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A cooperative detection and tracking algorithm for multiple targets constrained

to a road network is presented for fixed-wing Unmanned Air Vehicles (UAVs) with a

finite field of view. Road networks of interest are formed into graphs with nodes that

indicate the target likelihood ratio (before detection) and position probability (after

detection). A Bayesian likelihood ratio tracker recursively assimilates target obser-

vations until the cumulative observations at a particular location pass a detection

criterion. At this point, a target is considered detected and a position probability is

generated for the target on the graph. Data association is subsequently used to route

future measurements to update the likelihood ratio tracker (for undetected target)

or to update a position probability (a previously detected target). Three strategies

for motion planning of UAVs are proposed to balance searching for new targets with

tracking known targets for a variety of scenarios. Performance was tested in Monte

Carlo simulations for a variety of mission parameters, including tracking on road

networks with varying complexity and using UAVs at various altitudes.
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Chapter 1: Introduction

1.1 Background and Motivation

Having accurate and up-to-date data from intelligence, surveillance, and re-

connaissance missions has become an essential part of how the modern tactician

develops strategy. As a result, the US government has released the Unmanned Sys-

tems Roadmap 2007–2032 [2] citing the specific need for target identification and

designation in the realm of UAV reconnaissance. With low-cost aerial vehicles and

powerful visual sensors widely available, the goal is to improve ground-target track-

ing strategies and coordination between UAVs to maximize information acquisition

and accumulation.

This thesis’ goals are twofold. First, to implement a physics-inspired path-

planning strategy based on a Bayesian likelihood ratio tracker that assimilates mea-

surements of potential targets on a road network. The planning strategy determines

UAV motion using target detections, according to the evolution of the likelihood

ratio over the network. As a result, the strategy is a manifestation of the Dy-

namic Data-Driven Application Systems (DDDAS) paradigm [3], which uses sensor

measurements to guide subsequent data collection. The second goal is to extend

this methodology for target detection on road networks using a Bayesian likelihood
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tracker [4,5] to the dual problem of cooperatively searching for and tracking targets

after detection. Expected locations for detected targets on the road network are

represented as a probability density and new observations of each target update the

expected location after being appropriately associated to a particular target using

an earth mover’s distance [6] similarity metric. The UAVs search the road net-

work using one of three control algorithms that balance tracker accuracy and target

detection.

Holding such an important role in modern surveillance operations, the prob-

lem of multi-target tracking is a deep field with many proposed methodologies. If no

constraints are placed on the targets, tracking algorithms occupy the realm of inter-

acting multiple model (IMM) filters described in [7–9] with Kalman filters, extended

Kalman filters, and even particle filters used for linear and nonlinear target dynam-

ics models. Other approaches use Bayesian inference and either multi-hypothesis

or maximum-likelihood filters to track moving targets [10–13]. These approaches

are adequate for combining sensor measurements with tracking and detecting tar-

gets, but do not always e↵ectively move the UAVs to find targets. The methods

described in [14–16] o↵er solutions to this problem by operating in the Bayesian

inference regime and using this information to move UAVs, however the techniques

are focused on a single UAV.

By constraining targets to remain on a road network, simplified and less com-

putationally costly IMM estimators can be applied to predict target motion, such

as the Variable Structure IMM (V-S IMM) [17, 18], which keeps modes in use only

as needed. IMM estimators based on particle filters have had success in estimating
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target dynamics, as in [19–21], but they run into the issue of sharp mode tran-

sitions, leading to varying levels of tracking failure [22]. The methods described

in [8,23–25] are examples of the interacting multiple model particle filter, which has

been introduced as a solution to this issue by fixing the number of particles per

mode regardless of mode probability. Unfortunately, while the proposed filter mod-

ification can provide lower errors and quick adaptation when targets change motion

modes, there is an inherent tradeo↵ between these two attributes, and questionable

robustness to motion model violations [22].

For the problem of data association among multiple measurements and track-

ers, a number of solutions have been developed with varying levels of success, in-

cluding particle filtering [26], dynamic programming [27, 28], and maximum like-

lihood [29, 30] methods. However, due to the process by which they determine

associations, these methods admit a high proportion of false alarms in their mea-

surements, typically are computationally expensive, and do not pair tracking with

path planning for UAVs [10].

1.2 Problem Formulation

This thesis focuses on methodologies for cooperative search and track of de-

tected mobile targets on a road network using UAVs with a finite field of view.

UAV sensor platforms cooperatively search along the road network by updating the

shared likelihood surface that represents likely target locations based on a recursive

Bayesian likelihood ratio tracker (LRT) [5]. Once the likelihood on the network
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surpasses a critical threshold, a target detection is called and a tracker is initial-

ized. Measurement updates are provided by data association; the existing trackers

and new measurements are compared using the earth mover’s distance similarity

metric [6, 31].

Simulated targets are constrained to remain on the road network at all times

and stop and start randomly to mimic courier behavior. The UAV sensors are

characterized by probability of detection and probability of false alarm, and by the

standard deviation of target location measurements. Each UAV is modeled as a

Dubins car with constrained turning rate and speed. The standard deviation and

probability of detection and false alarm of the onboard sensors are linked to the

ground sampling distance (GSD) of the UAVs [32]. As altitude increases, GSD

increases and measurement resolution decreases, leading to decreased probability of

detection, increased false alarms, and higher standard deviation in the measurement

uncertainty.

Each UAV is guided to network nodes of higher likelihood using a set of arti-

ficial potentials. These artificial potentials cause each UAV to ascend the likelihood

gradient and avoid collisions with other UAVs. Reflecting the constraint on target

motion, the gradient ascension force is parallel to the edge of maximum likelihood

change on the road network. A second force, known as Pauli repulsion, is applied

between UAVs to prevent collisions and redundant searching. The third force is a

artificial spring connecting each UAV to the edge of maximum likelihood change in

field of view, which prevents excessive drift o↵ of the network as the UAV ascends

the gradient and attempt to detect targets.
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For each target detected, a new Bayesian target tracker is instantiated on the

road network. The Bayesian filtering methodology recursively updates the tracker

with prediction and update steps. The prediction step updates the probability sur-

face using random walk motion at the nominal speed of the targets on the road

network. The update step uses planar measurements of the target to update the

probability distribution. New measurements are associated by comparison to the

prior distribution in the tracker using the earth mover’s distance. When the distri-

butions are su�ciently similar, the measurement and distribution are paired and the

distribution is updated; otherwise the measurement is used to update the likelihood

network.

Three motion-planning algorithms guide UAVs to balance their search and

track functions. The first strategy, loiter, has each UAV loiter on the peak prob-

ability in the nearest distribution to keep the target location estimate as accurate

as possible. The second strategy, search-and-loiter, has each UAV search for new

targets and only revisit a tracker probability distribution when its peak probability

drops below a threshold. The third strategy, search-and-reacquire, formulates the

problem of reacquiring the target as an optimal search problem and seeks to maxi-

mize the probability of relocalizing the target in finite time. The first two strategies

were tested in Monte Carlo simulations, but the third strategy was not due to time

constraints on this thesis. Suggestions for improvements to all three strategies and

methods for testing the third strategy in simulation are o↵ered as future directions

of this work.
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1.3 Contributions

1. The formulation of a physics-inspired motion-planning system for cooperative

search and track of multiple targets on a road network graph. Target position

likelihood is assessed using a Bayesian likelihood ratio tracker and is spatially

di↵used along the graph using the graph Laplacian as time advances. Target

detections and subsequent measurements are then assimilated using a Bayesian

filter and di↵used using the graph Laplacian once again. Both the target po-

sition likelihood and detected target’s probable positions are used to facilitate

cooperation between the motion planning of the UAVs. Potential-based algo-

rithms similar to this paper, such as [33, 34], su↵er from a number of issues.

Chief among them is getting stuck in local minima of the potential. Our al-

gorithm is novel in that it avoids this issue by combining the motion planning

strategy with the evolution of the likelihood network via the LRT. As a result,

this target detection strategy is an example of a DDDAS paradigm since UAV

motion is directly influenced by measurements of target likelihood. In addi-

tion, since the dynamics of the fixed-wing UAVs have been implemented using

a Dubins car model, the UAVs are naturally inclined to follow their inertia

along a gradient rather than get stuck in deadlock. Another important ad-

vantage of the LRT approach is the savings in computation relative to explicit

calculation of mutual information among UAVs on each iteration [13].

2. The prediction of likelihood and probability in the absence of measurements
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is a novel contribution to target tracking constrained to a road network. For

the typical 2-D likelihood surface, likelihood is propagated numerically using

the dynamics of the target e.g., by using a random walk described by the

di↵usion partial di↵erential equation on the likelihood grid. In the case of a

road network modeled by a graph, the graph Laplacian is utilized to predict

the possible locations of targets using a random walk model constrained to

edges on the graph. The di↵usivity constant represents the mobility of the

targets.

3. Usage of Djikstra’s algorithm paired with Earth mover’s distance to compare

distributions on a road network graph when performing data association. This

concept combined with a similarity threshold and the usage of probability

networks on the road for both the target measurements and target trackers

provides a simple way to determine how closely the two distributions align and

whether the measurement is an appropriate update for the tracker.

