortices are only deflected once
they are downstream of the airfoil. Previous work [36]
has shown that the most effective sensor placement is
near the head of the Joukowski foil and is thus less
effected by the vortex deflection than if the sensors
were placed closer to the tail. The third assumption
is that the vortices are constant strength and do not
decay as they move downstream.
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For the cross-stream coordinate yv dynamics, we
adopt the lifting law from thin airfoil theory [11]. Thin
airfoil theory shows that the sectional lift coefficient
cl = 2πα and

L = clqS = ρπU2Sα, (23)

where S is the surface area of the foil. We model the
cross-stream dynamics as

mÿv = −L− bẏv, (24)

where b is a damping term and the negative sign on L is
included because yv measures the vertical displacement
of the primary vortex relative to the center of the foil.
If the Joukowski foil has positive lift, yv decreases as
the foil moves in the positive a2 direction.

Because the Joukowski foil is fixed in the
downstream direction, the phase angle φ (which keeps
track of the a1 coordinate, xv, according to (22)) is
unaffected by the foil’s movement and the vortices
advect in the flow at speed U . The downstream
dynamics are

φ̇ = 2π
U

a
= constant. (25)

Finally, the vortex strength dynamics are

γ̇ = 0,

because of the assumption that the vortices do not
decay as they travel downstream.

For our Kármán vortex street setting, the goal of
the closed-loop control is to track a phase-dependent
reference trajectory yv,ref = yv,ref(φ), meaning for any
given phase φ there is a reference vertical position
yv that should be achieved by actuating the angle of
attack α of the Joukowski foil. Note that yv is the
position of the vortex street in body-fixed, non-rotating
frame A (see Figure 1) so if the Joukowski foil moves
in the e2 direction in the inertial frame I, yv decreases.
All calculations within the estimator and controller are
performed in body-fixed frame B. If the Kármán vortex
street never moves in the cross-stream direction, yv still
changes if the Joukowski foil translates in the cross-
stream direction.

Let φ̂ and ŷv represent the maximum likelihood
estimate of the relative phase and cross-stream
position of the vortex street from π(X|Y), the three-
dimensional PDF output every time step by the
Bayesian filter (see Section 3). Although the posterior
is only updated once per time step, the relatively fast
update rate of 20 Hz allows the system to be well
characterized by continuous dynamics. The reference
trajectory yv,ref = yv,ref(φ̂) is a function of the estimate
of the phase of the vortex street. Letting e1 = ŷv−yv,ref
and e2 = ˙̂yv − ẏv,ref , the error dynamics are

ė1 = e2

ė2 = − 1

m
ρπU2Sα− b

m
˙̂yv − ÿv,ref ,

where the cross-stream dynamics (23) and (24) have
been used. We choose a tracking PD controller [44] for
the angle of attack α,

α = − m

ρU2πS

(
ÿv,ref +

b

m
˙̂yv − kpe1 − kde2

)
, (26)

with control gains kp = kd = 5. Damping constant
b = 15 kg s−1 was found to best match the experimental
dynamics through trial and error. This damping term
represents the damping effect of the water on the
Joukowski foil as well as the nonzero friction of the air-
bearing system. The stable, closed-loop error dynamics
are

ė1 = e2

ė2 = −kpe1 − kde2,
with eigenvalues of

λ = −kd
2
±
√
k2d − 4kp

2
,

which have negative real parts since kp, kd > 0.

