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Chapter 1: Introduction

1.1 Motivation and Objectives

In recent years, the world has witnessed an escalation in the frequency and intensity of

natural and man-made disasters. The 2023 Turkey-Syria earthquake, for instance, resulted in

catastrophic losses, underscoring the urgent need for effective disaster response strategies [1].

These incidents often lead to challenging scenarios where victims are trapped in inaccessible

areas, necessitating rapid and efficient Search and Rescue (SAR) operations. Conventional meth-

ods, which rely heavily on human responders, are often hampered by physical risks, limited

accessibility, and time constraints. This is where the deployment of autonomous small Unmanned

Aerial Vehicles (UAVs), characterized by a maximum take-off weight (MTOW) of 13.5 kg or

less [2], holds transformative potential. UAVs, equipped with advanced sensors and cameras, can

access hard-to-reach areas, providing critical situational awareness without putting human lives

at risk.

UAVs, commonly known as drones, have emerged as revolutionary tools in various domains,

notably in disaster management and SAR. UAVs are instrumental in various post-disaster func-

tions, including aerial damage assessment, victim localization, SAR coordination, and delivery

of essential supplies [3]. They have been effectively utilized for quick evaluations of structural

damage following earthquakes [4] and for innovative applications like customized defibrillator
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payloads [5] and remote delivery of first aid kits [6]. Recent studies highlight UAVs’ capabilities

in rapid victim identification and condition assessment, with developments such as vision-based

algorithms for detecting life signs [7] and computer vision techniques for victim detection [8].

However, the utilization of UAVs in SAR missions introduces a unique spectrum of chall-

enges, particularly when these operations are conducted in indoor environments. The complexity

of SAR operations in indoor environments is due to the constrained spaces, limited visibility, and

complex interior layouts, all of which intensify the difficulty of locating and rescuing individuals

[9]. In GPS-denied settings like collapsed buildings or dense urban areas, the conventional

navigation systems in UAVs are rendered ineffective [10]. This calls for innovative solutions that

can autonomously navigate, identify, and assess situations in such challenging environments.

Autonomous drones can significantly expedite search operations, quickly locating victims and

assessing structural damages, thereby guiding rescue efforts more effectively.

In summary, the motivation behind this thesis is driven by the need to innovate in disaster

management and SAR operations using UAV technology. By developing frameworks and integra-

ting algorithms for autonomous navigation, target detection, and inspection in complex indoor

environments, this research aims to enhance the effectiveness, speed, and safety of disaster

response operations, ultimately contributing to saving lives and mitigating disaster impacts.

1.2 Relation to Previous and Ongoing Work

The increasing exploration of UAV technology in the context of disaster management and

SAR operations reflects a growing body of research dedicated to understanding and enhancing

UAV capabilities and applications. This thesis is a trial to add to to this dynamic research field.
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A significant portion of existing research focuses on the application of UAVs in outdoor

environments, particularly in wide-area search missions following natural disasters. Studies

highlight UAVs’ ability to cover large areas quickly, making them invaluable in initial disaster

assessment and victim location efforts [11]. This is complemented by research that delves into

the integration of deep learning and computer vision for effective disaster management using

UAVs. For instance, work done by Zhang et al. [12] discusses the development of advanced

victim detection models tailored for UAV-based SAR operations.

However, a few recent studies focused on enhancing autonomy and efficiency in SAR

operations within GPS-denied and cluttered environments. Sandino et al. (2020) discusses the

development of an autonomous navigation system for small UAVs [13]. The core objective is

to equip small UAVs with the ability to autonomously detect, localize, and quantify victims in

disaster scenarios, leveraging a Partially Observable Markov Decision Process (POMDP) solved

with an Adaptive Belief Tree (ABT) algorithm. Their approach integrates vision-based camera

inputs to manage target detection uncertainties.

The methodology encompasses rigorous testing in simulated environments using Software

in the Loop (SITL) with tools such as Gazebo, ROS, and PX4 firmware, supplemented by a

Hardware in the Loop (HITL) setup. Despite its advancements, the study acknowledges certain

limitations. The autonomous decision-making under environmental uncertainty and the modeling

of target detection uncertainties from vision-based sensors remain complex challenges. Addition-

ally, executing computationally intensive decision-making and object detection algorithms on

resource-constrained hardware requires further optimization.

In their follow-up study [14], the focus shifts toward enhancing the UAV’s operational

autonomy in GPS-denied environments. The proposed framework incorporates an onboard com-
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puting system, enabling the UAV to process data in real-time for effective navigation and target

detection. The research demonstrates the application POMDP/ABT algorithm again, facilitating

real-time decision-making and path planning for the UAV. Through rigorous testing, including

HITL simulations and actual flight trials, the UAV showcased its ability to autonomously navigate

and detect targets with varying degrees of uncertainty regarding their locations.

However, the study acknowledges certain limitations, particularly the reliance on pre-

configured occupancy maps, which restricts the UAV’s adaptability to dynamic environmental

changes. The paper suggests future enhancements, such as real-time occupancy map updates and

the inclusion of more sophisticated sensors, to further elevate the UAV’s autonomous navigation

and detection capabilities in complex indoor environments.

Pioneering studies such as that of Sampedro et al. (2019) presents a fully-autonomous

aerial robot designed for complex SAR missions in unstructured indoor environments [15]. Their

work focuses on integrating learning-based capabilities for target recognition and interaction,

employing supervised learning classifiers and novel Image-Based Visual Servoing (IBVS) algo-

rithms, hinged on deep reinforcement learning techniques like Deep Deterministic Policy Grad-

ients (DDPG). The extensive validation across simulated and real-world settings underscores the

UAV’s adeptness in navigating complex, obstacle-laden terrains, effectively identifying targets,

and engaging in precise interactions

1.3 Technical Approach

This research presents the development of an autonomous drone system designed for indoor

exploration, target identification, and inspection. The primary objective is to automate the manual
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processes of searching for, localizing, and inspecting targets within indoor environments, poten-

tially applicable to SAR missions, disaster management, and exploration operations.

The system utilizes an algorithmic framework for indoor autonomous exploration. This

framework integrates path planning and coverage algorithms, allowing the drone to systematically

navigate and scan indoor environments. The approach employs a coverage path planning (CPP)

strategy, specifically the boustrophedon or lawnmower pattern, ensuring complete coverage of

the search area.

Upon detecting potential targets, the system focuses on accurate localization. This is

achieved using a combination of fiducial markers (AprilTags) and advanced computer vision

techniques. The detected markers aid in precise positioning and orientation assessment of the

targets relative to the drone. This component of the system is critical for the detailed and accurate

localization of the targets of interest.

Once a target is localized, the drone initiates an autonomous inspection protocol, which

aims to examine the details of the targets using onboard cameras. This phase integrates an

object detection model for identifying and classifying anomalies or objects of interest. The

model, trained on a self-curated dataset of vision acuity markers, provides real-time analysis

while running onboard on the drone, which improves the decision-making capabilities.

The project then advances to enhances the drone’s autonomy in cluttered environments.

This is addressed through simulation-based studies, implementing state-of-the-art path planning

algorithms. The focus is on adapting the drone’s navigation and operational strategies to more

complex and realistic scenarios mimicing SAR operations.
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1.4 Contributions

The primary contributions of this thesis are as follows:

1. Autonomous Inspection Routine Development: An autonomous inspection routine is

developed and implemented, enabling UAVs to navigate to and inspect targets identified by

fiducial markers. This routine replaces the manual inspection process, equipping the UAVs

with the capability to autonomously perform comprehensive examinations of targets from

multiple positions.

2. Integration of Custom-Trained Object Detection: A custom-trained object detection

neural network is integrated to recognize vision acuity markers on targets. This model,

trained on a self-curated dataset, is optimized, and deployed to the UAV’s onboard computer,

enabling real-time processing and augmenting the autonomous inspection routine’s efficiency.

3. Development of an Autonomous Mission Framework and Experimental Validation:

A comprehensive autonomous mission framework is designed to manage the transition

between search and inspection phases effectively. It enables the UAV to autonomously

explore areas, identify targets, and conduct in-depth inspections using the integrated object

detection model for data acquisition before resuming exploration. The system is empirically

tested in multiple autonomous mission scenarios.

4. Adaptation and Analysis of State-of-the-Art Path Planning for Cluttered Environment

Autonomy: Integrated an open-source, state-of-the-art path planning algorithm into a

software-in-the-loop simulation environment, detailing its implementation and offering

critical analysis of its performance in different simulation environments.
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1.5 Outline of Thesis

Chapter 2 provides a comprehensive background on UAV dynamics, control systems, the

hardware used in experiments, and the software infrastructures that support autonomous flight. In

Chapter 3, it details the development of autonomous exploration and visual inspection algorithms,

integrating these systems for efficient target detection and localization. Chapter 4 explores the

adaptation of these systems for navigation in cluttered environments, analyzing the performance

of state-of-the-art path planning algorithms, and adapting one of them to our platform. Chapter 5

evaluates the effectiveness of the proposed systems through both simulated and real-world testing,

presenting quantitative and qualitative results. Finally, Chapter 6 concludes with a summary of

the research contributions and suggests directions for future work to enhance UAV autonomy

further in complex environments
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Chapter 2: Background

This chapter provides a comprehensive background essential for understanding the core

technologies and methodologies employed in the thesis.

2.1 Indoor Navigation and Localization

2.1.1 Navigating GPS-Denied Environments

Indoor navigation for drones presents challenges, particularly in GPS-denied environments,

which are paramount in SAR missions. GPS, where primarily used for outdoor navigation,

becomes unreliable or entirely unusable in indoor, underground, or dense urban landscapes. This

poses a significant problem for SAR missions, where timely and precise navigation is critical

in environments like collapsed buildings or caves. In such scenarios, rescuers cannot rely on

traditional GPS signals for localization, necessitating alternative methods for autonomous drones

to navigate and fulfill their mission effectively. These environments are not only GPS-denied

but often present complex, dynamic, and unstructured terrains that amplify the challenges for

autonomous navigation [16].
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2.1.2 State Estimation

To address these challenges, various techniques have been developed. Key among these

is Visual-Inertial Odometry (VIO), a method that combines visual data (from cameras) with

inertial measurements (from accelerometers and gyroscopes) to estimate the drone’s position and

orientation over time [17]. VIO operates by detecting visual features in the environment, tracking

their motion over successive camera frames, and fusing this information with inertial data. This

method is particularly effective in environments lacking GPS but rich in visual features. The

advantages of VIO are its relative simplicity and the ubiquity of cameras and inertial sensors,

which makes it a cost-effective solution for indoor navigation.

Another widely used technique in indoor state estimation is the Extended Kalman Filter

(EKF). EKF is a statistical approach that continually estimates the state of a dynamic system

(like the drone) from a series of incomplete and noisy measurements. In the context of drone

navigation, EKF can be used to fuse various sensor data – from accelerometers, gyroscopes,

magnetometers, and barometers – to provide a comprehensive and accurate estimate of the drone’s

position and motion [18]. This method is beneficial in environments where each individual sensor

might not provide reliable data due to various environmental factors.

2.1.3 Fiducial Markers for Precise Indoor Localization

For enhancing localization accuracy, Fiducial Markers, such as AprilTags, are employed.