4. Created three potential based algorithms for revisiting detected targets on

a road network. The loiter algorithm loiters over the peak of an assigned

tracker, the search-and-loiter algorithm searches for targets and then returns

to loiter over the peak of the tracker, and the search-and-reacquire formulates

the reacquisition of targets as a optimal search problem.

5. Usage of the intersection density metric to quantify algorithm performance for

road networks of varying complexity.
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1.4 Outline of Thesis

The thesis is organized into the following sections. Chapter 2 summarizes the

fundamentals of graph theory and some structures that are relevant to tracking on

a road network graph. Chapter 3 introduces the likelihood-ratio tracker and dis-

cusses implementing it on a road network for gathering information about multiple

undetected targets. Chapter 4 explains the usage of a Bayesian filter for tracking de-

tected targets on a road network and data association using Earth mover’s distance.

Chapter 5 explains the model for the UAVs, the artificial potentials that guide UAV

search and track behavior, and how the potentials are combined to implement three

search and track strategies. Chapter 6 provides results for Monte Carlo simulations

that validate the performance of the proposed search and track algorithms for a va-

riety of mission profiles. Chapter 7 summarizes the paper and provides an overview

of future research directions.
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Chapter 2: Road Network Graph

2.1 Graph Theory

A graph is a structure in mathematics that models the relation between pairs

of objects. More specifically, a connected graph is a structure where any point on

the graph can be reached from any other point on the graph [35]. A road graph is

composed of three elements [36]: a set V of N vertices, a set E of M edges, and

 (1, ..., N), which returns the planar coordinates of the vertices. An example of a

uniformly weighted and undirected graph is shown in Figure 2.1, represented by

G = (V,E) (2.1)

where V = (1, 2, 3, 4) 2 R4 and E =
�
(1, 2), (1, 4), (2, 3), (3, 4)

 
2 R2 ⇥ ... ⇥ R2.

1 2

34

Figure 2.1: An undirected graph with N=4 nodes.

A directed graph is described by the adjacency, A 2 RN⇥N , and degree, D 2

RN⇥N , matrices. The ij entry of the adjacency matrix represents the connectivity
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of nodes i and j, i.e.,

aij =

8
>>>>>>><

>>>>>>>:

0, if j = i

1, if there is a directed edge from j to i

0, if there is no directed edge from j to i.

(2.2)

For an undirected graph, the adjacency matrix is symmetric about the diagonal

indicating bidirectional travel along that edge. The ii entries of the degree matrix

D give the number of incoming connections to node i, whereas the o↵-diagonal

entries are zero:

dij =

8
>>><

>>>:

NP
j=1

aij, if i = j

0, if i 6= j.

(2.3)

Another convenient construct in graph theory is the incidence matrix B 2

RN⇥M , which relates edges and nodes, with row indices representing the node indices

and column indices representing the edge indices [36]. For undirected graphs, the

edge direction is assigned arbitrarily by setting one entry along each column equal

to one and another equal to negative one. For the graph in Figure 2.1, the incidence

matrix is

B =

2

666666666664

1 0 0 1

�1 1 0 0

0 �1 1 0

0 0 �1 �1

3

777777777775

.

Note that for each column there are precisely two non-zero entries, since exactly two

nodes are connected by a single edge. (There are no self loops.)
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Figure 2.2: Real road network converted to a likelihood network.

The Laplacian matrix L 2 RN⇥N of graph G is

L = D � A. (2.4)

The graph Laplacian matrix is used throughout as an operator that describes the

di↵usion of information (described by a random walk) between neighboring nodes

as described by the graph structure. If the information at each node is assumed to

be the likelihood that a target is present, the rate of di↵usion is determined by the

target speed to provide a realistic spreading of target likelihood along the network

in time. An example of a real road network in College Park, MD converted into a

likelihood network is provided in Figure 2.2. Targets are colored stars, UAVs (with

finite field of view denoted by a green circle) are colored diamonds, and the current

UAV waypoints are denoted as colored x’s.
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2.2 Laplacian Operator

Since targets may only travel between connected nodes, the spatial rate of

change of likelihood for a vertex in a network is modeled by partial derivatives

along each connected edge. Let � 2 RN be the likelihood over all N nodes. One

way to model this exchange is with the heat equation. Assuming that the likelihood

exchange rate is a constant ↵, the time rate of change of likelihood can be modeled

as

d

dt
(�) + ↵r2� = 0, (2.5)

where r2 is the Laplace operator, which takes partial derivatives along each con-

nected edge. The Laplace operator acting on each node is approximated by using

finite di↵erence methods [37].

Let ⇠k = (xk, yk) denote the target state at time step k and ⇣k denote an

observation of the target at k. The target likelihood at time k for node n is �k(n) =

p(⇠k|⇣k)
��
n
, where n = 1, ..., N . For vertex 1 in Figure 2.1, the spatial rate of change

of likelihood would be represented as

r2(�k(1)) =
�k(2) + �k(3) + �k(4)� 3�k(1)

h2

, (2.6)

where h is the node spacing (assumed to be identical for all edges).

Let N (n) represent the neighbor set of all vertices connected to node n. As-

suming that the exchange rate is a constant ↵, the time rate of change of likelihood

is modeled by

d

dt
(�k(n)) = �↵

X

j2N (n)

anj(�k(n)� �k(j)). (2.7)
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In matrix-vector notation, equation (2.7) becomes

d

dt
(�k) + ↵L�k = 0, (2.8)

which is the heat equation with spatial discretization. The Laplacian matrix L

implements the finite di↵erence calculation of the Laplacian operator r2 [38]. Thus

the di↵usion of likelihood throughout the road network represented by a graph is

found by solving the first-order matrix di↵erential equation in (2.8).

The graph Laplacian matrix of a connected undirected graph is positive semi-

definite [38]. As a result, other than zero, the graph Laplacian has all positive real

eigenvalues, which indicates that the information on the graph will be conserved;

equation (2.8) reaches an equilibrium that is the average of the initial likelihood.

The use of the Laplacian matrix as a method for target position motion modeling in

both the likelihood-ratio tracker (for undetected targets) and probabilistic trackers

(for detected targets) is further described in Sections 3.2 and 4.2.

2.3 OpenStreetMap Data Structure and Importing

OpenStreetMap data is exported for a particular map snapshot using the Over-

pass Turbo web-based data mining tool [39]. Turbo allows users to write and im-

plement scripts that limit the number and type of results returned for a particular

map export. To obtain roadways accessible only by cars, the types of paths that are

exported are restricted as shown in Figure 2.3. The resulting data file includes the

bounds of the export data (in longitude and latitude), all of the nodes in the road

network, and the ways (lists of adjacent nodes) that define the individual roads in

13



Figure 2.3: OpenStreetMap snapshot

the network. Each node contains a unique node id, longitude and latitude coordi-

nates, and a tag that describes what kind of road element it is (e.g., a highway).

Each way has a unique id and includes all of the node ids that compose it. Road data

is parsed into a Matlab struct data structure that represents the road network [40].
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Chapter 3: Likelihood Ratio Target Detection on a Graph

The instantaneous position of likely target locations prior to detections is found

using a log-likelihood ratio tracker (LRT) [13]. A log-likelihood ratio tracker is e↵ec-

tive for detecting possibly multiple targets based on recursive Bayesian estimation.

This methodology is often called track-before-detect because it accumulates sensor

data about possible targets before they are detected. The particular methodology

used in this framework is based on previous work done in physics-inspired motion

planning [4] and [5].

3.1 Likelihood Ratio Tracker

A Bayes filter is a probabilistic methodology for recursively converting noisy

measurements of a target’s state space into a probability density function using

a mathematical model of the target dynamics. The filter is applied in discrete

time steps to predict and update the two-dimensional position of a target. Recall

⇠k = (xk, yk) denotes the target state at time step k and ⇣k denotes an observation of

the target at k. The predict step involves computing the conditional probability [13]

p(⇠k|⇣k�1

) =

Z

⌦

p(⇠k|⇠k�1

)p(⇠k�1

|⇣k�1

)d⇠k�1

. (3.1)
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The measurement update is proportional to the product of the measurement likeli-

hood p(⇣k|⇠k) and the predicted state [13], i.e.,

p(⇠k|⇣k) =
p(⇣k|⇠k)p(⇠k|⇣k�1

)

p(⇣k|⇣k�1

)
, (3.2)

where

p(⇣k|⇣k�1

) =

Z

⌦

p(⇣k|⇠k)p(⇠k|⇣k�1

)d⇠k

is the integral of the numerator. In this framework, simultaneous observations from

multiple sensors are assimilated by executing consecutive measurement updates.

In a likelihood-ratio tracker, the measurement likelihood is replaced with the

measurement likelihood ratio. The numerator of the likelihood ratio represents the

conditional probability of the measurement given that the target is present (⇠+k ),

whereas the denominator represents the conditional probability of the measurement

given that the target is not present (⇠�k ). Thus, the log-likelihood ratio is

logL(⇣k|⇠k) = log
p(⇣k|⇠+k )
p(⇣k|⇠�k )

= log(p(⇣k|⇠+k ))� log(p(⇣k|⇠�k )). (3.3)

Let p = log(p). The update step in the log-likelihood ratio tracker becomes

p(⇠k|⇣k) = log
L(⇣k|⇠k)p(⇠k|⇣k�1

)

p(⇣k|⇣k�1

)
=

p(⇣k|⇠+k )� p(⇣k|⇠�k ) + p(⇠k|⇣k�1

) + p(⇣k|⇣k�1

).