5. Observability-based path-planning

The observability of a system quantifies the capability
of a set of outputs Y to be used to infer the
internal states X of the system on which the outputs
depend. We use this concept here to find the reference
trajectory through the vortex street that leads to the
best estimates of the street parameters. Traditional
observability gives a binary answer to the question
of whether measurements Y can be used to estimate
states X and, for nonlinear systems such as ours, often
requires taking Lie derivatives of the system dynamics
and evaluating the observability rank condition [45].
Empirical observability instead gives a quantatative
measure of how easily observed a system is and requires
only the ability to simulate the system dynamics.
Krener and Ide conceived the empirical observability
gramian Wo [45]. For the nonlinear system

Ẋ = f(t,X) and Y = H (t,X),

Wo(i, j) =
1

4ε2

∫ τ

0

(Y+i −Y−i)>(Y+j −Y+j)dt, (27)

where Y±i is the measurement produced from the state
X±i = X ± εei, and εei is a small perturbation along
the ith unit vector in Rn, with i = 1, . . . , n. The
inverse of the minimum singular value of Wo on a
time interval [0, τ ] is the local unobservability index,
ν = 1/σmin(Wo). Since this metric requires simulating
the system dynamics, it depends on parameters specific
to experimental conditions such as sensor placement,
vortex strength, foil geometry, etc., and therefore
cannot be used to compare observability between
different configurations. It is, however, useful
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for comparing different trajectories with the same
experimental configuration. The path with the lowest
unobservability index will lead to the best estimate of
the parameter space.

To choose the path yv,ref(φ), the unobservability
indices ν calculated along sinusoidal trajectories
of varying phase and amplitude are compared.
We examine sinusoidal trajectories because of the
repeating structure of the vortex street and the
sinusoidal nature of Kármán gaiting behavior in
fish. By simulating the system dynamics given
in Section 4 with the control law for α described
therein, (27) provides the local unobservability index
for each trajectory. Nominal initial conditions are
set to start on the reference trajectory. The street
spacing, vortex strength, flow speed, foil geometry, and
sensor configuration match those in the experiment
described in Section 6. Figure 3(a) shows the local
unobservabiltiy index for each sinusoidal reference
trajectory. The minima on this graph indicated by
white circles are the paths of the Joukowski foil leading
to the best estimates of the parameters XK◦

α
.

The corresponding optimal paths are shown in
Figure 3(b) in white. Figure 3(b) was generated not by
simulating full trajectories with the proper control law,
but by selecting initial conditions in the (φ, yv) plane
and simulating the dynamics with α = 0 for one time
step of 0.1 seconds. Figure 3(b) gives a metric for the
unobservability for each point in the plane regardless
of how that point was reached, referred to here as
the short-term unobservability index. In contrast,
Figure 3(a) gives a metric for the unobservability of
an entire reference trajectory, referred to here as the
long-term unobservability index. Each point in Figure
3(a) corresponds to an entire trajectory through Figure
3(b). The low unobservability index areas in Figure
3(b) are those that bring one of the four pressure
sensors close to a vortex in the street. The optimally
observable paths shown in white are those that bring
the vortices close to these low unobservability index
areas, creating a large pressure difference among
the sensor pairs and hence a good estimate of the
parameters.

For the experimental demonstration described in
Section 6, the black trajectory was chosen for yv,ref
for three reasons. First, it avoids unmodeled boundary
effects of coming too close to the walls of the test
section (indicated by black dashed lines). Second, the
sensors do not pass directly through the singularity of
the vortices as they do for the white trajectories. In the
potential flow model, the velocity at the center of each
vortex is infinite, which is of course nonphysical, so by
avoiding intentional measurements at the singularities,
we avoid a discrepancy between the model and the
real world. Finally, it is very close to the two white

Figure 3. (a) Long-time unobservability index for sinusoidal
trajectories of the form A0 cos(φ+φ0)−h/2 through the (φ, yv)
plane. White circles represent minima of the test grid. Black
circles represent the path followed in the experiment. (b) Short-
time unobservability index at various points in the (φ, yv) plane.
White and black curves correspond to the white and black circles
in (a). The dashed black lines indicate the width of the test
section of the experimental setup described in Section 6.