AprilTags are simple, yet highly distinctive visual markers that can be easily detected and decoded

by computer vision algorithms [19]. Once an AprilTag is detected, its known dimensions and the

relative position of the camera allow for the precise calculation of the distance and orientation
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of the tag relative to the drone. This is particularly useful for fine-grained positioning tasks

required in SAR missions, where the drone might need to navigate to specific points or closely

inspect certain objects or areas. AprilTags’ simplicity and robustness against varying lighting

conditions and viewing angles make them ideal for indoor use, where environmental conditions

can be unpredictable.

2.2 Dynamics and Control of a Quadrotor Unmanned Aerial Vehicle

2.2.1 The Quadcopter Model

Discussing the dynamics of a quadcopter is essential as it’s the key to understanding flight

behavior. Modeling of such dynamics allows for the analysis and simulation of how a quadcopter

moves through the air and responds to external inputs. This is the basis for the development of

navigation and guidance algorithms for autonomous systems, and also for designing the control

algorithms. Detailed analysis of such models can be found in [20, 21].

In order to specify the attitude, two frames of reference are defined as the inertial (eI) and

body frames (eb). Fig. 2.1 shows the orientation of both frames.

The Euler angles vector containing roll, pitch and yaw is denoted by Θ = [ϕ θ ψ]
T and

the angular velocity vector in the body frame is described as Ω = [p q r]
T . Euler angles’ time

derivative (Θ̇) are related to angular velocities vector (Ω) using the following formula:

Θ̇ =


1 0 −sθ

0 cϕ sϕcθ

0 −sϕ cϕcθ

Ω (2.1)
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Figure 2.1: Quadcopter model with frames of reference [20].

The four rotors on the quadcopter are typically the source of generating the lifting force

and moment. Under the assumption that the resulting forces and moments are proportional to the

square of the rotor angular speed, the thrust and moment for each rotor are given by:

fi = kfω
2
i (2.2)

τi = ktω
2
i (2.3)

where fi and τi are the force and moment generated from each rotor, kf and kt are the aerodynamic

force and moment constants, and ωi is the angular velocity of each rotor. The total thrust and

torques as a result of the 4 motors working independently are expressed by:

T = kf [ω
2
1 + ω2

2 + ω2
3 + ω2

4]

τϕ = Lkf [(ω
2
2 + ω2

3)− (ω2
1 + ω2

4)]

τθ = Lkf [(ω
2
1 + ω2

2)− (ω2
3 + ω2

4)]

τψ = kt[(ω
2
1 + ω2

3)− (ω2
2 + ω2

4)]

(2.4)
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The translational equations of motion for the quadcopter in the inertial frame are given by:

m


Ẍ

Ÿ

Z̈

 =


0

0

mg

+ R


0

0

−T

 (2.5)

where R is the rotational matrix.

The rotational equations of motion are typically derived from the Newton-Euler method. It

is assumed that the quadcopter is symmetrical, therefore the inertia matrix is diagonal. Rotational

EOM for the quadcopter dynamics are defined as:

ϕ̈ =
τϕ
Ixx

+
Iyy
Ixx

θ̇ψ̇ − Izz
Ixx

θ̇ψ̇

θ̈ =
τθ
Iyy

+
Izz
Iyy

ψ̇ϕ̇− Ixx
Iyy

ψ̇ϕ̇

ψ̈ =
τψ
Izz

+
Ixx
Izz

ϕ̇θ̇ − Iyy
Izz

ϕ̇θ̇

(2.6)

After obtaining the complete equations of motions that describe the dynamics of the quad-

rotor, numerical integration methods are employed to solve the differential equations and simulate

the quadrotor response over time. Since quadcopter dynamics are known to be highly nonlinear

and strongly coupled, the system is linearized around an equilibrium point in order to simplify

the mathematical equations and decouple the dynamics of the system.

2.2.2 Flight Control System

PX4 and Ardupilot are the two most prominent open-source flight controllers. They are

used heavily in the field of aerial autonomous systems and are compatible with different aircraft

12



configurations including fixed-wing, multicopter, and VTOL aircraft. In this section, we will

focus on the PX4 and its control architecture as it was used for the work in this thesis.

PX4 utilizes a standard cascaded control architecture for multicopter aircraft configuration

employing a mix of P and PID controllers. Controllers are fed with state estimates that are

generated from an Extended Kalman Filter. The overall cascaded flight controller takes an

input of the position and yaw angle setpoints and calculates the required thrust setpoint for the

rotors. The cascaded controller consists of four controllers which are; position controller, velocity

controller, attitude controller, and angular rate controller. PX4 provides extensive documentation

on each of the controllers mentioned and the methodology for tuning each of the controllers

gains [22]. Fig.2.2 depicts the multicopter overall cascaded flight controller architecture used by

PX4.

Figure 2.2: PX4 Multicopter Controller Architecture [22].

2.3 Software Infrastructure for Autonomous Drones

2.3.1 Robot Operating System

The Robot Operating System (ROS) is a software framework for developing robotic app-

lications, highly used in autonomous drone research. It functions primarily as a middleware,
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offering hardware abstraction, and message-passing functionalities. ROS’s modular architecture

facilitates independent development and testing of components, making it ideal for scalable

system designs. This open-source platform encourages collaborative development and code

reuse, significantly accelerating innovation in robotics.

ROS applications are typically composed of a number of nodes, each executing a specific

function and communicating with other nodes over a messaging protocol. This modular archi-

tecture enables developers to build, test, and implement functionalities for their robotic platforms.

The message-passing interface in ROS allows for asynchronous communication between nodes,

which can be running concurrently on multiple machines. This system supports a variety of

messaging types, including topic-based publish/subscribe messages and service-based request/res-

ponse messages. The ROS Wiki [23] serves as the central documentation available online for

ROS applications.

2.3.2 Communication with the Autopilot

Micro Air Vehicle Link (MAVLink1) is an open-source, lightweight messaging protocol,

which is used for communication in drone systems. It facilitates efficient and robust data trans-

mission between the drone and control stations. MAVLink’s design ensures low overhead, which

makes it highly efficient for real-time communication in resource-constrained environments.

MAVROS2 represents an extension of this protocol within ROS. Essentially, MAVROS

is a ROS package that enables seamless interaction between ROS-based programs and drone

autopilots through the MAVLink protocol. It operates typically on a companion computer, inter-

1MAVLink documentation: https://mavlink.io/en
2MAVROS documnentaion: https://wiki.ros.org/mavros
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facing with the Autopilot, like PX4, to execute autonomous commands. MAVROS facilitates this

by sending specific control setpoints to the flight controller, with a safety timeout of 0.5 seconds.

In setups utilizing PX4 autopilots, the offboard mode in PX4 facilitates this execution of setpoints

sent over MAVROS messages.

2.3.3 Software in the Loop Simulation

Software-in-the-Loop (SITL) simulation is an important aspect of drone development since

it allows for virtual testing of different algorithms and system functionality. It is crucial for

evaluating flight control algorithms, sensor processing pipelines, and interaction with external

systems without the risk and expense of real-world testing. SITL simulation offers the ability

to thoroughly test and debug in a controlled, user-defined environment to ensure reliability and

test outcomes before real-world deployment. Within PX4, SITL simulation involves running the

flight stack software on a computer, replicating the vehicle’s behavior in response to simulated

sensor inputs and control commands. The PX4 framework uses the Simulator MAVLink API

to connect with various simulators, which facilitates the exchange of information between the

virtual environment and the flight control software [24].

In SITL, communication between PX4 and the simulation environment is achieved via

MAVLink messages. Sensor data from the simulation, such as IMU readings and camera streams,

are fed into PX4, while PX4 sends actuator control signals back to the simulator. This bi-

directional communication ensures that the simulated drone reacts as it would in a real-world

scenario. As shown in Fig. 2.3 shows the standard simulation components within PX4, which

is agnostic to the type of simulator used. It includes PX4 on SITL, QGroundControl3, and the

3QGroundControl is used for mission planning with MAVLink equipped drones
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simulator, interconnected via UDP and TCP connections. PX4 connects to the simulator’s local

TCP port 4560 exchanging sensor and actuator messages to mirror real-time flight conditions.

QGroundControl connects via remote UDP ports to provide a user interface for MAVLink tele-

metry messaging.

Figure 2.3: Standard SITL simulation environment within the PX4 stack. Adapted from [24]

Gazebo is a 3D simulation platform, which enables seamless simulation of diverse drone

models running the PX4 flight stack, like Iris, and it allows for adding different sensors and

cameras to the virtual drone [25]. Fig. 2.4 shows an example of the Iris drone, equipped with a

downward facing camera, and spawned in an environment with a fiducial marker on the ground.

Gazebo’s compatibility with ROS topics allows for real-time data access and analysis, where

Gazebo provides a dynamic virtual environment and sensor data, PX4 handles flight control, and

ROS facilitates data handling and autonomy software testing.
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Figure 2.4: Snapshot from Gazebo SITL simulation with Iris quadcopter equipped with a
downward facing camera and looking at a virtual fiducial marker

2.4 Experimental Testbed Overview

2.4.1 Drone Hardware Configuration

The M500 drone, by ModalAI, serves as a reference platform for autonomous flight research

and development [26]. As shown in Fig. 2.5, the drone is equipped with 2216 880KV motors

and 10-inch propellers, with a flight time of over 20 minutes and a payload capacity of up to

1 kilogram. The Electronic Speed Controllers (ESCs), rated at BLHeli 20A, are placed under

each arm for power delivery and flight control. Structurally, the M500 has a 15.5-inch length and

width, and a total take-off weight of 1075g including the battery. It hosts a suite of image sensors,

including a 4K high-resolution camera for capturing detailed visual data, a stereo camera pair for

depth perception, and a tracking camera to maintain orientation and positional awareness.

At the heart of the M500’s operation is the VOXL Flight Deck, which merges the VOXL

companion computer with the Flight Core flight controller. The VOXL companion computer,
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Figure 2.5: m500 drone setup with key hardware components labeled

powered by a Qualcomm Snapdragon processor, brings powerful onboard computing to the

drone, which is the main part for data processing. Meanwhile, the Flight Core, equipped with

the PX4 flight control software, ensures precise flight dynamics and real-time responsiveness to

control inputs.

2.4.2 Drone Software Functionality

The software ecosystem of the M500 drone is running on the VOXL companion computer,

which comes with a Linux Yocto operating system. This comes with OpenCV and ROS Indigo

installed. At the heart of VOXL lies the Qualcomm Snapdragon 821 processor, which offers

robust computational power with its quad-core CPU and integrated GPU and DSP. This makes it

suitable for vision-based applications and autonomous drone programs. For development on the

companion computer, Docker is used to run Ubuntu 20.04 and host different ROS packages. This
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containerization platform enables VOXL to run various operating systems and software stacks

in isolated environments. Fig. 2.6 shows the system overview and the interconnectivity of the

VOXL platform’s software parts. Specifically, WiFi is used for communication in this project,

which allows the communication between the drone and the Ground Control Station (GSC).

Figure 2.6: m500 VOXL platform software architecture
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VIO is provided by the voxl-vision-px4 service, and it is used to navigate indoors where

GPS signals are unavailable. PX4 interprets the VIO data and fuse them using EKF2 to provide

the drone with its own state estimate while navigating indoors. This is then interfaced using

MAVROS, which serves as a bridge for commands from higher-level algorithms, developed in

ROS, to the PX4 flight controller.