(3.4)

The first term in (3.4) represents the newly obtained, positive information that a

target is present. Likewise, the second term represents the newly obtained, negative

information that no target is present. The third term represents the prior informa-

tion about the target, and the fourth term is a normalization constant that may be

safely ignored if unknown.
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When the target probability reaches a critical threshold at a location in the

graph, the target is declared detected. If the targets do not pass the threshold then

the target probabilities are maintained as hypotheses for future iterations.

3.2 Likelihood-Ratio Tracker Prediction Step

The predict step (3.2) involves updating the target probability density function

in the absence of measurement information based on a model of the target motion.

The graph representing the road network allows the specification of requirements

that constrain target motion to remain on the graph. For disparate target types in

a track-before-detect LRT framework, a motion model that distributes likely target

positions in a broad way was considered to be a conservative, but safe assumption.

Although the model may not localize targets with high accuracy in the absence

of measurements, possible target locations will at least be contained within the

likelihood distribution. The motion model used to fulfill this requirement was a

random walk on a graph.

A random walk model is described by the di↵usion in (2.8). The di↵usivity

coe�cient of targets on the network can be found by releasing an ensemble of parti-

cles constrained to random walk on a line with the speed properties of the target. A

gaussian fit of the particle distribution on the line at a particular time t can found.

The mean square displacement of the fit is related to the di↵usion of the targets ac-

cording to the Einstein-Smoluchowsky equation for a one-dimensional gaussian [41]
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MSD = 2↵t. (3.5)

Solving the Einstein-Smoluchowsky equation for ↵ provides a measure of di↵usivity

for a target on a line that can be extended to the road network graph.

The graph Laplacian is a conservative operator, so the sum of target likelihood

in the network never changes and thus boundary conditions are naturally enforced

for the road network. However, with no additional measurements along the network,

likelihood throughout the graph should reach consensus at a equilibrium value re-

flecting neither high nor low likelihood, indicative of an unknown target distribution

after a long period of time. This outcome is achieved by adding in an additional

exponential decay term to the heat equation. The updated di↵erential equation is

d

dt
(�k) + ↵L�k +

↵

C
�k = 0. (3.6)

The ↵/C term ensures that likelihood decays much slower than it spreads between

nodes as long as C � ↵.

Let I 2 RN⇥N be the identity matrix. By rearranging the terms of the first-

order matrix di↵erential equation, it can be solved with a matrix exponential as

follows:

d

dt
(�k) =

✓
�↵L� ↵

C
I

◆
�k, (3.7)

which implies

�k = e�↵(L+C�1I)�t�k�1

. (3.8)

Eq. (3.8) is the solution for the evolution of likelihood over the road network,

with a heat di↵usivity equal to the mobility of the targets on the graph, and a

18



non-conservative decay term to reflect the loss (positive or negative) of likelihood

as time evolves.

3.3 Likelihood-Ratio Tracker Measurement Update Step

Consider a measurement data model based on an imperfect sensor with a finite

range of view. Let targets within the sensor range ⇢ be detected with probability Pd

and false-alarm probability of Pf per measurement time step [42]. Combining these

two probabilities, the sensitivity m of each sensor is

m = z(Pd)� z(Pf ), (3.9)

where z(·) represents the z-transformation into standard deviation units given by

the quantile function

z(p) =
p
2erf�1(2p� 1).

For example, Pd = 0.95 and Pf = 0.1 yields m = 2.92. Let wk represent unit-normal

measurement noise in standard deviation units at time step k. When the target is

absent the measurement data is ⇣k = wk, whereas when the target is present, the

measurement data is ⇣k = m + wk. Assuming a zero-mean Gaussian sensor model

yields [43]

p(⇣k|⇠�k ) =
1p
2⇡

exp

 
�⇣

2

k

2

!
(3.10)

p(⇣k|⇠+k ) =
1p
2⇡

exp

 
�(⇣k �m)2

2

!
. (3.11)

The log-likelihood ratio (3.3) becomes

logL(⇣k|⇠k) = �(⇣k �m)2

2
+
⇣2k
2

= m

✓
⇣k �

m

2

◆
,
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(a) No targets in the finite field of view of the UAVs

(b) One target in the finite field of view of the magenta UAV

Figure 3.1: Updates being provided by the LRT sensor measurement model.

wherem is a function of the sensor Pd and Pf given by (3.9). Note, the log-likelihood

ratio is applied to the prior located inside a disc of radius ⇢ centered on the UAV

location. The application of measurements to update the likelihood network is

shown in Figure 3.1. Recall that targets are colored stars and UAVs (with finite

field of view denoted by a green circle) are colored diamonds. The red and cyan

UAVs observe no targets between the two time steps and lower likelihood in their

field of view according to the log-likelihood ratio. The magenta UAV observes a

target between the two images and raises likelihood in its field of view.
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Chapter 4: Bayesian Tracking on a Graph

Bayesian track-after-detect filters are initialized on the road network for each

detected target when the likelihood network reaches a critical threshold �max. The

new tracker is instantiated with a normalized distribution based on the previous

LRT measurements of the likely target position. Having trackers and the LRT func-

tioning at the same time necessitates a procedure to determine whether subsequent

measurements from the UAVs should be used to update the LRT or a particular

target’s tracker. This procedure is called data association. This chapter explores

the procedure used to generate and update probability distributions from target de-

tections and how to properly associate new measurements using the earth mover’s

distance metric.

4.1 Target Detection and Bayesian Tracker Instantiation

The Bayesian track-after-detect filters in this thesis are probability distribu-

tions that are restricted to the nodes of the road network graph. Each target de-

tection leads to an additional track-after-detect filter being instantiated on the road

network wherein each node has an associated probability of the newly detected tar-

get being present. As a result, future measurements of a detected must be routed
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Figure 4.1: Probability of Occurrence plot with Pd = 0.95 and Pf = 0.05.

to one of the instantiated trackers to keep the probability distribution accurate in

localizing the target location.

To prevent superfluous target measurements from entering the data association

process, a criterion of c = m/2 is introduced, where m is given by equation (3.9), as

shown on the probability of occurrence graph in Figure 4.1. This choice represents

the intersection of the probability of occurrence curves for noisy measurements with

and without signals and determines how often false alarms and missed detection

occur.

After a detection, the initial track probability for a target is formed using the

likelihood obtained from all connected nodes that are above �max. These connected

nodes’ positions and likelihood distribution (normalized to one) form the basis for a

new tracker on the road network. The connected nodes from the likelihood surface

are then suppressed to zero likelihood as shown in Figure 4.2.
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(a) The magenta UAV detects a target on the likelihood network.

(b) A Bayesian target tracker is instantiated.

Figure 4.2: Tracker instantiation upon detection of a target on the likelihood net-

work.
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4.2 Target Tracker Prediction Step

Once a target is detected, the problem of determining a motion model that

will predict the motion of the target in the absence of direct measurements is rein-

troduced. In the case where agile UAVs or other sensor platforms are available to

provide continuous measurement updates of the target location, an accurate mo-

tion model in the Bayesian tracker is less important. However, in the case where

there are fewer UAVs than targets and no additional tracking resources available,

UAVs need to leave detected targets and search for undetected ground vehicles. As

a result, a mismatch in the motion model and the actual target dynamics can be

disastrous when attempting to reacquiring targets.

A number of potential solutions to achieving balance between searching and

revisiting targets is covered further in Chapter 5, but all require that the motion

model match the target dynamics relatively well, or at least encompass the worst

cases of the target motion. To achieve this goal, the tracker prediction step utilizes

the random walk on a graph described by the graph Laplacian to provide a conser-

vative estimate of the target location. Unlike the random walk motion model in the

LRT, the model for the tracker does not require any consensus at an equilibrium

value indicating neither low nor high probability after a long period of time. Instead,

if the maximum probability in the tracker has dropped below some threshold, Pmin,

the tracker is dissolved and the track probability becomes zero. The di↵usion of

probability utilizes the matrix vector form in Equation 2.8 and can be solved with
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a matrix exponential as follows:

d

dt
(�k) = �↵L�k, (4.1)

which implies

�k = e�↵L�t�k�1

. (4.2)

4.3 Target Tracker Measurement Update and Data Association

After a detection, the initial track probability is formed and updated using the

motion update described in 4.2. The next step is to update the distribution with new

measurements of the tracked target. Target measurements all include a localization

of the target position in addition to the measurement provided by the log-likelihood

ratio tracker. Recalling that ⇠k = (xk, yk) represents the actual location of a target,

the measurement of the target location by UAV j at time step k is

⇠̃jk = ⇠k + ⌫(0, s),

where ⌫ is Gaussian measurement noise with zero mean and standard deviation, s.

(The location of a measurement in the absence of a target (i.e., a false alarm), is

generated randomly from a uniform distribution centered on the UAV.)

Recall that  provides locations of the nodes that compose the road network

and s is the standard deviation of the position measurement noise. The measurement

probability density gathered by UAV j at time k is thus

U j
k =

1

s
p
2⇡

e
�(⇠̃jk �  (V ))2

2s2 .
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As new measurements are generated, each U j
k needs to update a single tracker,

or the log-likelihood ratio must be used to update the likelihood network. Deter-

mining the correct update is known as the data association problem [13] and can be

formalized into a transportation problem when the measurements and distributions

are constrained to a road network.