trajectories and has a low unobservability index as
compared to the rest of the field in Figure 3(a). The
chosen path is

yv,ref1 =
h

2
cos(φ)− h

2
, (28)

which takes the center of the Joukowski foil (but not
the pressure sensors) through the center of each vortex.
The offset −h/2 ensures that the trajectory is centered
between the upper and lower lines of vortices in the
street. It is interesting to note that fish do not adopt
this strategy. Instead, they slalom between the vortices
capturing some of the energy to propel themselves [12],
a behavior known as Kármán gaiting. To demonstrate
this path, a second reference trajectory is defined as

yv,ref2 =
h

2
cos(φ+ π)− h

2
, (29)
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Figure 4. (a) Reference trajectory 1, the optimally observable
path through the vortex street. The Joukowski foil passes
through each vortex in the street. (b) Reference trajectory 2,
the slalom path corresponding to Kármán gaiting. Note that
this figure is in a flow-fixed frame. In the inertial frame, the
Joukowski foil is fixed in the downstream coordinate and the
vortices flow past it.

representing the Kármán gaiting behavior.
Figure 4 shows the difference between the

two reference trajectories that are executed in the
experiments described in Section 6.

6. Experimental demonstration

Figure 5 shows the experimental testbed for the
Kármán vortex street. A 185 L Loligo flow tank
creates a uniform 15 cm/s flow in an 88cm × 25cm
× 25cm test section. A stepper motor controls a
black acrylic fin that flaps to create vortices at the
desired spacing and frequency. The fin extends
to the bottom of the flow tank and is parallel to
the flow until a vortex is generated. The fin then
rotates clockwise (anti-clockwise) and slowly returns
to center to create an anti-clockwise (clockwise) vortex
that travels downstream with the flow. This pattern
is consistent with that of a Kármán vortex street
shed from an obstacle in the flow (rather than a
reverse Kármán vortex street which is found in the
wake of swimming fish). Through the use of dye
packets and image processing, the strength of each
vortex in the street was empirically determined to be
γ ≈ 0.0605 m2s−1.

The Joukowski foil is suspended in the water from
a servomotor that controls the angle of attack directly
according to (26). The servomotor is mounted on a
set of nearly frictionless air bearings. The air bearings
have a supply of compressed air that is released radially
inward towards a 3/4 inch steel shaft, creating a
pillow of air that supports the air bearings as they
move. This configuration allows the servomotor and

Figure 5. The experimental testbed for the vortex street. A
flow tank generates flow from left to right. The Joukowski foil,
equipped with four pressure sensors as an artificial lateral line,
controls its cross-stream position by actuating a servomotor to
control angle of attack. The Joukowski foil is attached to an
air-bearing system that allows free movement in the cross-stream
direction, but fixes the foil in its downstream position. A stepper
motor actuates a fin to create the vortices in the desired vortex
street pattern. An overhead camera is used to to calculate the
ground truth location of the vortices.

Joukowski foil to freely translate in the cross-stream
direction, but holds the foil locked at a particular
downstream position from the vortex generator. Four
Millar pressure sensors are mounted directly on the
side of the fish body to emulate the lateral line seen in
biology. The variance of noise in the pressure sensors
was found to be Rp = 49 Pa2.

Printed from PLA plastic with a MakerBot
Replicator, the rigid Joukowski foil has the shape
detailed in Section 2. The print includes internal
cutouts to allow an assembly of 1 cm MakerBeam to
mount the foil to the servomotor horn. The length of
the Joukowski foil is 15 cm and maximum thickness
is 2 cm. The body is uncambered. The height of the
body (the span of the foil) is 12 cm and was suspended
into the water to leave 2 cm exposed to air and to
eliminate any unmodeled flow over the top of the foil.
Pressure sensors were mounted on the Joukowski foil
at the locations shown in Figure 1 and were midway
down the depth of the body.

A camera mounted above records the experiments
in order for the actual vortex positions to be
determined offline. This method relies on the easy
visibility of the center of each vortex and therefore does
not provide ground truth when the vortices dissipate or
are occluded by something in the experimental setup.
Particle image velocimetry provides more accurate and
robust ground truth data for vortex position, but
imaging of this type was precluded here because of the
physical properties of the flow tank.