2.4.3 Experimental Facility Setup

The Brin Family Aerial Robotics Lab at the Maryland Robotics Center features a 430

square-foot netted test area, shown in Fig. X, with 15-foot high ceilings suitable for indoors

flight tests. The net is made with knotted nylon mesh, and the floor is lined with dual layers

of foam mats for protection during the tests. The lab is equipped with Vicon4 motion capture

system, consisting of 12 Vantage V8 cameras. This provides precise tracking within the space,

and is used as the source for ground truth data during experiments.

4Vicon motion capture system: https://www.vicon.com/
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Figure 2.7: Netted Area in the Maryland Robotics Aerial Robotics Lab
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Chapter 3: Autonomous Maneuvering and Visual Inspection

This chapter discusses different modules of the autonomous mission, along with the integ-

ration of those modules together. It starts with breaking down the search algorithm in section 3.1,

then it shows the details of the chosen targets for this mission and the process of localizing those

targets in section 3.2. After detecting and localizing a target of interest in the search area, the

agent starts the inspection module, which is shown in section 3.3. During inspection, the system

detects acuity vision markers on the target by running a custom-trained neural network, which

is detailed in section 3.4. Finally, the process of integrating all the modules and dynamically

switching between them is shown in section 3.5.

3.1 Autonomous Search Algorithm

3.1.1 Development of the Search Strategy

In the scope of motivation of this work, which is to support first responders in their SAR

missions, the autonomous drone system’s mission is to provide a reliable and efficient means to

explore an indoor environment autonomously. This could be pictured as the operator initiating a

search sequence with the actuation of a switch. The drone starts a predefined search pattern to

scan the area of interest systematically while looking for targets. This application is rooted in
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the area of CPP. CPP is a framework that contains methodological ways to ensure that a robot

traverses all points within a predefined space, following an optimal trajectory [27].

Coverage of all the points while exploring an environment is a critical component in SAR

operations. While various search patterns exist, which range from probabilistic approaches, such

as random search, to exhaustive and systematic strategies like grid-based and boustrophedon

searches. The boustrophedon, known as the lawnmower pattern, is named after the ox-driven

plough’s back-and-forth pattern, and is recognized for its systematic completeness [28]. It is

particularly effective in environments with known dimensions and that are free of obstacles,

which resemble the initial experimental facility at which we will be testing the implementation.

The choice of this strategy over others is substantiated by its inherent ability to ensure complete

coverage, which is a characteristic particularly advantageous in random target distribution scenar-

ios. The lawnmower pattern’s efficiency is further validated when considering indoor environ-

ments where uncertainty in localization and sensory inputs is a factor, with studies showing its

superiority over random policies under such constraints [29].

Within a predefined indoor space, optimizing the search strategy requires careful consider-

ation of the drone’s operating altitude and pass width. This trade-off should be carefully made,

considering how to minimize unnecessary overlaps without overlooking parts of the environment,

while also having a sufficient footprint on the ground that suits the specific use case of the

mission. To illustrate, the higher altitude you fly at, the more area you cover in less time, but

that also means less resolution. Hence, this depends on the sensor capabilities of the camera

being used, where the algorithm sets the drone’s flight altitude to maximize the field of view

while maintaining the ability to detect objects of interest.
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3.1.2 Algorithm Implementation: Waypoint Generation and Path Planning

The first step of the autonomy mission is the algorithm that governs the generation and

publication of the search waypoints. With the user-defined parameters of room length, room

width, desired altitude, and resolutions along the X and Y axes, the algorithm systematically

partitions the search area into a grid, generating a sequence of waypoints that guide the drone in

a lawnmower pattern to cover the entire area as shown in Fig. 3.1. These resolutions dictate the

granularity of the search grid, determining the drone’s path precision in each axis’s direction.

Figure 3.1: Lawnmower search pattern illustration

The desired height is adjustable to accommodate varying conditions and camera resolutions,

influencing the coverage time and search efficiency. Given the specs of the camera 1 used in the

experimentation of this work, and the size of the targets (printed AprilTag on US letter sizes

1VOXL M0014 tracking sensor
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paper) that the drone is searching for, it has been empirically determined that it is detectable at a

maximum altitude of 1.2 meters.

The process, as illustrated in the flowchart shown in Fig. 3.2, starts with generating the

waypoints as a list of pose setpoints that contains the position and orientation of the drone at each

step to cover the area. These points form are arranged in parallel lines with the drone changing

direction at each room’s end for complete coverage. Once generated, the waypoints are published

to the drone with MAVROS as a PositionTarget message on the ’mavros/setpoint raw/local’

topic, which handles the translation from the ENU frame used in generating those waypoints to

the NED frame utilized by PX4.

The drone starts at the home position (0,0) and maintains a fixed heading throughout

the mission, as indicated by a 90-degree positive yaw. The algorithm ensures each waypoint

is reached by comparing the drone’s current pose, obtained from the state estimation module

reading from ’mavros/local position/pose’ topic, with the target waypoint that is being published.

If the drone is within a user-defined acceptance radius, it proceeds to the next waypoint. This

ensures the drone adheres to the planned path by checking its position against the current waypoint

and updating the waypoint index only when the position criteria are met. This process repeats

until the drone has traversed the entire search area, after which it returns to the home position

signaling the completion of the search pattern.

Fig. 3.3 shows the execution of the search mission in a SITL setup. As shown, a simulated

drone has covered a predefined area of interest in Gazebo.
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Figure 3.2: Search waypoints generation and execution flowchart

Figure 3.3: Search mission in simulation
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3.2 Target Detection and Localization

3.2.1 Target Specifications and Rationale

The goal of this research, as outlined in Chapter 1, is to enhance the efficiency and response

speed of first responders in SAR missions. This involves not just locating human casualties but

also inspecting them and performing triage assessments, as well as identify-ing environmental

hazards. The ultimate goal is to increase the level of autonomy in these operations. This objective

also guided our choice of experimental targets, which are bucket configurations as defined by the

National Institute of Standards and Technology (NIST) First Responder UAS Indoor Challenge 2

NIST crafted these targets to assess the localization capability and sensor acuity of UAV

platforms. The targets consist of various bucket assemblies, designed to evaluate the operational

readiness and capabilities of the system. These alignments, due to their replication ease, offer

a robust framework for evaluation. They challenge the drone’s ability to operate in confined

spaces, dusty environments, and scenarios where targets are dispersed and oriented diversely.

This setup tests the drone’s onboard sensors in detecting and inspecting small labels placed inside

the buckets.

NIST’s intention with these targets is to establish a standardized method for testing and

evaluating robotic platforms in emergency situations, a practice that is gaining traction in similar

scenarios. The reasons mentioned above were pivotal in choosing these targets to evaluate our

project’s mission. Fig. 3.4a illustrates a bucket alignment used in a confined test scenario,

depicting a collapsed environment unsafe for responders. The figure highlights the bucket align-

2NIST UAS Indoor Challenge: information about the contest
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ment amidst crushed cars and semi-collapsed structures, showcasing the aerial vehicle’s potential

in such challenging environments.

(a) Bucket alignment in a disaster scenario (b) Acuity vision labels

Figure 3.4: Target alignment for testing

Fig. 3.4b focuses on a dual bucket alignment, where a perpendicular bucket pairs with an

angled one, forming a right triangle. The buckets, each holding 1-liter (1-quart) capacity with

10 cm (4 in) diameter targets inside, are spaced 1 m (3 ft) apart. The alignment rings within the

buckets challenge the acuity of the onboard sensors. These targets, often in black and white, test

the UAV’s response to various lighting conditions and its ability to closely inspect targets. The

ease of replicating these acuity vision labels further justifies their use in testing our autonomous

target localization and detection system.

Fig. 3.5 presents a model of one such bucket alignment, alongside an actual alignment used

in our laboratory tests. There are various configurations, differing in bucket placement, label

designs, and orientations, which makes it necessary that the autonomous agent not only localizes

targets within an area but also identifies and distinguishes between different targets. This aspect
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Figure 3.5: Model vs. actual configuration of target alignment - Left: a graphical representation
of ”Ground” bucket alignment with labels showing order. Right: the corresponding real-world
laboratory setup used for UAV inspection trials.

will be explored in greater detail in the following subsection.

3.2.2 Fiducial Marker-Based Identification

To meet the goal of effectively identifying and pinpointing targets within the local inertial

frame, our approach employs fiducial markers as a reliable reference. These markers are designed

with distinct characteristics that facilitate their robust detection.

AprilTags, a type of visual fiducial marker, play a big role in robotic vision-based locali-

zation, and they serve as accurate landmarks for autonomous systems [19]. They consist of a

set of black and white patterns, similar to QR codes, which are easily detectable, extractable,

and trackable by computer vision systems. Utilizing such clear, structured patterns simplifies the

recognition and tracking process in computer vision applications which are often subject to noise,

varying lighting conditions, and computational complexity. The known dimensions of these tags

address the issue of scale ambiguity, while their unique orientations enable the determination of

their 3D pose relative to the camera. The diverse tag families, including the Tag 36h11 family

used in this thesis, are illustrated in Fig. 3.6.
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Figure 3.6: Different AprilTags families

In our experiments, AprilTags, each encoded with a unique ID, are attached to bucket

assemblies to differentiate targets, as depicted in Fig. 3.7. This method allows the algorithm to

recognize various targets during the search process. The figure demonstrates the three principal

target alignments tested: Target 0 (T0), Target 1 (T1), and Target 2 (T2), as shown from left to

right.

The operational methodology involves processing images from the onboard camera through

the perception pipeline. Upon detecting an AprilTag, the algorithm computes a relative pose.

This calculation enables the drone to localize the detected tag in relation to its own position and

concurrently ascertain the specific target being observed.

3.2.3 Pose Estimation and Filtering

Once the drone detects an AprilTag from the downward facing camera, the tracking camera,

it passes this as a tag detection to another module running onboard on the companion computer,
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Figure 3.7: Multiple target identification with different tag IDs. From left to right, Target 0 (T0),
Target 1 (T1), Target 2 (T2)

which then computes the tag pose and then we can access this pose as a ROS message. This

process is depicted in the block diagram shown in figure 3.8 These processes are running onboard

on the companion computer in real time.

This project utilizes an established ROS-based AprilTag detection package, desig-nated

as apriltag_ros3. This package implements the AprilTag3 algorithm, encapsulated within

a ROS wrapper. It processes camera images, post rectification, and outputs both the detected

tag ID and the tag’s pose relative to the camera frame. Breaking down this process, the term

’rectified image’ refers to an image corrected for distortion. This rectification necessitates a

camera calibration process to determine the camera’s intrinsic parameters, which are needed for

3apriltag ros wiki page: https://github.com/AprilRobotics/apriltag ros
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the tag detector’s effective operation.

Regarding the term ’pose’, it refers to a 3D pose encompassing both the position and

orientation of an object. Throughout the sections of this chapter, 3D poses are represented as

homogeneous transformations. These are expressed as 4× 4 matrices that combine both rotation

and translation components. This matrix format allows for the comprehensive definition of an

object’s position and orientation in space. The standard configuration of this matrix is:

ATB =

R p

0 1


ATB represents a transformation matrix from frame B to frame A, where R is the rotation

matrix and p is the position vector.

The block diagram in Fig. 3.8 outlines the process beginning with the raw image stream

from the tracking camera. This stream is first subjected to an image rectification algorithm

utilizing a pinhole camera model for calibration4. This calibration step is crucial to accurately

estimate the tag’s pose relative to the camera frame. Following this, the AprilTag detection ROS

node, implementing the AprilTag 3 algorithm [30], processes the rectified images. It outputs

the identified tag ID and its pose as a ”geometry msgs/PoseWithCovarianceStamped” message.