Earth mover’s distance (EMD) is a solution to the transportation problem in-

troduced by Rubner, Tomasi, and Guibas [6]. Comparing two piles (signatures) can

be e↵ectively performed by finding how much dirt (probability) must be moved from

one pile to the other until they are of identical height. Specifically, the EMD rep-

resents the minimum cost required to transform one signature into another, where

a unit cost is moving one unit of probability by one unit of distance. For target

tracking on a road network the signatures are the probability densities of the in-

stantiated trackers, P l
k, and the measurements produced by UAV j at time k, Û j

k .

The idea is that if any measurement and tracker instantiations are similar enough

to one another (based on a comparison threshold) then the most similar tracker

and measurement pair are associated and the measurement is used to update the

tracker. A case of two trackers being compared to a a measurement distribution

using a EMD transportation model is depicted in Figure 4.3. In the case depicted,

neither tracker instantiation would receive the measurement update because the

comparison threshold was not reached. The measurement would instead be used to

update the likelihood network.

A linear programming problem can be formalized for the case of moving prob-

ability on a road network as follows. Let P be the first signature with q elements
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(a) The original tracker and measurement distributions.

(b) The first tracker being compared to the measurement in pairwise distance.

(c) The first tracker being compared to the measurement in distribution similarity.
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(d) The second tracker being compared to the measurement in pairwise distance.

(e) The second tracker being compared to the measurement in distribution similarity.

Figure 4.3: Depiction of the EMD process.
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indexed by i and Q be the second signature with r elements indexed by g [6]. The

ground distance metric between the elements of P and Q is represented by the ma-

trix = [ ig] and is obtained by applying Dijkstra’s algorithm in a pairwise fashion

between the two signature’s elements along the road network graph. The overall

cost of work is [6]

WORK(P,Q, F ) =
qX

i=1

rX

g=1

igfig. (4.3)

The flow F = [fig] that minimizes (4.3) can be found when subject to the

following constraints for probability distributions with equal total probabilities [44]

fig � 0 1  i  q, 1  i  r (4.4)

rX

g=1

fig = P (i) 1  i  q (4.5)

qX

i=1

fig = Q(g) 1  g  r (4.6)

qX

i=1

rX

g=1

fig =
qX

i=1

P (i) =
rX

g=1

Q(g) = 1. (4.7)

Constraint (4.4) requires supplies transferred from P to Q(g) to be nonneg-

ative. Constraint (4.5) ensures that the probability matched to Q is equal to the

probability in P (i). Similarly, constraint (4.6) ensures that the probability matched

to P is equal to the probability in Q(g); and constraint (4.7) requires that the sig-

nature with the most probability be moved, which is known as the total flow [6].

In this case, both signatures are normalized, so the total flow is one. With an F

that minimizes the overall cost of the signature transformation, the earth mover’s

distance is [6, 45]

EMD (P,Q) =

Pq
i=1

Pr
g=1

igfigPq
i=1

Pr
g=1

fig
=

qX

i=1

rX

g=1

igfig.
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Figure 4.4: Observation (measurement) update being applied for a Bayesian filter.

Let Ik denote the total number of trackers running at time k and T j
k denote the

total number of measurements at time step k produced by UAV j. Given the EMD

between the measurement and tracker distributions, an RIk⇥T j
k data association

matrix DA can be formed to succinctly compile all of the EMD costs (see Algorithm

1).

The approach for associating measurements to trackers requires iteratively

finding the row (tracker) and column (UAV measurement) in matrix DA corre-

sponding to the minimum EMD cost. Let E represent the maximum EMD outcome

that would be considered an association between a measurement and tracker. If the

minimum EMD cost in DA is below E , then the measurement and tracker associ-

ated with that cost are associated with one another. The posterior of the tracker

l
k is generated as described in Algorithm 1 (see line 11) and is shown visually for

a Bayesian filter in Figure 4.4.

Next, other EMDs generated using the newly associated tracker and measure-

ment are removed from DA and a new search for the minimum EMD cost is started.

If no minimum EMD can be found, then any additional unassociated measurements

are used to update the LRT surface according to the procedure described in Section
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3.3. This procedure is repeated on each timestep for each UAV.

The posteriors achieved after all of the measurements have been associated

appropriately are di↵used as in (3.8) and formed into the prior for the next time

step i.e.,

P l
k+1

= e�↵L�t l
k. (4.8)

Recall that Pmin is the minimum probability threshold before a tracker in-

stantiation is dissolved. Prior to the beginning of the next time step k + 1, the

probability contained in each prior P l
k+1

is evaluated to determine if the maximum

probability has dropped below Pmin. If this situation occurs, tracker l is dissolved

and the track probability becomes zero.
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Algorithm 1 EMD Data Association

Require: Ik, T j
k , Û

j
k , P

l
k, O, E

1: . Where Ik is the total number of instantiated trackers, T j
k the total number of

measurements, Û j
k the measurement probability, P l

k the tracker probability, O

the number of UAVs, and E the EMD threshold

2: Repeat for each timestep k

3: for j = 1 : O do

4: for l = 1 : Ik do

5: for q = 1 : T j
k do

6: DA(l, q) = EMD
⇣
P l
k, Û

j
k(:, q)

⌘

7: end for

8: end for

9: Note the index l, q of min(EMD) in DA

10: while DA(min(EMD)) < E do

11: Generate posterior: l
k = P l

k ⇥ Û j
k(:, q)

12: Set the elements (:, q) and (l, :) in DA to E + 1

13: Note the new index l, q of min(EMD) in DA

14: end while

15: Note the number of unused P l
k

16: if number of unused P l
k > 0 then

17: Update LRT with measurement

18: end if

19: end for
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Chapter 5: Coordinated Control of UAVs for Target Detection and

Tracking

The control algorithms introduced in this thesis for balancing detecting and

tracking targets on a road network rely on each UAV being assigned to a probabilistic

target tracker. Without much prior knowledge, the location in a tracker that would

be expected to provide the highest probability of reacquiring a target is the peak of

the tracker distribution. As a result, the protocol linking UAVs to target trackers

utilizes each UAV’s proximity to the peak of each tracker, which is given by the

Euclidean distance between ⇥j
k and  (max(P l

k)).

Let Ik represent the number of trackers running at time step k. A RO⇥Ik

matrix represents the distance between each UAV and instantiated tracker. Pruning

combinations of sums along the pairwise distance matrix that pair a UAV with more

than one tracker, the pairing combination that yields the sum of assignments with

minimum distance traveled from UAV to tracker peak probability is chosen. The

assigned peak probability and index of that probability are P lj
k , indicating that

tracker l is linked to UAV j at time k.

With a link established between a tracker and a UAV, three motion plan-

ning algorithms were developed to guide the UAVs: loiter, search-and-loiter, and
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search-and-reacquire. The loiter algorithm seeks to keep the UAV over the peak

of the assigned tracker distribution and continuously provide new measurements

of the target. This represents one extreme where UAVs exclusively keep trackers

accurate and disregard searching for new targets. Search-and-loiter represents a

more balanced approached wherein UAVs search for new targets until their assigned

target tracker loses localization of the target. At this point, the UAV returns and

loiters over the peak of the tracker in an attempt to relocalize the target location.

Finally, the search-and-reacquire algorithm formalizes reacquiring detected targets

after searching for new targets as an optimal search problem.

5.1 UAV Dynamics

The UAVs considered for this thesis are fixed-wing aircraft modeled using a

Dubins car framework [46] as shown in Figure 5.1. Let Sj
k be the (constant) speed

at which UAV j is moving, ✓jk be its heading, and uj
k be the control input to the

turn rate at time k. The constraints on turn rate and speed are enforced using the

saturation function.

The unconstrained kinematics of UAV j = 1, ..., O are defined by

ẋj
k = Sj

k cos ✓
j
k

ẏjk = Sj
k sin ✓

j
k

✓̇jk = uj
k.

(5.1)

By taking derivatives of the ẋj
k and ẏjk terms, assuming unit mass, the dynamics

of the UAVs are determined by the force, F j
k =

h
Xj

k, Y
j
k

i
along the x and y directions
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Figure 5.1: Dubins car at fixed altitude in inertial frame, I = (O, ex, ey, ez).

as follows:

Ṡj
k cos ✓

j
k � ✓̇jkS

j
k sin ✓

j
k = Xj

k

Ṡj
k sin ✓

j
k + ✓̇jkS

j
k cos ✓

j
k = Y j

k .

(5.2)

Solving for Ṡj
k and ✓̇jk yields

✓̇jk =
Y j
k cos ✓jk �Xj

k sin ✓
j
k

Sj
k

Ṡj
k = Xj

k cos ✓
j
k + Y j

k sin ✓jk.

(5.3)

Using Euler’s method [47] and applying saturation models yields

✓jk = ✓jk�1

+ sat

 
Y j
k cos ✓jk�1

�Xj
k sin ✓

j
k�1

Sj
k�1

, ✓̇max

!
�t

Sj
k = sat

⇣
Sj
k�1

+ (Xj
k cos ✓

j
k�1

+ Y j
k sin ✓jk�1

)�t, Smax

⌘
,

(5.4)

where sat(x, x
max

) =

8
>>>>>>><

>>>>>>>:

x, |x|  x
max

x
max

, x > x
max

�x
max

, x < �x
max.