The estimation, data acquisition, image capture,
control calculation, stepper motor, and servomotor are
all controlled in real time from a laptop computer
running MATLAB. A 30×30×15 coarse grid of possible
points XK◦

α
in the (φ, yv, γ) state space was used to
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update the estimate and control at approximately 20
Hz in order to have stable convergence to the reference
trajectory. Experiments ran for 700 time steps at 20
Hz, equating to nominally 35 second run times (the
actual run time varied by up to 2 seconds due to
variable computation time per time step and unknown
loads on the computer’s processor by programs other
than MATLAB). The vortices created by the flapper
were spaced by a = 0.6 m, which corresponds to
a hypothetical upstream obstacle of diameter 12 cm
according to (21).

Figure 6(a-c) shows the time history of the
marginal densities of the three states in π(X|Y) for
the closed-loop experiment to track the optimally
observable reference trajectory given in (28). The
marginal density for each state was formed by summing
along the other two states of the three-dimensional
probability density at each time step. The initial value
of φ is plotted instead of the current value for ease of
visualization. Integrating (25) directly and rearranging
yields

φ0 = φ(t)− 2π
U

a
t, (30)

the initial value of φ. Since this value is constant and
the second term is known, a proper estimate of φ(t)
will lead to a constant estimate of φ0. The experiment
was successful in actuating the Joukowski foil to pass
through each of the vortices after an initial period of
larger error. Figure 7(a) shows the time history of the
error from the reference trajectory.

Figure 6(d-f) shows the time history of the
marginal densities of the three states in π(X|Y) for the
closed-loop experiment to track the Kármán gaiting
trajectory given in (29). The experiment was successful
in actuating the Joukowski foil to slaloming through
the vortex street after an initial period of larger error.
Figure 7(b) shows the time history of the error from
the reference trajectory.

The estimator and controller were successful
in both closed-loop control experiments, meaning
that there was stable convergence to the reference
trajectories and errors tended to zero. For the first
five seconds for each experiment, the controller was
disabled and the angle of attack was kept at α =
0. During this period, the vortices did not come
near the pressure sensors on the Joukowski foil
and thus the estimate had a very large variance.
In both cases, after the controller was enabled, the
Joukowski foil came close to the vortices in the street
(by design in the optimally observable case and by
initial error in the slaloming case) and the variance in
the estimate was reduced due to the larger difference
in the pressure sensor measurements at this close
proximity. This result agrees with the result from the
observability analysis in Section 5, which showed that

better estimates of the state arise when the fish is close
to the vortices. Notice that after the initial five second
period, the variance in the estimate of yv in panel
6(b) (the optimally observable path) is lower than that
of panel 6(e) (the Kármán gaiting path) because the
latter trajectory does not bring the foil as close to the
vortices.

The ground truth values well match the areas
of high probability in the estimate, indicating that
the estimator is functioning properly. In the last 8
seconds of panel 6(c), the area of highest probability
differs from the ground truth by a significant amount.
However, the estimate is only one grid-division away
from ground truth. A finer grid of possible value of γ
may reduce the estimation error, although a finer grid
may jeopardize the real time operation.

The estimates of γ and the initial value of φ are
essentially constant, as expected, because the ground
truth values are constant. One exception is in panel
6(a) at around 10 seconds, where the estimate of the
initial φ increases to the correct value. This increase is
accompanied by a decrease in the estimate of γ in 6(c)
at the same time, illustrating the deep coupling of the
three parameters in the Bayesian filter. A particular
measurement may correspond to a vortex very close
and weak, or strong and far away. It is through the
Bayesian filter’s integration of these data through time
(new measurements are taken each time step) and
space (the distribution of the pressure sensors) that
this ambiguity is removed.

The estimates of yv follow a sinusoidal pattern
as expected because the robot is tracking a sinusoidal
reference trajectory. The estimator uses the dynamic
model presented in Section 4 to shift the probability
density at each time step according to the control input
it chooses from (26).