The ROS wrapper’s functioning is explicitly defined by two configuration files: config/tags.yaml

(identifying specific tags and tag bundles for detection) and config/settings.yaml (configuring the

core AprilTag 3 algorithm).

The system is efficiently adapted to operate within the VOXL companion computer’s pipeline

architecture. In this setup5, the tag detection operates as a systemd service. It actively monitors
4Camera Calibration Framework
5AprilTag Detection on VOXL: https://docs.modalai.com/voxl-tag-detector-0_9/
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the camera feed, identifying tag detections, which are subsequently converted to ROS format

using ’voxl mpa to ros’. For computational efficiency, the system is designed to bypass process-

ing of five consecutive frames, focusing instead on every sixth frame. This frequency is adjustable

to suit specific requirements, acknowledging that continuous processing of every frame is generally

unnecessary and would excessively burden the CPU.

The primary objective remains to precisely locate the target, marked by an AprilTag, within

the local inertial frame. This is accomplished by utilizing the ROS node output, which provides

the pose of the detected AprilTag and publishes it on the ROS topic ’/tag detections/tagpose’.

Effectively, by determining the AprilTag’s location relative to the camera frame, we are con-

currently localizing the bucket arrangement in the same frame. By also incorporating the drone’s

pose data in the local inertial frame from the rostopic ’/mavros/local position/pose’, we can

transpose the AprilTag’s pose from the camera frame to the local inertial frame.

To detail the process:

• The drone’s estimated pose in the inertial frame is denoted as the homogeneous tran-

sformation ITB.

• The estimation of the AprilTag’s pose in the camera frame is represented as CTA.

• The static transformation between the drone’s camera frame and body frame is noted as

BTC , which could be acquired from the drone’s CAD model. For the m500 drone, this

transformation is determined.

With these transformation matrices at hand, we can employ the principles of rigid trans-

formations to find the AprilTag’s pose in the inertial frame. This is achieved by concatenating

these transformations in the following sequence:
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ITA = ITB BTC CTA (3.1)

While Equation 3.1 determines the AprilTag’s pose in the local inertial frame, it’s important

to recognize the inherent noise and uncertainty present in sensor detections. To counteract these

variances, the algorithm incorporates a filtering strategy to refine the pose estimates. For example,

when an AprilTag is identified, the drone momentarily pauses and hovers to stabilize the pose data

collection, thereby reducing noise and uncertainty in the sensory input. This precision in pose

estimation is crucial for the drone’s subsequent navigation and inspection tasks.

The algorithm enhances these pose estimations through a systematic process of trans-

formations and verifications. Initially, the detected pose, given in ’geometry msgs::PoseStamped’,

is transformed into a homogeneous matrix that aligns the AprilTag’s pose with the camera frame.

A key feature of the algorithm is its iterative filtering technique. It constantly compares new pose

estimations against previous ones, accepting only those within specific positional and orientational

thresholds. This approach ensures the consistency and reliability of the data. In situations where

stable pose estimations are critical, the algorithm utilizes a ’bestPose()’ function. This function

engages outlier rejection and averages the translation and rotation elements from gathered data

to deduce the most probable pose. This rigorous process results in a robust and reliable estimate

of the AprilTag’s pose in the inertial frame.

3.3 Autonomous Visual Inspection of Targets

The goal of this part of the mission is to command the drone autonomously to certain

poses so that the drone’s tracking camera can see the vision markers printed at the bottom of
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Figure 3.8: AprilTag detection running on VOXL block diagram

Figure 3.9: Visualization of different coordinate frames
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the buckets affixed to the bucket configuration. The purpose of this project is to automate the

task of the human pilot to drive their drone around the bucket configuration and peer into the

buckets. This sort of behavior is meant to represent a first responder performing precise indoor

maneuvers around debris in a disaster scenario, searching for signs of life among the rubble.

This behavior is meant to develop an autonomous method for drones to perform first responders’

tasks in emergencies like triage assessment, especially in complex scenarios where it’s difficult

to access the scene due to physical risks.

In triage assessment tasks in SAR, it assesses different vital signs such as breathing, bleed-

ing and concsiousness [31], in which the evaluation of these signs are then used to prioritize

injured people in different categories based on their conditions. However, for that to be done

using a robotic system such as a drone, via a contactless device only using camera sensors, we

need to drive the drone to operating distances based on the sensor platform, and the assessment

algorithm requirements [32]. In other words, to get accurate results out of the inspection task,

we need to make sure the drone can navigate to the known operating poses from the targets of

interest autonomously. Hence, this section discusses the process of generating those poses of

interest, recording them, then automating the process of executing those poses by the drone.

3.3.1 Data Preparation: Recording Poses of Interest

To effectively drive the drone to optimal inspection poses for viewing inside the buckets,

our strategy involved defining a set of target positions. The process, adaptable to various applica-

tions, revolves around identifying precise drone locations where its tracking camera can clearly

observe the bucket’s interior. The method relies on establishing a consistent reference point,
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similar to targeting a human’s chest and face for pose estimation before navigating to an ideal

observational distance. In our context, this fixed reference is the AprilTag’s pose, centrally

located on the bucket configuration. Thus, each desired pose is determined relative to the fixed

AprilTag position.

To ascertain these critical poses, we employed a hands-on approach. The drone was

manually positioned to ensure the tracking camera had an unobstructed view of each bucket’s

interior, as illustrated in Fig 3.5. Holding the drone steady in these positions ensured the AprilTag

remained in the camera’s frame, essential for accurate pose estimation.

The “generate waypoints” program’s primary function is to transform the detected AprilTag

pose, received as a geometry msgs/PoseStamped message, into a homogeneous transformation.

This transformation represents the AprilTag’s 3D pose in the drone’s camera frame. The program

then converts this pose from the camera frame to the drone’s body frame, utilizing the formula:

BTA = BTC CTA (3.2)

When the drone is correctly positioned, the user’s prompt to save the pose initiates the

recording of this data into a JSON file. This procedure results in a collection of 3D poses

(homogeneous transformations) that describe each target position relative to the drone’s body

frame. These saved poses, defining the drone’s spatial offsets from the reference point on the

target, form the groundwork for the drone’s autonomous navigation to the desired inspection

points.
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3.3.2 Autonomous Inspection Algorithm and Execution

The inspection routine initiates upon detection of a designated AprilTag. The drone’s

tracking camera, upon capturing this AprilTag linked to a specific bucket configuration, triggers

a program that retrieves a JSON file corresponding to the AprilTag’s TagID. This file, unique

to each bucket configuration, lists sequential offset poses between the AprilTag and the drone’s

desired pose, expressed as homogeneous transformations. These transformations, termed OTA,

represent the drone’s position relative to the AprilTag at each specified offset.

To guide the drone to these positions autonomously, we convert these offsets into the

local inertial frame. The desired offset in the inertial frame, ITO, is computed using a series

of transformations:

ITO = ITB BTC CTA (OTA)−1 (3.3)

This formula combines the drone’s current pose in the inertial frame, the camera’s pose

relative to the drone, and the AprilTag’s position relative to the camera, with the recorded offset.

ITO thus represents the drone’s target position relative to the AprilTag, recalculated in the inertial

frame.

The translational components of ITO are relayed to the drone’s autopilot via the mavros

’setpoint raw/local’ rostopic, which accepts mavros msgs::PositionTarget messages. These mess-

ages specify yaw or yaw rate rather than a complete orientation. To determine the necessary yaw

rate, a function, determine yaw rate, calculates the angular difference between the drone’s current

and desired yaw, adjusting the result within +/- [0,180] degrees and dictating the direction of yaw
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adjustment. Implementing smaller yaw rates, as opposed to commanding direct yaw angles, was

found to smooth drone movements, enhancing the stability and clarity of the inspection task. This

smoothness is critical, particularly when transitioning from inspecting one bucket to the next, a

process governed by a function that checks the drone’s alignment with predefined tolerances for

orientation and position.

The success of this inspection task heavily relies on the accuracy of the AprilTag’s pose

estimate. Any error in determining the location and orientation of this reference point could lead

to incorrect drone positioning, undermining the inspection’s effectiveness. In practice, the drone

executed the inspection task effectively. However, an enhancement could include integrating

feedback mechanisms, such as an object detection model to identify labels on the buckets. Due

to the absence of pre-existing models for such specific targets, the subsequent section explores

the development and deployment of a tailored neural network for detecting these markers on the

drone’s computer.

3.4 Integration of Object Detection into Autonomous Inspection

Object detection plays a pivotal role in SAR missions, where time is critical and accurate

identification of targets is needed. To address this need, this thesis leverages You Only Look

Once (YOLO) [33], a state-of-the-art object detection model known for its quick and precise

performance. YOLOv5 stands out for its unified approach, processing images in a single run and

thus providing the speed necessary for real-time applications on drones, like the M500 used in

this project. This model which was originally trained on the diverse COCO dataset [34], has been

retrained with a custom dataset of vision acuity markers. These markers, captured by the tracking
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camera mounted on the M500 drone, serve as the labels affixed to the base of the bucket targets

(refer to subsection 3.2.1 for a detailed discussion).

In the following subsections, we will delve into the details of the steps depicted in Fig.

3.10. Starting from the image data acquisition in subsection 3.4.1, progressing through the model

training, validation, and the deployment for on-board testing of the model in subsection 3.4.2.

3.4.1 Vision Acuity Marker Detection and Data Acquisition

Data collection was conducted using the M500 drone, specefically with the tracking camera

(M0014 module6). The process involved capturing a broad range of images under different

lighting conditions to account for different operational scenarios. The drone was used both in

flight and held by hand to record rosbags of the tracking camera’s image stream, focusing on

the markers at the bucket bottoms. The goal was to collect a comprehensive dataset which

is important for developing an effective object detection system. The raw images were then

extracted from the recorded rosbags using Python, providing a dataset with a total of 1511 images.

The precision in data labeling is vital in object detection models, especially for single-

shot models such as YOLOv5 that rely on precise bounding box coordinates for accurate object

identification. Using Roboflow, each image was manually annotated with bounding boxes drawn

around the markers and labeled for eight distinct classes. The annotations need to be precise to

ensure accurate results from the model to detect and classify various objects. As a preprocessing

step, all the images were then resized to a uniform 416x416 pixels to meet YOLOv5 model input

requirement. Fig.3.11 shows a visual example of this process.

Moving to Data augmentation, which is a critical step in the development of robust object

6Tracking Sensor Datasheet
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Figure 3.10: Workflow for object detection model training and deployment on the drone

41



Figure 3.11: Example of data labeling and preprocessing for YOLOv5

detection models. As shown in Fig. 3.12, by applying transformations such as noise addition,

rotational adjustments, and brightness-contrast variations, the dataset’s diversity is significantly

enhanced. The specific augmentation parameters used on this dataset included:

• Noise injection up to 1.96% of pixel variation

• Crop zoom ranging from 0% to 28%

• Random rotation between -20° to +20°

• Brightness alteration from -17% to +17%
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Figure 3.12: Data augmentation example on one image

As shown in Fig. 3.13, post-augmentation, the dataset expanded from 1511 images to 2626

images. It was partitioned into subsets for training (85%, or 2230 images), validation (13%, or

354 images), and testing (2%, or 42 images). This division was planned to present the model

with a variety of scenarios during training, while the validation set is for fine-tuning the model’s

performance while in training, and testing set is for assessing its final accuracy on unseen data.