(5.5)
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5.2 Artificial Potentials and Likelihood Gradient Search Algorithm

Each UAV’s motion plan is prescribed by a combination of three artificial

potentials to guide it up the gradient in likelihood ratio while preventing collisions.

Assume the likelihood surface and geometry of the road network itself are known to

all UAVs, as well as the location of every other UAV.

The first force is derived from the maximum gradient of the log-likelihood

graph in a limited field of view. Although the UAV has global knowledge of the

nodes that compose the likelihood network, a finite field of view with radius ⇢ is

adopted to allow the UAV to navigate using the local maximum gradient. Without

this restriction, the maximum gradient might be extracted from anywhere in the

network and the resulting gradient force might send the UAV o↵ the road network

entirely.

Let N j
k be the set of indices for all vertices in sensor range of a UAV j at

time k corresponding to the non-zero row entries in the corresponding columns of

B. The likelihood of all nodes in range for a particular UAV is represented by

�(N j
k ). To find the gradient of the graph, the distance between connected nodes is

assumed to be constant. The gradient magnitude is the likelihood di↵erence between

adjacent nodes and its orientation is along the edge that connects them, which can

be extracted from the incidence matrix B as follows.

The edge-wise likelihood di↵erences ��k at time k are

��k = BT�k. (5.6)
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Let Mj
k be the set of row indices of BT corresponding to the edges that connect

to nodes inside the search range of the UAV and µj
k 2 Mj

k represent the index of

the edge with maximum likelihood change. The maximum di↵erence in likelihood

along an edge in Mj
k is ��k(µ

j
k). If the maximum likelihood change is contained in

multiple edges, a single edge is chosen randomly.

Since µj
k represents only the edge index of the largest di↵erence in likelihood,

the direction of the gradient along the edge is also needed. Recall that  contains

the positions for each node in the network; let n
1

and n
2

be the head and tail,

respectively, of the edge in row µj
k of BT .

The di↵erence operator BT acting on �k finds the di↵erence between connected

nodes n
1

and n
2

by subtracting n
2

from n
1

. If the di↵erence is positive, the gradient

points from n
2

to n
1

along edge µj
k and vice versa if the distance is negative. The

likelihood gradient rRj
k is thus

rRj
k = ��k(µ

j
k)

 (n
1

)�  (n
2

)�� (n
1

)�  (n
2

)
�� (5.7)

and is shown being applied to a UAV graphically in Figure 5.2. The UAV ascends

the likelihood gradient, while feeding new measurements to the likelihood surface,

ensuring that a local maximum will not be reached.

The second artificial force is the gradient of the repulsive portion of the

Lennard-Jones potential [48], known as Pauli repulsion. The Lennard-Jones poten-

tial is typically used as a computationally e�cient way to model intermolecular gas

dynamics, and Pauli repulsion in particular describes repulsion between molecules

as their electron orbitals overlap. Pauli repulsion is utilized because it is tunable for
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Figure 5.2: The likelihood gradient force vector directing a UAV.

avoiding collisions and redundant searching.

Recall ⇠jk = [xj
k, y

j
k], j = 1, ..., O. The Pauli repulsion potential for UAV j is

P j
k = 4✏

OX

i 6=j

(�12||⇠jk � ⇠ik||�12), (5.8)

where ✏ is the depth of the well and � is the distance at which the potential between

two UAVs is zero. An example of the potential between two UAVs is shown in

Figure 5.3. Note that as the distance between UAVs becomes large, the potential

becomes very flat, which implies that repulsive interactions only occur when UAVs

are close. The gradient of (5.8) is

rP j
k = �48

OX

i 6=j

⇣
�12||⇠jk � ⇠ik||�13

⌘ ⇠jk � ⇠ik
||⇠jk � ⇠ik||

, (5.9)

where ✏ is set to one for proportionality to the likelihood gradient force, and � is

set to twice the search radius ⇢ to make repulsion occur only when UAVs have

overlapping search radii. This potential is depicted in Figure 5.4 where two UAV’s

search radii overlap one another and the Pauli repulsion force guides them away

from each other.

The coupling of maximum gradient force and Pauli repulsion prevents multiple

UAVs from approaching the same node. As the likelihood surface updates with
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Figure 5.3: Pauli repulsion with � = 2⇢

Figure 5.4: Depiction of the Pauli repulsion gradient directing two UAVs.

negative measurements in the search radius of a UAV, the gradient towards that

portion of the graph decreases and any other local UAVs have less incentive to

approach. Any UAVs with coincident paths are also diverted due to Pauli repulsion.

As a result, only UAVs approaching the same node from separate paths will come

into close proximity and will be diverted either by the local gradient updating away

from the common node as measurements of the common node are collected or by
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Pauli repulsion.

The third force is a spring potential connecting the UAV to the node of higher

likelihood along the edge of maximum gradient, i.e., nmax 2 {n
1

, n
2

} such that

�k(nmax) is greatest. The spring potential is used to counteract drift induced by

sudden changes in the gradient direction as depicted in Figure 5.5. If the node of

interest goes out of sensor range, the spring force acts on the UAV and brings the

UAV closer to the nodes of interest. The rest length of the spring is set to the

sensor range of the UAV to keep the edge of max likelihood change in measurement

range, while still allowing the UAV to measure nearby edges, thereby maximizing

information collection. The spring potential is

Qj
k = �1

2
K
⇣
||⇠jk �  (nmax)||� ⇢

⌘
2

, (5.10)

and the spring force is

rQj
k = �K

⇣
||⇠jk �  (nmax)||� ⇢

⌘ ⇠jk �  (nmax)

||⇠jk �  (nmax)||
, (5.11)

where K is the spring constant and ⇢ is the rest length.

The net artificial force applied to UAV j when ascending the likelihood gradi-

ent in search of new targets is

F j
k = rRj

k +rP j
k +rQj

k, (5.12)

where the components are internally scaled as described above.
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Figure 5.5: Depiction of the spring force directing a UAV back onto the road network

after a sudden gradient direction change.

5.3 Loiter Tracking Strategy

The loiter algorithm presents an option for target tracking that works best in

the case when the number of UAVs available is greater than or equal to the number

of targets. The UAVs simply loiter over targets they detect and no longer search for

new targets. In the case of more targets than UAVs, simply loitering over targets

doesn’t provide an adequate track and search balance, but is a conservative choice

to maintain tracks on detected targets.

Having the UAV loiter over the location in the tracker with the highest target

probability requires an artificial attractive force between a UAV and the associated

tracker. The artificial force is achieved using a spring potential as described for

drift reduction in searching for targets, however in this case the spring is attached

to the node of peak probability in the assigned tracker. The associated spring force
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between the paired UAV j and peak probability P lj
k is

rLlj
k = �K

⇣
||⇥j

k �  (P lj
k )||

⌘ ⇥j
k �  (P lj

k )

||⇥j
k �  (P lj

k )||
, (5.13)

where K is the spring constant and the rest length is zero.

Assigned UAVs no longer search for new targets using the likelihood gradient

search and have a modified collision avoidance force. The assigned UAV is no longer

actively repulsed from all UAVs, but only from other loitering UAVs. Let J be the

set of all UAVs assigned to trackers. The modified Pauli repulsion force for assigned

agents is

rP j
k = �48

OX

i 6=j,
i2J

⇣
�12||⇥j

k �⇥i
k||�13

⌘ ⇥j
k �⇥i

k

||⇥j
k �⇥i

k||
, (5.14)

where ✏ = 1 and � = 2⇢.

The total control force applied from the loiter strategy to UAV j is

F j
k =

8
>>><

>>>:

rLlj
k +rP j

k , j 2 J

rRj
k +rP j

k +rQj
k, j /2 J .

(5.15)

5.4 Search-and-Loiter Tracking Strategy

The search-and-loiter algorithm is a more aggressive, but naive, solution to

providing more balance in detecting new targets and reacquiring detected targets.

The assigned UAVs temporarily leave their loiter over detected targets when the

localization of their assigned target is known with high accuracy via successive

measurement updates.

In the absence of sensor measurements, the localization of the tracked target

drops due to the motion model updates of the probabilistic trackers. When the loss
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of localization drops below a defined revisit threshold, UAVs return and loiter over

the peak of their assigned tracker in an attempt to reacquire the target.

Just as for loiter, when a tracker l is assigned to an agent j, the peak probability

in that tracker is encoded in P lj
k . The assigned UAV continually monitors the peak

probability even as it searches for new targets, so the perceived localization accuracy

of the tracker can be determined at each time step. As the motion model updates

the tracker in the absence of measurements, the probabilistic knowledge of the true

target location becomes less accurate. This issue makes new measurements of the

target essential to maintaining the health of the tracker.

The loiter strategy solves the problem of tracker accuracy by continually pro-

viding the tracker with new measurements, thereby keeping the peak probability

high. The search-and-loiter strategy relies more heavily on the accuracy of tracker

motion model to maintain its target estimate even in the absence of measurements.