7. Conclusion

This paper describes the estimation of vortex flows
and its use in closed-loop control of the flow-
relative position of a Joukowski foil equipped with
distributed pressure sensors inspired by lateral-line
neuromasts seen in biology. Measurement equations
for these sensors use potential flow theory and
Bernoulli’s principle. The measurement equations are
incorporated in a recursive Bayesian filter to estimate
the planar location and strength of the Kármán vortex
street. Closed-loop control of the angle of attack of
the Joukowski foil successfully actuated its position
relative to the vortex street to one of two reference
trajectories. The first reference trajectory was an
optimal path through the vortex street determined
using a metric based on the local unobservability index.
The optimally observable trajectory is one that passes
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Figure 6. Time history of the marginal posteriors from the Bayesian estimator during the closed-loop control experiment in the
flow tank. Panels (a,d) show the initial value of φ given by (30), (b,e) yv, and (c,f) γ. Panels (a-c) correspond to the optimally
observable reference trajectory (28) and panels (e-f) correspond to the Kármán gaiting trajectory (29). Feedback control starts at
5 seconds. The white lines indicate the ground truth.



Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street 14

Figure 7. Error between reference and ground truth of xv and yv over the Kármán vortex street experiment for the (a) optimal
observability and (b) Kármán gaiting trajectory. xv is shown rather than the non-dimensionalized φ to more easily compare the
errors in the two states. Feedback control starts at 5 seconds.

through each vortex in the street. The second reference
trajectory was inspired by the slaloming trajectory in
fish exhibiting Kármán gaiting behavior. The lateral
line and Bayesian filter framework were successful in
estimating the state of the vortex street and converging
to the closed-loop control goal in both cases.

One of the potential applications of this framework
is lateral line sensing and feedback control for schooling
or pursuit by free-swimming, flexible fish robots. The
optimally observable trajectory leads to an estimate
with less variance than Kármán gaiting. For a pursuit
scenario, tracking the optimally observable trajectory
in the wake of swimming fish or robot would give the
best estimate of the vortex street and allow the pursuer
to follow the tubulent wake upstream to capture the
target. However, in a cooperative pursuit or schooling
scenario, the Kármán gaiting trajectory may conserve
energy. * In cases with large sensor noise, it may be
beneficial to begin tracking the optimally observable
trajectory to ensure the robot finds the vortex street,
and then switch to the more energetically efficient
trajectory to conserve energy [13,32].

In ongoing work, this sensing framework will be
adapted for a free-swimming fish robot with a flexible
body. A long-term goal is to demonstrate Kármán
gaiting behavior in the wake of another fish robot.
To locate other fish robots beyond the effective range
of the artificial lateral line, the fish robot may be
augmented with a computer-vision sensing system.
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Appendix A.

The circulation of the lifting cylinder as mandated by
the Kutta condition is

ΓC = 2r0π

[
=
(

jγejθ0

2a
(A1 +A2 +A3 −A4)

)
(A.1)

+ 2U sin(θ0)

]
,

where θ0 = −α− ha/`,

A1 = ej(α−2θ0) cot
[π
a

ejα
(
ζ0 − ζv + r0e−jθ0

)]
,

A2 = e−jα cot
[π
a

(a
2

+ jh− e−jα
(
ζ0 − ζv + r0ejθ0

))]
,

A3 = e−jα cot
[π
a

e−jα
(
ζ0 − ζv + r0ejθ0

)]
, and

A4 = ej(α−2θ0) cot

[
π

a

(
− a

2
+ jh

+ ejα
(
ζ0 − ζv + r0e−jθ0

))]
.

See Section 2.2 for the derivation.
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[28] Taavi Salumäe and Maarja Kruusmaa. Flow-relative
control of an underwater robot. In Proc. R. Soc. A,
volume 469, page 20120671, 2013.

[29] Roberto Venturelli, Otar Akanyeti, Francesco Visentin,
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