Figure 3.13: 2x Augmentation of original dataset from 1511 to 2626. Division into Training,
Validation and Testing
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3.4.2 Neural Network Training, Validation, and Onboard Deployment

3.4.2.1 Model Training Details and Analysis

For this project, training the neural network model was executed on Google Colab, leverag-

ing its GPU resources, and specifically the training was done on Tesla T4 GPU, employing

PyTorch version 2.2.1. The dataset, sourced and preprocessed as described earlier in subsection

3.4.1, was then imported into Colab environment using the Roboflow API.

With a focus on achieving a balance between speed and accuracy, the YOLOv5s [35]

architecture was chosen as the backbone for the neural network. YOLOv5s is the small variant

of YOLOv5. It was an ideal match for the computational constraints of the onboard drone

hardware due to its compact size and rapid inference ability. Training started with pretrained

weights, and the process of transfer learning started to adapt the model to the features of the

vision acuity markers. Training was conducted over 150 epochs, batched in groups of 16, with

each image resized to a 416x416 resolution to comply with the model’s input specifications. Fig.

3.14 presents a batch of 16 training images, which have been subjected to various augmentation

methods as shown. Also, Fig. 3.15 showcases a sample batch from the validation dataset, showing

the predicted label during training along with the prediction confidence. Note that the validation

set is not augmented since the role of it is to mimic the potential real-world scenario as closely as

possible.

The assessment of the model’s performance is depicted in several key plots as shown in

Fig. 3.16, which reveals significant insights into the model’s training and validation phases. The

first row of plots represents losses and metrics across the training epochs. Specifically, the first
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Figure 3.14: Sample training batch with augmented images
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Figure 3.15: Validation batch sample with prediction confidences

plot captures the training box loss, which depicts how well the model predicts the bounding

box coordinates for each object. As seen, the trend is descending which suggests an increase in

the model’s proficiency at locating objects within the image frame as training epochs progress.

The training object loss plot reflects the model’s improvement in distinguishing objects from the

background, again with decreasing trend indicating the model learning to reduce false positives

over time. The third plot; the class loss plot, points to the model’s growing accuracy in classifying

objects into their corresponding classes correctly. The fourth and fifth plots on the top row track

precision and recall over training epochs, respectively. Precision measures the model’s ability to

46



return only relevant instances, which shows a stabilizing trend at very high values, suggesting

few false positives. Recall indicates the model’s success in finding all relevant instances, which

also stabilizes at high values to imply the model is becoming increasingly capable of detecting

all objects of interest. The second row of plots in Fig. 3.16 shows similar narrative but for the

validation data, where the first three plots correspond to validation box loss, validation object

loss, and validation class loss. These metrics demonstrate the model’s ability to generalize

from its training data to new, unseen images from the validation set. Last two plots provide

a quantification of model accuracy through mean Average Precision (mAP) at two Intersection

over Union (IoU) thresholds: 0.5 and 0.5:0.95. The mAP at 0.5 is a measure of accuracy at a

single threshold, while the mAP across 0.5:0.95 gives a more comprehensive assessment over

a range of object sizes and overlapping scenarios. Appendix A provides further details on the

precision and recall analysis of the model’s performance.

Figure 3.16: Training and validation losses illustrating the model’s learning efficiency across
epochs
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3.4.2.2 Testing the Model Offboard

Upon completion of the training, the model’s best-performing weights were exported for

an offboard testing phase. This phase employed YOLOv5 ROS7, which adapts the input of

detect.py from ultralytics/yolov5 to process sensor_msgs/Image from a ROS

node. This setup allowed for real-time analysis by subscribing to the tracking camera’s feed,

published by the ROS node running on the drone, and processing the imagery on a local machine.

It outputs resized images with the prediction labels, and the corresponding detections as a custom

message that encapsulates the information of the bounding boxes details, including the class_name,

the confidence score, and the box coordinates within the image plane.

This process introduced a measure of latency due to data transmission across the network;

however, it was a vital step in confirming the model’s real-time detection capabilities. The

system maintained an average inference time of 175.47 ms, effectively demonstrating the model’s

aptitude for real-time application. This step was critical in verifying the transferability of the

training to practical application scenarios prior to deploying the model to the onboard computer

for faster inference.

3.4.2.3 Model Onboard Deployment on VOXL

To transition from offboard inference to onboard utilising VOXL’s GPU on the drone, the

first step was converting the best-performing model from PyTorch (.pt) to TensorFlow Lite (.tflite)

format to be compatible with voxl-tflite-server8 running onboard. This server operates

as a systemd background service as hardware-accelerated TensorFlow Lite environment. As

7YOLOv5 ROS wrapper
8VOXL tflite server documentation from ModalAI.
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of the time of writing this, VOXL TFLite server supports two TensorFlow Lite build versions

(delegates): apq8096 and qrb5165. This project uses the apq8096-tflite version with

the GPU delegate enabled on the M500 drone’s VOXL1 computer. The conversion from .pt

to .tflite necessitates model compression, quantization, and modification of the tflite-server

source code to accommodate the custom neural network’s input and output tensors.

Post-training quantization was part of this process, which optimized the model for the

drone’s GPU. It reduced model size and computational complexity to make it usable for low-

latency, real-time operations on the drone. We can also utilize the existing export.py script

provided by YOLOv5’s team to export the .pt model to a .tflite model. However, compa-

tibility with the TensorFlow Lite version running on VOXL is not always guaranteed. If the

exported tflite model does not work with the tflite-server running on VOXL, then retraining

the model using the TensorFlow version matching the VOXL SDK version should be considered.

The next crucial step involved customizing the voxl-tflite-server’s postprocessing

functions, to accommodate the model’s output tensor structure and dimensions, which has been

known by visualizing the converted model’s layers using tools like Netron9. These changes made

sure the model’s output, such as class IDs, bounding box coordinates, and confidence scores were

accurately processed and understood by the drone’s system.

Additionally, the InferenceHelper class was adjusted for this specific model, where

it was tailored to parse the model’s detections. This included providing inference outputs such

as drawing bounding boxes on the output images, annotating them with labels, and compiling

detection metadata for subsequent use. Each detection was recorded with a timestamp for tempo-

ral tracking. After making these changes to the original TFlite server running on VOXL, it

9Netron: tool to visualize neural networks
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was then built using a dockerized build environment that mimics the build environment used

to build the original packages and services on VOXL. After building the custom package and

with the adjustments made, the model was successfully deployed onboard the VOXL. This has

been verified from the metadata output, which correctly showed all necessary details for each

detection. These metadata could be subscribed to over a ROS framework for real-time decision-

making during flight operations, which enables the drone to identify and respond to visual cues

autonomously.

Comparing offboard and onboard performance, there was a notable improvement in the

model’s onboard inference time, dropping to an average of 71.3 ms, compared to 175.47 ms

offboard. This reduction highlighted the success of the onboard deployment, indicating the

model’s readiness for real-time operational use and the compatibility within the drone’s hardware

limits. Fig.3.17 shows a snapshot of the drone flying to inspect the buckets, while running

onboard custom detection model and at the same time running offboard inferences on my local

machine, analyzing the published camera stream from the drone. The figure shows the lag in the

offboard detection compared to the onboard inference which is coping with the drone’s actual

position at that time instance.

3.4.2.4 Limitations and Future Improvements

Despite achieving positive outcomes in model deployment and performance, we encoun-

tered several challenges and limitations. A primary issue was the drone’s tracking camera’s

limitations, specifically its low resolution and monochromatic output. Tracking sensor is primarily

used for drone’s localization by utilizing its fisheye lens and the downward orientation to extract
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Figure 3.17: Difference between onboard detection streamed to VOXL portal (right), and
offboard detection running on my local machine (middle). Drone’s actual location is shown
on the left

more features from the environment for better localization. However, this project utilized it as

the primary image source leading to a lack of color detail in grayscale images. This affected

the model’s ability to differentiate between visual cues, especially the darker labels in low light

conditions. For future enhancements, integrating a higher-resolution color camera is recommen-

ded, which would improve the model’s efficiency in processing and interpreting visual data.

It’s important to note that the steps for implementing the neural network model on the drone’s

onboard system would remain exactly as outlined in this section. Additionally, an upgraded

camera system would require a more powerful companion computer to manage the data output

from the advanced sensors effectively.

Another aspect requiring attention is the camera’s fisheye lens. In future applications

involving precise localization based on object detection, image rectification will be essential for

aligning the camera’s image accurately with the drone’s spatial surrounding. This adjustment will
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be crucial, especially in missions requiring exact matching of visual cues with real-world spatial

information to re-orient the drone for instance. Therefore, calibrating the camera’s intrinsic

parameters will be an integral part of the framework to rectify the images used for model training

before starting the training. This approach ensures that the model operates optimally on rectified

image streams, which will enhance the accuracy the detections, and will help the system to extract

spatial data from the image plane, probably by incorporating a depth sensor.

In the next section, the integration of the various modules discussed in this chapter will be

elaborated upon, demonstrating how they collectively run together to complete the autonomous

mission on the drone’s hardware.

3.5 Search and Inspection Integration

After discussing how each module works separately in the previous sections, the subsystems

integration to achieve the autonomous mission is discussed in this section. Fig. 3.18 shows a high

level system architecture of the proposed system. This architecture is the one commonly used for

autonomous systems, where it breaks down the overall system into perception, planning and

control. The first layer is the perception system, which takes the the raw image stream coming

from the tracking camera and the IMU sensor readings as inputs.
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The state estimation subsystem fuses the gyroscope and accelerometer readings from the

IMU, along with the features tracked from the camera feed, to estimate the relative position and

orientation of the drone in the local inertial frame using Visual Inertial Odometery (VIO). On

VOXL, the ‘voxl-qvio-server‘ is the pipeline responsible for calculating the VIO data, where

qvio corresponds to Qualcomm VIO, which refers to the technology developed at Qualcomm to

work efficiently on resource constrained devices such as smartphone. This made it convenient

for use on the drone’s companion computer which has the snapdragon processor. This is suitable

for the Qualcomm algorithm since it uses Qualcomm Snapdragon processor’s optimization for

rapid computation time with low memory usage, by utilizing vector processing and parallel

computation abilities. The combination of the landmarks extracted from the camera with the

inertial sensor measurements using EKF framework, it is able to estimate the device pose along

with the calibration and estimation statistical parameters such as biases, variances and scale

factors. The result of QVIO is then passed to voxl-vision-hub, which sends this data to PX4’s

EKF2 framework. The final pose estimate that we use for the drone’s pose estimate of itself is the

final output from PX4’s EKF2, which we interface with using MAVROS. This output, referenced

in Fig. 3.18 as the drone state, is the representation of the drone’s 3D pose in the free space,

which consists of:

[X, Y, Z, qx, qy, qz, qw]

Position data are in the local NED/FRD for outdoor/indoor respectively. The quaternion

data represents the body orientation in the free space as the rotation from the FRD body frame to

the local NED inertial frame. This also aligns with the IMU frame on VOXL and with the QVIO
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data on VOXL. However, working with MAVROS, it interfaces this to ENU for the local inertial

frame and FLU for the body frame.