A loiter threshold % tells the assigned UAV when the estimated target location has

become too inaccurate. So long as P lj
k remains above %, the UAV continues search-

ing the likelihood network for other targets. When P lj
k drops below %, the UAV

returns to the node of maximum target probability and attempts to relocalize the

target and provide an updated P lj
k that is above %.

The total control force for Search-and-Loiter tracking applied to UAV j is

F j
k =

8
>>>>>>><

>>>>>>>:

rLlj
k +rP j

k , j 2 J & P lj
k  %

rRj
k +rP j

k +rQj
k, j 2 J & P lj

k > %

rRj
k +rP j

k +rQj
k, j /2 J .

(5.16)
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(Note, the same Pauli repulsion rules apply as in the loiter tracking strategy. The

term rP j
k changes based on whether the UAV is assigned or not according to Equa-

tions (5.9) and (5.14).)

5.5 Search-and-Reacquire Tracking Strategy

Reacquisition of targets is often not as simple as revisiting the location in the

tracker that has the maximum probability of a target. When there is a mismatch

between the target model and the actual target dynamics, the target dynamics do

not fall within a Gaussian distribution confined to the road network, or the target

reaches the edges of the Gaussian distribution, revisiting the peak of the tracker

distribution often results in a detected target being lost. As a result, a conservative

target motion model is beneficial because, although it is not highly accurate at

localizing the exact position of a target, it does provide a probability for all possible

locations that the target could be. Such is the case for a motion model based on a

random walk; rarely will targets follow a random walk in reality, but as long as the

random walk di↵uses at the speed of the targets, the actual location of the target

should fall within the distribution produced in the absence of measurements for a

short period of time.

One useful formulation of the reacquisition of a target after an extended search

for new targets is the orienteering problem with time windows (OPTW) as first

described in [49]. A depiction of one of Marius Solomon’s benchmark cases for

vehicle routing problems [50] is shown in Figure 5.6.
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Figure 5.6: Benchmark dataset c101 [1] for 100 nodes from Solomon’s test problems.

Each node of the tracker network has a probability of the target being located

there (profit) and the time window when profit may be collected at each node can

be tailored to provide less constraint than the typical orienteering problem. The

orienteering problem solution provides an optimal route for a vehicle that maximizes

the collected profit within the constraint of the service time windows of each node.

A heuristic developed in [51] was modified to give a locally optimal set of waypoints

for the UAV to visit that maximizes the chances of reacquiring the target.

The OPTW takes a set V of N nodes, and assigns each of them a score Si, a

time required for service Ti, and a time window [Oi, Ci] within which the nodes can

be serviced. A start and end node S, E (that will no longer have a profit associated

with them) are chosen, and the travel time (cost) cig between various nodes i, g 2 V

is assumed to be the pairwise Euclidean distance between them divided by the UAV

travel speed Smax. Due to the time windows and a limited time budget Tmax, not

all locations can be visited. The goal of the OPTW is to find a single route that
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maximizes collected profits within Tmax, obeys the time windows for serviced nodes,

only visits each node once at most, and starts and ends at the prescribed nodes.

Assume for the formulation of the problem that W is a large constant, si is

the start of service at location i, and

xig =

8
>>><

>>>:

1, a visit to node i is followed by a visit to g

0, otherwise,

yi =

8
>>><

>>>:

1, if node i is visited in the prescribed route

0, otherwise.

This problem can be formalized into a integer programming problem as in [51]

Max
N�1X

i=2

Siyi (5.17)

N�1X

g=2

xSg =
N�1X

i=2

xiE = 1 (5.18)

N�1X

g=2

xgS =
N�1X

i=2

xEi = 0 (5.19)

N�1X

i=1

xik =
NX

g=2

xkg = yk (k = 2, ..., N � 1) (5.20)

si + Ti + cig � sg  M(1� xig) (i, g 2 V ) (5.21)

yk  1 (k = 2, ..., N � 1) (5.22)

N�1X

i=1

0

@Tiyi +
NX

g=2

cigxig

1

A  Tmax (5.23)

Oi  si (i 2 V ) (5.24)

si  Ci (i 2 V ) (5.25)

xig, yi 2 {0, 1} (i, g 2 V ). (5.26)
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The objective function in (5.17) maximizes the collected profit from a given

route R. Constraints (5.18) and (5.19) enforces the requirement that route R must

start and end at points S and E. Constraints (5.20) and (5.21) provide a requirement

for the connectivity and timing of the route. Constraint (5.22) requires that every

location may only be visited at most once, while constraint (5.23) keeps the time

to traverse the tour smaller than the available time budget. Constraints (5.24) and

(5.25) ensure that service is provided to nodes within their time windows. Constraint

(5.26) requires that all nodes in the integer program are assigned as either a one or

a zero.

UAVs that need to adapt in real time require minimal computation times, so

the proposed solution is based on a locally optimal iterated local search heuristic

(ILS) introduced in [51], rather than an exact optimal solution. The ILS uses an in-

sertion heuristic that iteratively takes possible visits, which don’t violate the integer

program formulation, and finds the locally optimal insertion position in the current

route R. For each extra visit added to the tour, the insertion heuristic presents a

quick method to verify that time windows are not violated for tour nodes after the

insertion position. This procedure is done by defining two variables for each visit

that have already been included in the route, the Waiti and the MaxShifti. Wait

is either the amount of di↵erence between the arrival at the node ai and the opening

of the time window Oi, or 0 if there is no wait since ai 2 [Oi, Ci]

Waiti = Max(0, Oi � ai). (5.27)

MaxShift is the maximum time that the service of a member of the current
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route R can be delayed before an inserted visit becomes infeasible. The MaxShift

for node i 2 R is defined to be

MaxShifti = min(Ci � si,Waiti+1

+MaxShifti+1

). (5.28)

The maximum shift for node i is dependent on the sum of the available time

to delay all future nodes in R and the wait time for the next node, unless the ability

to complete the service of i is the limiting factor due to the closing of its service

time window.

According to [51], this methodology makes the evaluation of feasibility for

proposed insertions possible in constant time, rather than linear time. The total

time shift for all subsequent visits associated with an insertion of an extra visit

g /2 R between nodes i, n 2 R is

Shiftg = cig +Waitg + Tg + cgn � cin. (5.29)

To check the feasibility of inserting g, the following condition is checked

Shiftg  MaxShiftg. (5.30)

The time shift associated with each proposed insertion position, for each g /2 R,

is found in this manner and the lowest possible shift is considered to be the best

possible insertion position for that g. Determining the g to be inserted on each

iteration requires finding which g maximizes the ratio

Ratiog =
(Sg)2

Shiftg
(5.31)

out of all remaining g /2 R.
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Figure 5.7: Locally optimal solution to OPTW problem in Figure 5.6.

The visit g that maximizes the ratio is inserted in the position in R that

minimized Shift and the visits after the insertion position are updated with the

following formulas

Shiftg = cig +Waitg + Tg + cgn � cin

Waitn⇤ = Max(0,Waitn � Shiftg

an⇤ = an + Shiftg

Shiftn = Max(0, Shiftg �Waitn)

sn⇤ = sn + Shiftn

MaxShiftn⇤ = MaxShiftn � Shiftn.

These equations are used to update all visits after n until the Shift is reduced to

zero. The value of MaxShift for visits prior to the insertion position in the route

are then updated as needed with Equation (5.28). A route that locally maximizes

profits for the benchmark case provided in Figure 5.6 is shown in Figure 5.7.

The orienteering problem with time windows and the solution heuristic is

49



modified for UAVs trying to optimally reacquire detected targets as follows. The

profits associated with each node are the probabilities contained in an assigned P l
k

tracker, so possible insertion nodes are all nodes contained in P l
k. Additionally, the

position of the UAV when it begins trying to reacquire a target needs to be the start

position of the route R (and as a result has zero profit associated with it). Attempts

to reacquire the target occur at some global simulation time T when P lj
k < %.

The end position requirement is removed by focusing the time windows for

service to be the amount of time between when the UAV attempts to reacquire

the target in tracker l at global simulation time T and when the tracker dissolves

because P lj
k drops below Pmin. The time di↵erence Tr is determined by simulating

the motion update step in Equation (4.2) until P lj
k reduces from % to Pmin, which

is the time available for a revisiting UAV to attempt to reacquire the target. T

becomes the lower time window Oi and T + Tr becomes the upper time window for

all nodes i 2 P l
k, as well as for S located at the position of UAV j at time T . The

end node E can be chosen arbitrarily from the set of all nodes not in P l
k. The only

requirement is that OE = T and CE > max(ciE) + T + Tr 8 i 2 P l
k, which means

it is reachable within the end of the time budget no matter where the second to

last node in R is located. The limited time budget Tmax must also be larger than

Tr +max(ciE) so that the reacquisition problem is well posed.

The traversal of the locally optimal reacquisition route prescribed terminates

with either an acquisition of the target, at which point the UAV relocalizes the

target and begins searching for new detections, or with a tracker being dissolved

when the target cannot be found. These two situations make the application of wait
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times unnecessary because the reacquisition of the target is constrained within the

uniform time windows for R. Additionally, each node is considered serviced as soon

as the UAV search footprint provides coverage of the node location, which makes

service times instantaneous.