The seconds sub-module is the AprilTag detection subsystem. As explained, it filters the

readings from the detections of the AprilTag along with doing homogeneous transformation to

eventually getting a final pose of the AprilTag in the local inertial frame, in addition to the

detected AprilTag’s ID. Hence, the output of this module is referenced as AT state, which consists

of:

[X, Y, Z, qx, qy, qz, qw, ID]AT

Then the two outputs; drone state and AT state, are combined together to form one state

vector referenced as the ‘current state‘ , which keeps track of both the drone state and the AprilTag

state. This combined state is then used as input to the planning layer.

The tracking camera also feeds the third submodule in the perception layer which is the

acuity vision marker detection model. As discussed in Section 3.4, the output of the custom

trained object detection model is the bounding box metadata for the detected objects in the image

frame. The information that we use in this framework is the detected class name along with the

detection confidence level. These information are then used by the inspection routine subsystem

in the planning layer.

The planning layer consists of the interplay between the search (coverage) planning and the

inspection routine. Both of the submodules take the combined state as one of the inputs, and both

of them outputs a desired setpoint for the flight controller to execute. Detailed in Section 3.1, the

search algorithm takes the desired mission parameters as an input along with the combined state,
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to plan the coverage path of the area of interest, which consists of the sequence of waypoints

that cover the entire area. The mission parameters are the desired search altitude, dimensions of

the area of interest, and the resolution along the x and y axis. On the other hand, the inspection

routine takes, beside the combined state, the output detections from the acuity vision marker

model to alter the inspection routine and serves as some sort of feedback while following the

inspection poses loaded from the JSON file. The logic that governs the interplay between the

search and inspection in the autonomous system is depicted in the swimlane flowchart in Fig.

3.19

To illustrate, the drone starts the coverage by following the coverage path, while looking

for new AprilTag to detect. Once a new AprilTag is detected, the program switches from search

mode to inspection mode, and the drone stops to filter the pose of the detected AprilTag for better

localization of the target. Then, it loads the JSON file corresponding to the detected AprilTag ID,

which contains the pre-recorded poses of the drone’s body with respect to the AprilTag for that

particular target. The drone then goes to a closer proximity of the first bucket as commanded,

and once it becomes within an acceptance tolerance from the desired pose, it starts counting both

the number of detections of the current bucket, and time spent at current bucket. The drone stays

at current bucket until either:

• It reaches or exceeds a user-defined value for minimum number of detections per bucket

AND if the running average of the detection confidence for the current bucket is more than

or equal a defined confidence threshold.

• It spent more than or equal the user-defined maximum time allowed for it to stay at one

bucket, regardless of the number of detections or their average confidence.
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Figure 3.19: Flowchart for the framework between search and inspection
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If the drone reaches the allowed average confidence level from a pool of detections which

is more than or equal the allowed number of detections, this means that the drone is quite sure

about the current inspected bucket, and there is no need to stay for more time at that bucket,

hence it moves to the next one. If it does not reach that allowed confidence or it does not even

get the minimum number of detections, it will move on to the next bucket if time at current

bucket is more than or equal the maximum allowed inspection time per bucket. However, in

that case, the program saves this point as an anomaly that needs further investigation and review.

The inspection anomalies are the point where the drone struggled to reach to, and at which the

model struggles and was not very confident about that detection. It saves that anomaly as the

drone’s pose at that point along with other relevant information about the detection such as the

number of detections and confidence. The drone autonomously covers all planned inspection

poses as outlined in the JSON file it loaded, then once the poses are finished, it flags that bucket

configuration with its corresponding AprilTag as inspected, so that it does not inspect it again if

it detected that apriltag. Also, it turns the inspection routine off and switches back to the search

routine, where the drone goes on to continue following search path from where it left off for

inspection. The loop continues until the entire area is covered, and all targets are inspected, then

the drone goes back to its takeoff location.
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Chapter 4: Autonomous Navigation in Cluttered Environment

This chapter shows the development and integration of path planning algorithms designed

for UAV autonomy in cluttered indoor environments. It outlines the implementation details, the

adaptation of one of these algorithms to the specific challenges posed by indoor settings, and its

integration within a software-in-the-loop simulation framework. It also outlines the potential of

adapting it to real-world tests.

4.1 Review of Existing Path Planning Algorithms

4.1.1 Comparative Analysis of Relevant Packages

The selection of the path planning package is important, since it impacts the safety of the

drone during the mission. A comparative analysis of state-of-the-art path planning solutions

reveals different use cases where each algorithm brings unique strengths to the table.

4.1.1.1 FastPlanner

FastPlanner is designed for rapid and efficient trajectory generation, optimized for quad-

rotors in high-speed flight scenarios [36]. It employs a kino-dynamic path searching algorithm

within a voxelized map, which seamlessly transitions to a trajectory optimization process. The
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planner’s remarkable feature lies in its dual-phase optimization strategy, which initially handles

geometric path planning and subsequently refines the path considering dynamic constraints.

It stands out for its ability to quickly adapt trajectories, ensuring minimum jerk – crucial for

reducing wear on drone components and enhancing flight stability.

4.1.1.2 Faster

The Faster trajectory planner introduces an innovative Mixed Integer Quadratic Program

(MIQP) formulation, enabling the planner to operate within both known and unknown spaces

[37]. Its distinct capability to generate a safe backup trajectory at each replanning step ensures

robustness against unforeseen environmental changes. Faster’s architecture is conducive to agile

flight in unknown cluttered environments, showing promise in environments where the known

space (F) is minimal compared to the unknown (U).

4.1.1.3 EGO-Planner

Building upon the strengths of FastPlanner, EGO-Planner eliminates the need for a pre-built

Euclidean Signed Distance Field (ESDF) [38]. It instead employs a collision-free guiding path to

formulate the collision cost. This method is lightweight and bypasses redundant computations,

thus accelerating the planning process. EGO-Planner is adept at real-time adjustments, dynamic-

ally reallocating trajectory times to ensure dynamical feasibility, an essential feature for a drone’s

quick responsiveness in complex environments.
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4.1.1.4 EGO-Swarm

EGO-Swarm is the multi-agent evolution of the EGO-Planner, specialized for scenarios

involving multiple drones and dynamic obstacles [39]. It integrates the collision avoidance

capability of EGO-Planner with inter-agent coordination mechanisms. The planner’s utility is

exemplified in its swarm application, where each drone autonomously and collectively contributes

to environmental exploration and task execution.

4.1.1.5 Mader

Lastly, Mader represents a trajectory planner tailored for multi-agent systems immersed

in dynamic environments [40]. It is noted for its trajectory planner’s flexibility in a shared

space, ensuring each agent’s path is computed considering the others’ planned trajectories, thus

minimizing collision risks and optimizing flow within the operational area. The planner is

resilient, able to recalibrate its trajectory planning in response to environmental changes, making

it highly applicable to real-time operations where environmental predictability is low.

Each of these packages demonstrates significant advancements in the field of autonomous

drone navigation. However, for the purpose of this project, the chosen planner must exhibit not

only real-time responsiveness and robustness in cluttered environments but also compatibility

with the drone’s onboard computing constraints and the operational goals. The analysis suggests

that a planner offering a blend of speed, dynamical feasibility, and adaptability to both solo and

swarm operations, along with an efficient computational footprint, would be most aligned with

the project’s requirements.
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4.1.2 Chosen Planner Rationale

After a review of the field, FastPlanner was identified as the ideal fit for the mission’s

needs. Its selection was based on its computational efficiency and its proficiency in generating

dynamically smooth trajectories. The smoothness of the trajectory is significant in complex

environments as it directly impacts the safety and reliability of the drone’s navigation. FastPlanner-

’s trajectories, optimized through a two-stage process including kinodynamic pathfinding and

B-spline refinement, offer a balance between speed and maneuverability without compromising

on safety. Another significant factor contributing to the choice of FastPlanner is its extension,

FUEL [41]. This development enhances the planner’s functionality, enabling efficient exploration

and autonomy in unknown spaces, which is a core requirement for any mission in SAR.

While EGO-Planner provides quick computation by foregoing the construction of an ESDF,

it yields less smooth trajectories. Such trajectories can increase the risk of abrupt movements and

potential collisions.

4.2 Detailed Description of the Planning Algorithm

This section outlines the technical framework of FastPlanner for trajectory generation,

combining kinodynamic path searching, B-spline optimization, and iterative time adjustment.

This framework does not impose strict velocity and acceleration constraints, which allows for

faster area coverage. It begins with kinodynamic pathfinding to quickly identify optimal paths,

followed by B-spline optimization for safety, and ends with time adjustments to ensure trajectories

meet practical kinodynamic limits.
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4.2.1 Hybrid A* Algorithm in Kinodynamic Path Finding for Quadrotors

The algorithm begins with the initial state of the quadrotor and an open list of nodes to

be explored. Each node represents a possible state of the quadrotor, defined by its position and

velocity. The algorithm expands nodes by applying a set of motion primitives, which are short

segments of trajectory calculated based on the current state and a set of discretized control inputs.

As the algorithm explores each new state, it calculates gc, the cost so far, by summing the

edge costs of the path taken to reach this state. The heuristic cost hc is then computed to provide

an estimate of the cost to reach the goal from this new state. The total cost fc (sum of gc and hc)

is then used to evaluate the optimality of the new state.

If a new state falls into a grid cell that already contains another state with a higher cost,

the algorithm replaces the existing state with the new, more optimal one. This pruning (deleting)

ensures that only the most efficient paths are considered. The search continues, expanding states

and evaluating costs, until it reaches the goal or exhausts all possible paths [36].

4.2.1.1 The Hybrid A* Algorithm

The hybrid A* algorithm differs from the conventional A* search. While the conventional

A* algorithm excels in finding optimal paths in a discrete space, it falls short for non-holonomic,

underactuated systems like quadcopters operating in 3D environments. In such systems, strictly

adhering to discrete, straight-line paths from the A* search can lead to infeasible trajectories

due to the sudden directional changes which do not align with the physical capabilities of the

quadrotor.

Hybrid A* addresses this by integrating the vehicle’s kinematic constraints directly into
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the path planning process [42]. This integration allows for smoother transitions between path

vertices, accommodating the non-holonomic nature of quadrotors. Unlike conventional A*,

where transitions between nodes are straightforward but potentially infeasible, hybrid A* ensures

that each move is dynamically executable by the quadrotor.

4.2.1.2 Motion Primitives

At the core of the hybrid A* algorithm for quadrotors are motion primitives, which are

small predefined maneuvers based on the quadrotor’s dynamic model. The concept of differential

flatness is integrated here, which allows the representation of a quadrotor’s states and inputs using

a minimal set of ”flat outputs” and their derivatives. Typically, for a quadrotor, these outputs

include the 3D position of the center of mass (x, y, z) and the yaw angle (heading). This simplifies

the process of generating smooth trajectories for the drone to follow. It is worth noting that yaw

is not included in the trajectory representation for the motion primitive segments in [1], however,

the smoothness is further improved by spline optimization later. The segments are represented in

the 3D space as a series of polynomial functions of time [36], where

p(t) := [px(t), py(t), pz(t)], pµ(t) =
K∑
k=0

akt
k (4.1)

with µ ∈ {x, y, z}, representing the x, y, and z coordinates of the quadrotor’s position over time,

motion primitives are generated by varying these polynomial functions using discretized control

inputs UD (acceleration in each direction) over a fixed short time interval τ , to expand the search

nodes in a manner consistent with the quadrotor’s kinematics.
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4.2.1.3 Cost Function

In path planning, cost functions play the role of guiding the search towards the goal. Hybrid

A* utilizes a cost function that balances the actual cost of the path (cost so far) and the estimated

cost to reach the goal (heuristic). The actual cost, gc represents the sum of the costs incurred

along the path from the start state to the current state. The heuristic cost, hc is an estimate of

the cost from the current state to the goal, guiding the search efficiently toward the objective by

approximate the remaining cost, but without overestimating it.