The dynamics of the assigned UAV are guided to waypoints in R by again

utilizing a modified artificial spring force

rW lj
k = �K

⇣
||⇥j

k �  (R(i))||
⌘ ⇥j

k �  (R(i))

||⇥j
k �  (R(i))||

, (5.32)

whereK is the spring constant and the rest length is zero. The spring is connected to

the next unserviced element i 2 R and is updated for each time step to continually

evolve along R.

The total control force for Search-and-Reacquire tracking applied to UAV j is

F j
k =

8
>>>>>>><

>>>>>>>:

rW lj
k +rP j

k , j 2 J & P lj
k  %

rRj
k +rP j

k +rQj
k, j 2 J & P lj

k > %

rRj
k +rP j

k +rQj
k, j /2 J .

(5.33)

(Note again that the same Pauli repulsion rules apply as in the loiter and search-

and-loiter tracking strategies. The term rP j
k changes based on whether the UAV is

assigned or not according to Equations (5.9) and (5.14).)
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Chapter 6: Simulation Results

6.1 Performance of the Likelihood Gradient Search Algorithm

Table 6.1: Road network parameters

Parameter (units) Verizon Center, DC Silver Spring, MD New York, NY Westminster, MD

Area of snapshot (mi2) 0.863 0.868 0.870 0.887

Convex hull of network (mi2) 0.817 0.842 0.841 0.846

Number of intersections 510 372 268 138

ID (int/mi2) 624.356 441.777 318.595 163.175

Figure 6.1 provides a snapshot of the gradient search algorithm in simulation.

The likelihood along the network is represented graphically by the color of each node.

High likelihood is red, neutral likelihood is green, and low likelihood is blue. Targets

are distributed throughout the network as colored stars, whereas UAVs and their

sensor ranges are represented by colored diamonds and green circles, respectively.

Additional parameters used for the simulation are described in Table 6.2.

Figure 6.1 shows a number of the behaviors described throughout this thesis.

Focusing first on the magenta UAV in Figure 6.1a, a red target is just entering

the sensor range of the UAV. The UAV raises the likelihood for all nodes in sensor
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Table 6.2: Simulation parameters

Parameter Value (units) Definition

� 240 (m) repulsive threshold

✏ 1 (kg m2/s2) Pauli repulsion depth

O 3-6 number of UAVs

8 number of targets

�t 0.3 (sec) time step

�x 10 (m) node spacing

Pd 95% probability of detection

Pf 10% probability of false alarm

�max 10 target detection threshold

✓̇max 50 (�/sec) UAV max turn rate

Smax 80 (mph) UAV speed

Vmax 50 (mph) target speed

↵ 0.4470 (m2/s) target di↵usivity

⇢ 120 (m) UAV sensor range

C 50 decay term

range as indicated by the orange and red nodes. In Fig. 6.1b, with the threshold

achieved, the red target has changed color to black, indicative of a target detection

and transition from track-before-detect to track-after-detect for that target. For the

purposes of validating the track-before-detect gradient search algorithm, the black
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(a) Time step k = 230 (b) Time step k = 235

Figure 6.1: Snapshots of LRT detection and repulsion

target is now invisible to all UAV sensors and the UAVs are unconcerned about how

that target is being tracked after detection.

Focusing now on the red and cyan UAVs, their sensor ranges have just over-

lapped in Figure 6.1a. As a result, a repulsion force acts on both UAVs, introducing

an additional force into the Dubins car dynamics. This force becomes larger as the

UAVs get closer, and eventually leads the two UAVs to turn away from one another

while continuing their gradient ascending behavior in Figure 6.1b.

UAVs have limited turn rates, so when confronted with two equally large

maximum gradients in range, each UAV reacts within its dynamic constraints; this

indirectly introduces a tiebreak in the case of multiple edges with the same maximum

change in likelihood. As discussed before, if multiple local edges have the same

maximum likelihood change, a random edge among that maximum set will be chosen.

Even if the random edge is chosen in a direction not aligned with the current heading

of the UAV, the saturation introduced in the speed of the UAV, and the limited turn

radius, will compel the UAV to move in approximately the same direction. On the
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subsequent time step, the UAV’s sensor area will have shifted and the edges that

are re-evaluated for gradients will have changed as well, causing the UAVs to prefer

gradients along their current direction rather than changing direction substantially

to pursue a maximum gradient.

Performance of the gradient search algorithm on road networks was determined

using three metrics: intersection density (ID), time to detect, and number of UAVs.

Time to detect represents the time required to detect all targets on the road network

and ID is the number of intersections per square mile of a road-network snapshot [52].

The four di↵erent road networks in Table 6.1 have linearly decreasing intersection

density for approximately the same size snapshot. Between 3–6 UAVs were released

on each road network to search for targets. Twenty–five Monte Carlo simulations

were run using the parameters described in Table 6.2 for each UAV configuration,

resulting in one hundred trials for each of the four road network snapshots.

Figure 6.2 shows the relationship between number of UAVs and time to detect

for each road network snapshot. As the number UAVs searching increased, the

time to detect decreased. Figure 6.3 shows the relationship between intersection

density and time to detect for increasing numbers of UAVs. The time to detect for

a particular number of UAVs does not change substantially, indicative of a balanced

algorithm that can search spaces of various road complexity without su↵ering a

loss in production. In addition, as the number of UAVs searching increases, the

variance in time to detection decreases. This result indicates that the gradient search

algorithm becomes more e�cient at detecting targets on similarly sized snapshots

as the number of UAVs increases.
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Figure 6.2: Number of UAVs vs. Time to detect for constant area
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Figure 6.3: Intersection Density vs. Time to detect for constant area
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6.2 Performance of Search and Track Algorithms

Four parameters help determine simulation performance for a search and track

problem on a road network: intersection density (ID), coverage rate, guidance al-

gorithm, and UAV-to-target ratio eO. ID is the number of intersections per square

mile of a road-network snapshot [52].

To describe the ability of UAVs to find targets, the relative coverage rate is

found using the procedure in [53]. Let Vmax be the maximum speed of targets on the

road network. Let ✓̃ represent the angle between the velocity of a target and a UAV,

n represent the target density over the confines of the map, S = 2⇢+⇡⇢2/(Vmax�t)

represent the cross section of coverage between the target and mobile sensors, and
q
⇠2 +⇥2 � 2⇥⇠ cos ✓̃ represent the relative velocity between UAVs and targets.

Relative coverage rate estimates the sensor coverage of targets per unit time for a

UAV and is defined as [32]

C = n S
q
⇠2 +⇥2 � 2⇥⇠ cos ✓̃, (6.1)

which is similar to the mean free path theory from the kinetic theory of gas molecules

found in physics.

Under the assumption of the random mobility model, the relative velocity

becomes the average relative speed between the targets and the UAVs [53]

1

2⇡

Z
2⇡

0

q
⇠2 +⇥2 � 2⇥⇠ cos ✓̃d✓̃. (6.2)

The target density within the confines of the map is

n = A , (6.3)
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where A is the convex hull of the road network.

For simulations, a single road network in downtown Baltimore, Maryland with

ID 194 (A = 4.59 ⇥ 106 m2) was used and the altitude of the UAVs was varied

linearly from h = 457 m to 1829 m. This range was chosen to model variations

in the standard operating altitude of the ScanEagle [54], which normally performs

surveillance at 457 m. The UAV-to-target ratio eO was varied between 0.25, 0.5, 1.0,

and 1.5.

Changes in altitude are accompanied by changes in the fidelity of the sensors

onboard for detecting and gathering measurements of target location. The change

in accuracy can be extended to changes in the simulation model by varying Pd, Pf ,

⇢, and s with altitude. Pd, Pf , and s were assumed to vary linearly with altitude

according to

Pd = 0.975� 0.025
h

457
(6.4)

Pf = 0.025
h

457
(6.5)

s =
5

457
h. (6.6)

Variations in Pd and Pf produce the series of receiver operating characteristic curves

(ROC) [42] in Figure 6.4.

As altitude increases, the field of view of the camera footprint increases. Let

FL be the focal length of the sensor and Sr the sensor radius. The radius of the

circular sensor footprint for each height is

⇢ =
Sr

FL

h. (6.7)

A summary of simulation parameters are provided for a camera with FL = 90
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Figure 6.4: ROCs for linearly increasing altitude

Table 6.3: Relation between altitude, Pd, Pf , s, and ⇢

Altitude (m) Pd Pf s (m) ⇢ (m)

457.2 0.95 0.025 5 93.5

914.4 0.925 0.05 10 187.0

1372.0 0.90 0.075 15 280.0

1828.8 0.875 0.10 20 374.0

mm and Sr = 18.4 mm in Table 6.3. Additional parameters used for the simulation

are described in Table 6.4.

The performance of simulations is compared using a number of metrics [55], in-

cluding the number of valid tracks (NV T ), the number of spurious tracks (NST ), the

number of valid associations (NV A), and the number of false associations (NFA).
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Table 6.4: Simulation parameters

Parameter Value (units) Definition

�t 0.3 (sec) time step

�max 10 target detection threshold

✓̇max 70 (�/sec) UAV max turn rate

Smax 80 (mph) UAV speed

Vmax 50 (mph) target speed

↵ 0.4470 (m2/s) target di↵usivity

c m/2 criterion

E 300 EMD threshold

Pmin 0.07 track dissolve threshold

C 50 LRT decay term

% 0.3 loiter threshold

A 4.59⇥106 m2 convex hull of network

Each of these measures is recorded for every time step and Monte Carlo trial, and

are averaged over the entire data set for a particular scenario described by the

60



four parameters: intersection density (ID), coverage rate, guidance algorithm, and

UAV-to-target ratio eO. These metrics may also be combined into additional useful

metrics, including the measure of completeness (MOC), which is the ratio of valid

trackers to total number of targets [55]. Each altitude was simulated for both of the

tracking algorithms over 50 trials in a custom Matlab simulation environment.