The cost of a motion primitive, or the edge cost, is computed as [36]:

J (T ) =

∫ T

0

∥u(t)∥2dt+ ρT (4.2)

where T is the duration, u(t) is the control input, and ρ is a weighting factor. This function

reflects both the control effort and time, which ensures efficiency and responsiveness. Hence, gc is

calculated for J number of primitives expanded from previous step as [36]: gc =
∑J

j=1(u
2
dj
+ρ)τ .

The heuristic cost hc is calculated using Pontryagin’s Minimum Principle, a method from

optimal control theory used to find the minimum control effort to reach a state. The principle

allows the derivation of a closed-form solution for the minimum cost trajectory from the current

state to the goal state. For each state component (say, x, y, z), the problem is solved, and the

resulting cost is summed up to get the heuristic cost hc. Mathematically, it involves solving a

boundary value problem where the boundary conditions are the current state and the goal state.

Finally, fc is defined as the sum of gc and hc. It represents the total estimated cost of a path

through the current node to the goal, which is a fundamental metric for the A* algorithm to
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prioritize which nodes to explore next.

4.2.1.4 Analytic Expansion

To expedite the search process, the algorithm employs analytic expansion. This technique

attempts to directly connect the current node to the goal with a collision-free and dynamically

feasible path. If successful, it bypasses the need for further expansion, significantly speeding up

the search. This is particularly effective in sparser environments, where direct paths to the goal

are more likely to happen.

4.2.2 B-Spline Trajectory Optimization

After finding a feasible path via the kinodynamic search, the trajectory is refined for smooth-

ness and safety by leveraging B-spline curves, which not only smooth the path but also ensure it

steers clear of potential obstacles.

4.2.2.1 The Use of Uniform B-Splines

Trajectory refinement employs uniform B-splines, or Basis splines, which are mathematical

representations used extensively in curve and surface modeling [reference about B-splines]. B-

splines are characterized by a series of control points Q0,Q1, . . . ,QN and a knot vector t0, t1, ..., tM .

The control points determine the shape of the B-spline, while the knot vector, which consists of a

non-decreasing sequence of parameter values, influences how the spline interpolates the control

points. In uniform B-splines, the spacing between the knots in the knot vector is constant.
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The curve at any time t is computed by [36]:

p(s(t)) = s⊤(t)Mpb+1qm, (4.3)

where s(t) = [1, s(t), s2(t), . . . , spb(t)]⊤ represents the spline’s basis functions. The matrix

Mpb+1 is linked to the B-spline’s degree pb, and it controls how the spline behaves and responds

to the positioning of the control points.

4.2.2.2 Kinematic Constraints via Convex Hull Property

The convex hull property of B-splines guarantees that the spline is contained within the

convex shape formed by its control points. This geometric feature is vital for incorporating

kinematic constraints like velocity and acceleration into the spline. The velocity Vi and acce-

leration Ai at a control point are derived from the positions of the spline’s control points as [36]:

Vi =
1

∆t
(Qi+1 −Qi),Ai =

1

∆t
(Vi+1 −Vi), (4.4)

where ∆t is the time difference between consecutive knots. Adjusting these control points

directly impacts the B-spline’s velocity and acceleration to enable precise control over the quadro-

tor’s movement.

4.2.2.3 Collision Avoidance through Convex Hull Analysis

Ensuring a collision-free trajectory involves analyzing the B-spline’s convex hulls. The

proximity of these convex hulls to potential obstacles is assessed to ensure safety. If a part of
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the convex hull is too close to an obstacle, the corresponding control points are modified. These

adjustments may involve repositioning the control points or changing the parameters of the spline

to expand or contract the convex hull. This process ensures the path of the quadrotor remains clear

of obstacles, maintaining the necessary safety margins.

4.2.2.4 Cost Function Formulation in the B-Spline Optimization

The cost function is designed to optimize the B-spline trajectory. This cost function is

formulated as a sum of various components, each reflecting a specific aspect of the trajectory’s

quality [36]:

ftotal = λ1fs + λ2fc + λ3(fv + fa) (4.5)

Here, fs represents the smoothness cost, fc the collision cost, and fv and fa denote the costs

for exceeding maximum velocity and acceleration limits. The parameters λ1, λ2, λ3 are weights

assigned to each cost component, enabling fine-tuning of the optimization process.

The smoothness cost, fs, is distinct from traditional methods that often use squared snap or

jerk for the smoothness cost function choice. Instead, this approach employs an elastic band cost

function, which is based on the geometric arrangement of the control points. The elastic band

model views the trajectory as a flexible band where each segment exerts a virtual force on its

neighboring segments, pulling them towards a line that minimizes curvature and hence, smooths

the trajectory [36]:

fs =

N−pb+1∑
i=pb−1

∥(Qi+1 −Qi) + (Qi −Qi−1)∥2 (4.6)
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Here, Qi are the control points of the B-spline, and pb is the spline degree. This model

effectively minimizes curvature, leading to smoother trajectories. To illustrate, the equation

shows that if all terms are equal to zero, this will result in all control points forming a straight

line.

Collision avoidance is handled through the collision cost fc, which employs a differentiable

potential cost function. This function measures the proximity of the spline to obstacles, and is

designed to increase exponentially as the spline approaches an obstacle [36]:

fc =

N−pb∑
i=pb

Fc(d(Qi)) (4.7)

Fc(d(Qi)) =


(d(Qi)− dthr)

2 if d(Qi) ≤ dthr

0 otherwise

(4.8)

Here, d(Qi) is the distance from control point Qi to the nearest obstacle, and dthr is a

threshold distance. The function Fc ensures that the optimizer increases the trajectory’s clearance

from obstacles.

To penalize trajectories exceeding maximum allowable velocity and acceleration, cost com-

ponents fv and fa are defined. These are formulated as penalties that become active when the

control points indicate velocity or acceleration beyond the predefined limits. The penalties for

excess velocity are given by [36]:

fv =
∑

µ∈{x,y,z}

N−pb∑
i=pb−1

Fv(Viµ) (4.9)
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with the penalty function Fv(Viµ) defined as [36]:

Fv(vµ) =


(v2µ − v2max)

2 if v2µ > v2max

0 otherwise

(4.10)

Similarly, the penalty for exceeding the maximum allowable acceleration is given by [36]:

fa =
∑

µ∈{x,y,z}

N−pb∑
i=pb−2

Fa(Aiµ) (4.11)

Here, vmax and amax represent the maximum allowable velocity and acceleration, respective-

ly. Viµ andAiµ denote the velocity and acceleration components in the x, y, and z directions at the

control points. These formulations ensure the trajectory adheres to the specified dynamic limits

by imposing squared penalties when the velocity or acceleration in any dimension exceeds these

limits.

4.2.3 Time Adjustment in B-Spline Trajectory Optimization

Time adjustment is a major step of this implementation to transform the infeasible, aggress-

ive motions that sometimes we get, even while constraining the kinodynamic search and optimi-

zation. This happens when the trajectory requires the quadcopter to cover longer distances in the

same time. Time adjustment addresses this issue by adjusting the time allocation for different

segments of the trajectory.

Non-uniform B-splines has variable spacing of their knot vectors. This variability allows

for more control over the shape and smoothness of the trajectory. In non-uniform B-splines, the

70



velocity and acceleration, derived from the control points, can be expressed as [36]:

Vi =
1

∆ti
(Qi+1 −Qi), (4.12)

Ai =
1

∆t2i
(Qi+1 − 2Qi +Qi−1), (4.13)

where ∆ti are the knot spans which could be modified to adjust the trajectory’s dynamics in case

of infeasible control points.

For a control point Vi of velocity, which is considered infeasible, we consider the largest

infeasible component Viµ and its magnitude |Viµ| = vm. According to Equation 4.12, the velocity

component is influenced by the duration between the knots. By modifying this duration, we can

alter the velocity component to make it feasible [36]:

V̂iµ =
pb

t̂i+pb+1 − t̂i+1

(Qi+1µ −Qiµ) =
1

µv
Viµ (4.14)

Here, µv is set as the ratio vm
vmax

, ensuring that the adjusted velocity V̂iµ remains within the

feasible limit. Similarly, for acceleration feasibility, the time span ∆tm is adjusted to ∆t̂m =

µa∆tm, ensuring that the adjusted acceleration Âiµ does not exceed the maximum limit.

The process starts by identifying the control points for velocity and acceleration that are

infeasible. These points are the ones where the quadrotor’s capabilities are exceeded either in

terms of velocity or acceleration. For each infeasible control point, the algorithm computes the

necessary adjustment to the knot spans. This is done by setting the parameters µv and µa, which

are then used to scale the current knot spans, as shown in Equation 4.14. The parameters µv

and µa are derived based on the ratio of the maximum feasible velocity (or acceleration) to the
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magnitude of the infeasible velocity (or acceleration) component. An essential aspect of this

algorithm is the bounding of µv and µa with constants αv and αa that are slightly larger than 1.

This ensures that no single time span is extended excessively, which could otherwise lead to an

impractical trajectory. The algorithm proceeds iteratively, adjusting knot spans and re-evaluating

the feasibility of the control points until all are within acceptable limits.

4.3 Simulation Integration with the Autopilot

4.3.1 Technical Implementation Details

The implementation of FastPlanner algorithm is made open-source1 and is implemented

using C++11 and incorporates the NLopt nonlinear optimization library.

The algorithm utilizes a Euclidean Distance Field (EDF) for environment mapping, storing

distance information in a voxel grid map for collision checking and path optimization. To enhance

efficiency, the map updates are localized around the drone within a predefined planning horizon

to conserve computational resources.

Regarding the finer details of the implementation of the FastPlanner package [36], the

kinodynamic A* algorithm, implemented in ’kinodynamic astar.cpp’, expands motion primitives,

which employs a heuristic function for cost estimation to the goal. This program is responsible

for collision checks and continuously updating the goal based on the drone’s progression. The

resultant path adheres to the user-defined maximum velocity and acceleration limits, making it

dynamically feasible for the drone. Subsequently, the path undergoes refinement in ’bspline opti-

mizer.cpp’. The NLopt library is then used in minimizing the combined cost function, which

1FastPlanner Github Repo: https://github.com/HKUST-Aerial-Robotics/Fast-Planner
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balances smoothness, distance, and feasibility.

Environment mapping and collision avoidance are managed by ’sdf map.cpp’, which estab-

lishes the EDF map. User-defined parameters such as map resolution, map size, and depth

filtering are used here. Incoming depth images or point clouds are processed to update occupancy

in the grid and compute the ESDF. The algorithm employs raycasting to identify occupied and

unoccupied spaces. The Finite State Machine in ’kino replan fsm.cpp’ is responsible of the

planner’s high-level decision-making and state management. It initializes modules based on user-

defined parameters, processes new waypoints, and updates the drone’s position and velocity using

odometry data. It also continuously monitors for potential collisions to trigger re-planning when

necessary.