Figure 6.5 shows the change in MOC vs. time for four di↵erent Õ’s and a va-

riety of di↵erent coverage rates. For all four UAV-to-target ratios, both algorithms

are characterized by two sequences: the (mostly) positive linear aggregation of in-

formation about the targets and road network, and the plateau achieved when some

percentage of the total targets are found. As coverage rate increases the slope of the

linear aggregation portion becomes sharper, indicating quicker data collection. This

trend results in the plateau being higher, and thus leads to MOC becoming close to

unity for the maximum coverage rate used in simulation. Having the highest cover-

age rate consistently yields the quickest and most complete tracking of targets for

all four UAV-to-target ratios. The loiter algorithm consistently performs better in

tracking all of the targets than the search-and-loiter algorithm, but not in detecting

new targets. As coverage rate increases, the time required to reach the plateau in

performance decreases and the steady-state performance increases.

Comparing the performance of the two algorithms, the loiter algorithm per-

form substantially better in quickly gathering information and achieving a higher

steady-state MOC for lower coverage rates. However, as the coverage rate increases,

this gap in steady-state MOC between each algorithm becomes smaller and the two

algorithms both perform well.

61



Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.05 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.18 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.40 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.70 targets/sec

Loiter
Search-and-Loiter

(a) For UAV-to-target ratio 0.25

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.05 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.18 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.40 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.70 targets/sec

Loiter
Search-and-Loiter

(b) For UAV-to-target ratio 0.5

62



Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.04 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.14 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.30 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.52 targets/sec

Loiter
Search-and-Loiter

(c) For UAV-to-target ratio 1.0

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.02 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.09 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.20 targets/sec

Loiter
Search-and-Loiter

Time (sec)
0 100 200 300

M
ea

su
re

 o
f C

om
pl

et
en

es
s

0

0.2

0.4

0.6

0.8

1
Coverage rate: 0.35 targets/sec

Loiter
Search-and-Loiter

(d) For UAV-to-target ratio 1.5

Figure 6.5: MOC vs. time for increasing coverage rate.
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The loiter and search-and-loiter algorithms perform relatively well for di↵erent

UAV-to-target ratios, but with some key distinctions. For Õ = 0.25 there is 1 UAV

and 4 targets. As a result, this UAV-to-target ratio achieves at best a steady-

state average of 25% for both loiter and search-and-loiter. However, while loiter is

compelling the UAV to focus on keeping one tracker accurate rather than tracking

all possible targets, Search-and-loiter has similar performance in terms of MOC, but

is actually glimpsing more targets as it searches and returns to loiter. This result

indicates that search-and-loiter is actually performing better and is highlighted in

case studies provided in Figure 6.6, which is discussed later.

On the other side of the spectrum is the case of Õ = 1.5, which involves

3 UAVs and 2 targets. As coverage rate increases, so too does the steady-state

MOC, reaching close to 100% relatively early in the simulation. As anticipated,

searching for additional targets (for search-and-loiter) rather than simply loitering

over detected targets underperforms in the case where there are more UAVs than

targets.

For another perspective, let the percentage of valid trackers PV T be

PV T =
NV T

NV T +NST
. (6.8)

For all four UAV-to-target ratios the di↵erence in PVT for each algorithm is negligi-

ble and both instantiate valid trackers 97% of the time for a wide range of altitudes.

However, by highlighting a couple trials from the case of 4 targets and 1 UAV,

some of the characteristics of search-and-loiter relative to the loiter algorithm be-

come visible. For case study 1, search-and-loiter detects a third target that the
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loiter algorithm never sees and keeps occasional tracks on a second target that loiter

loses. In case study 2, search-and-loiter loses its track of all targets after matching

the performance of the loiter algorithm. However, after regaining a track on one

target, search-and-loiter performs substantially better than loiter and has instan-

tiated trackers on all four targets by the end of the simulation. In case study 3,

search-and-loiter performs better than pure loiter, tracking as many as three tar-

gets. Search-and-loiter does experience a quick tracker loss, indicative of the UAV

returning to perform its loiter assignment in search-and-loiter, but returning too

late. This problem can be solved by further tuning of the return threshold in this

strategy, as well as a superior target motion model.

Let the percentage of valid associations PV A be

PV A =
NV A

NV A+NFA
. (6.9)

Figure 6.7 shows the relationship between coverage rate C and PV A for both al-

gorithms and all four UAV-to-target ratios. In these cases, di↵erences between

algorithms are slightly more defined than for the case of PV T . The loiter algorithm

performs slightly better in providing trackers with accurate measurement updates

than the search-and-loiter algorithm. The performance di↵erence can be explained

by recalling that UAVs employing the loiter strategy are continually providing up-

dates to the tracker and their search radius always has the target they are tracking

fully in view. In addition, for all cases except Õ = 0.25, the PV A seems to plateau

and then drop indicating that the quality of the measurements being provided is

dropping and more incorrect associations are occurring. This negative slope in PV A

65



Time (sec)
0 50 100 150 200 250 300

N
um

be
r o

f V
al

id
 T

ra
ck

s

1

2

3

4

Loiter
Search-and-Loiter

(a) Case Study 1

Time (sec)
0 50 100 150 200 250 300

N
um

be
r o

f V
al

id
 T

ra
ck

s

1

2

3

4

Loiter
Search-and-Loiter

(b) Case study 2

Time (sec)
0 50 100 150 200 250 300

N
um

be
r o

f V
al

id
 T

ra
ck

s

1

2

3

4

Loiter
Search-and-Loiter

(c) Case Study 3

Figure 6.6: Case study of valid tracks vs. time for 4 targets and 1 UAV at an altitude

of 1828.8 m.
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Figure 6.7: The percentage of associations that are valid vs. coverage rate.

decreases as Õ increases. The decrease in PV A with increasing coverage rate was an

expected outcome based on a measurement model uncertainty that increased with

altitude, but the e↵ect of increasing Õ was not anticipated.

The performance of the third search-and-reacquire algorithm was not tested

in simulation due to time constraints on this thesis, but suggestions for determining

its e↵ectiveness through simulation is provided in Section 7.2.
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Chapter 7: Conclusion

7.1 Summary of Contributions

The variety of mission requirements for surveillance operations make the search

and track problem di�cult and computationally intensive. We present a framework

for cooperative search-and-track of mobile targets on a road network using UAVs

with finite field of view. UAVs generate measurements of targets on a likelihood

network and call detections once the local likelihood passes a critical threshold.

Measurements from detected targets are used to create a measurement probabil-

ity distribution that indicates locations of targets. A data-association framework

takes prior tracker probability distributions and new measurement probability dis-

tributions and compares them using the earth mover’s distance. Utilizing artificial

potentials, three motion-planning strategies were created to balance finding unde-

tected targets with keeping trackers accurate.

In simulation, the loiter algorithm performed better than the search-and-loiter

algorithm in achieving high levels of MOC and in accuracy of trackers and data

associations. However, in the cases where there are fewer UAVs than targets, the

search-and-loiter algorithm can provide temporary tracks on many more targets

than pure loiter and give operators a better understanding of the target distribution
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on the road network.

7.2 Suggestions for Future Research

The search-and-reacquire strategy was not tested in simulation and could be

improved if more computational time is allowed. The full iterated local search

heuristic provided a near optimal solution to the orienteering problem when an addi-

tional shake step was included to perturb locally optimal solutions [51]. Simulations

comparing performance of the locally optimal and near optimal solutions could be

performed in parallel to compare the computational time and relative e↵ectiveness

of reacquiring targets in the same scenarios.

Additionally, the e↵ectiveness of the baseline models could be improved with

changes in the revisit threshold for UAVs tracking targets and the motion model

for targets. The revisit threshold was determined heuristically and is by no means

optimal. Further investigation of the variation of this threshold could provide height-

ened performance for all three algorithms. Likewise, providing a better model for

the target motion in the target trackers would provide the UAVs with more time

to search for new targets and could provide opportunities to revise how pairings

between UAVs and trackers is determined. Dynamic pairing could be an option,

wherein UAVs could be paired with multiple trackers and update them as needed,

as well as provide more opportunities for heightened cooperation among UAVs.

Finally, interesting extensions of this work involve changing how the sensor

platform onboard the UAV is modeled. The first interesting case would be pro-
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viding UAVs with heterogeneous sensor footprints such as a fixed forward-looking

camera (a cone) and gimbaled cameras (movable cone) and studying how perfor-

mance changes for searching and tracking targets. The second extension is spatially

varying probabilities of detection and false alarm. As UAVs move around a dense ur-

ban environment, buildings, bridges, and other objects obfuscate targets and make

detection hard if not impossible. With height maps becoming available for more

major cities, the e↵ect of buildings on probability of detection and false alarm can

be modeled and studied in target tracking situations.
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