4.3.2 Integration with PX4 in SITL Simulation

Integration with the PX4 autopilot stack is achieved through the utilization of ROS and

MAVROS, which enables communication between the planning software and the drone’s flight

systems. The system integration is tested in a Gazebo simulation with a PX4-equipped drone,

spawned with a model of a depth camera.

The key to adapting the planner with any ROS-based project are the parameter and launch

files, particularly ’kino algorithm.xml’ and ’kino replan.launch’. These files contain the necessary

user-defined parameters and ROS topics, enabling customized planner behavior. For instance,

the ’map size x/y/z’ parameters have been tailored to match the dimensions of the operational

environment. Adjustments to ’sdf map/resolution’ and ’sdf map/obstacles inflation’ optimize

the SDF map’s detail level and safety buffer around obstacles. Parameters like ’max vel’ and
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’max acc’ state the desired drone’s physical limitations, while kinodynamic path searching and

trajectory optimization parameters fine-tune the planning process. The modifications to camera

and depth sensor parameters, odometry topics, and data feeds from camera and depth sensors are

chosen to match the outputs from the simulated drone in Gazebo.

Fig. 4.1 shows the ROS graph for the nodes running and the topics communicated between

the nodes to run the planner in SITL with PX4. The custom node ’traj to px4’ translates Fast-

Planner’s trajectory commands into MAVROS compatible messages, considering coordinate frame

differences and ensuring the drone interprets these commands correctly. The node continuously

publishes position targets to ’/mavros/setpoint raw/local’. This communicates to the drone in

the simulation, enabling responsive and fluid flight behavior based on FastPlanner’s trajectory

optimization and generation.

Figure 4.1: ROS graph for FastPlanner in SITL with PX4 Iris drone
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Fig. 4.2 illustrates the final layout with Gazebo and Rviz. The goal is given as a 2D Nav

goal in Rviz, and it sets the goal at an altitude of 2 meters, which is adjusted in the code to suit

the test environment. This could be extended and changed in future improvements to enable the

incorporation of varied altitudes beyond a mere 2D goal. The program then finds the path, and

the custom node sends the generated trajectory as a sequence of waypoints for PX4 to follow.

Figure 4.2: Snapshot shows the SITL Gazebo simulated environment on the right and Rviz on
the left

4.4 Real-World Integration and Adaptations

4.4.1 Incorporating Depth Sensing into Drone Hardware

Moving from successful SITL testing to real-world flight necessitated augmenting our

M500 drone with additional sensory capabilities. A depth sensor is necessary for building the

cost map during the autonomous flight. Even though the M500 comes with stereo camera pair

that might provide depth, the point cloud generated by it indoors was sparse.

To address this, we integrated a Time of Flight (ToF) depth sensor2, specifically designed by
2ModalAI’s Time of Flight Sensor: https://www.modalai.com/products/voxl-dk-tof
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ModalAI for compatibility with the VOXL companion computer. The ToF sensor was selected

for its high-fidelity indoor depth mapping and ability to produce dense point clouds, vital for

detailed environmental understanding and accurate trajectory planning.

The choice of the ToF sensor aligns with the goal of optimizing the Size, Weight, and

Power (SWaP) aspects of the drone system. Its compact size, lightweight nature, and minimal

power requirements make it an ideal solution for SAR applications, where efficient use of limited

computing resources is needed. The ToF sensor’s performance for indoor depth mapping, with a

functional range of 4-6 meters, fits with our indoor exploration objectives. Fig. 4.3 demonstrates

the setup, showcasing the ToF sensor’s integration with the VOXL computer and its placement

on the drone, where it replaces the stereo camera.

Figure 4.3: Time of Flight (ToF) connected to VOXL m500 drone
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4.4.2 Technical Integration with Onboard Sensors

Integrating ToF sensor into the M500 drone required several adjustments for full function-

ality. The first step involved reconfiguring the ’voxl-camera-server’ to activate the ToF camera

pipeline while deactivating the unused stereo camera, optimizing the processing capacity. A

custom extrinsic configuration was necessary due to the ToF sensor’s arbitrary mounting on the

M500. Adjustments to the sensor’s position and orientation relative to the drone’s IMU sensor

were explicitly measured and placed in the extrinsic file for accurate data interpretation. This

recalibration allowed the onboard software to correctly translate and rotate sensor readings into

the drone’s frame of reference, aligning the sensor data with the physical world.

As for any camera sensor, the calibration process was needed in determining the intrinsic

parameters of the ToF sensor. This step rectified the depth images to output precise depth

mapping essential for accurate environment reconstruction and obstacle avoidance. Post-calib-

ration, the integration of the ToF sensor with the VOXL SDK and hardware was facilitated using

the ’voxl mpa to ros’ node in ROS. Fig. 4.4 shows the outputs as ROS topics visualized in Rviz,

including aligned point cloud with the drone’s pose and the corresponding depth image.

Mimicking the setup used in the SITL simulation integration, the FastPlanner node was

running offboard and communicated with the drone’s onboard computer using ROS over WiFi.

This integration involved a network of ROS nodes to manage data transformation and transmission

effectively. Fig. 4.5 illustrates a ROS graph with nodes running offboard on a local machine, and

onboard on VOXL.
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Figure 4.4: TOF outputs showing the depth image (left) and the pointcloud (right)
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The integration workflow included several key ROS nodes:

• camera info publisher converted YAML calibration data into a CameraInfo mess-

age, providing essential calibration information.

• image proc node, part of the image pipeline3 in ROS, rectified incoming depth

images to correct lens distortion using the camera info.

• tf from extrinsics node published static transformations based on the extrinsic

configuration file, ensuring accurate spatial referencing, as seen in the TF tree shown in

Fig. 4.5.

• fix tof cloud frame id resolved frame naming discrepancies for the ToF sensor’s

point cloud data to properly associate the point clouds with the sensor’s frame.

• camera pose publisher published the camera’s pose in the map frame as a Pose-

Stamped message.

3ROS image proc Node: https://wiki.ros.org/image_proc
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Instead of subscribing to simulation-based topics such as those from the Gazebo-simulated

Iris drone, the planner’s launch file is changed to subscribe to topics provided by the drone’s

onboard ROS nodes. For instance, topics like ’/iris/camera/depth/image raw’ used in simulation

are replaced with equivalent real sensor topics like ’/tof depth fixed’ so that the planner operates

based on live sensor inputs. Additionally, some of the parameters such as the obstacle inflation

have been increased to adapt for the actual size of the drone. Fig. 4.5 shows the the cost map built

by FastPlanner using the ToF sensor readings from a real experimental setup.

Figure 4.7: Depth mapping from real ToF readings during hover with one obstacle in front of the
drone

4.4.3 Challenges and Proposed Solutions

4.4.3.1 Sensor Data Processing

Some challenges emerged when testing the planner experimentally on the drone. Firstly,

the map generated from the ToF point cloud seems to be subject to noise, where some inconsistent

point clouds confuse the algorithm and could be seen as spurious obstacles in the environment.

Given that FastPlanner’s original implementation has been done with Light Detection and Ranging
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(LiDAR) sensor, its processing algorithms might not effectively filter out ToF noise, leading to a

cluttered and inaccurate representation of the surroundings in the planner’s spatial map as shown

in Fig. 4.8. Another reason could be the arbitrary mounting with of the ToF sensor with no

damping to cancel out body vibrations that might affect the accuracy of the point cloud.

Figure 4.8: Noisy point cloud causes noisy cost map during the drone’s movement
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4.4.3.2 Latency in Offboard Control

Secondly, there is an inherent latency in the offboard control setup that we use, where

the planner is running on a local machine which must receive, process, and respond to data

transmitted via WiFi over ROS. Each step in this pipeline, from data transmission to processing

on the local machine and back to the drone, introduces delays. These delays mean the planner

often works with outdated information and it leads to inconsistent behaviour.

4.4.3.3 Proposed Solutions

Starting with enhancing the processing of sensor data, given the ToF sensor’s susceptibility

to noise, the planner algorithm could be adapted to better handle this type of data. Implementing

advanced noise reduction techniques tailored to ToF sensors, such as dynamic thresholding would

be a proposed solution. Additionally, integrating sensor fusion techniques that combine ToF data

with other sensory inputs could provide a more comprehensive environmental understanding, and

better mapping.

To tackle the issue of latency in offboard processing, an optimal solution is to shift the data

processing onboard the drone’s companion computer. Doing so would reduce the volume of data

transmitted and processed offboard, thereby diminishing latency. This will require upgrading the

current companion computer; VOXL to a more powerful processor which can handle such a load

of computation running at once. One natural upgrade is the VOXL2 4, which is developed by the

same company, and is more powerful than VOXL1.

In terms of path planning, fine-tuning the planner’s parameters like the obstacle inflation

4VOXL2 Companion Computer: https://www.modalai.com/products/voxl-2
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factor and path search settings to suit the real drone environment and the ToF sensor capabilities is

necessary. This fine-tuning process should be continuous, utilizing empirical data gathered during

flight tests to incrementally improve the planner’s performance. Moreover, while the drone’s yaw

is considered for path alignment, it appears that the optimization of yaw movements within the

trajectory planning is not fully refined. This is evident from observations in simulation where the

drone sometimes executes abrupt turns or does not take the most efficient yaw turn. To enhance

the planner’s performance, a potential improvement would involve a deeper integration of yaw

behavior into the cost function used for trajectory optimization. By incorporating terms that

specifically penalize abrupt or inefficient yaw changes, the algorithm can be tailored to optimize

not just the path but also the rate and direction of orientation changes.

85



Chapter 5: Evaluation and Results

5.1 Analysis of Autonomous Search, Detection, and Inspection

In Chapter 3, we focused on developing a framework for autonomous search, object detec-

tion, and inspection using drones in indoor environments. The methodologies implemented are

now evaluated against their intended objectives. In this section, we’ll dissect the outcomes

of these implementations, particularly their operational efficacy as observed in experimental

settings.

Autonomous Search Routine Evaluation

Fig.5.1 shows the autonomous search routine, where the drone was programmed to execute

a search pattern over a defined area measuring 3.6m by 4.8m at a constant altitude of 1.1m. This

figure illustrates three paths: the ground truth path as recorded by the motion capture system,

the onboard estimate of the drone’s trajectory, and the planned path designed to cover the search

area.

Notably, the drone’s actual path demonstrates a slight deviation from the planned trajectory

over time. This deviation is one of the known issue of drift in visual inertial odometry-based

navigation. As the drone navigates the space, accumulating positional data over time, this drift
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becomes more obvious. The drone’s internal estimates remain closely aligned with the planned

path, staying always within the acceptable boundaries of the designated search area.

Figure 5.1: Comparison of drone’s ground truth, onboard estimated, and planned search paths

While the drift observed is relatively minor and does not significantly impact the overall

mission’s success in this confined test environment, it could be enhanced by improving the state

estimation algorithm indoors and integrate Simultaneous Localization and Mapping (SLAM)

algorithms to reduce cumulative errors over time.
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AprilTag Pose Estimation Evaluation and Impact on Target Localization

The search routine is helping the drone to localize the targets in the area by looking for

their corresponding fiducial markers. Hence, the AprilTag pose estimation’s accuracy is crucial

for the drone’s target localization and the subsequent inspection routine. During experiments, the

drone’s movement, combined with motion blur and varying lighting conditions, initially created

challenges in accurately determining the marker’s pose from the first detection. This is evident

from Fig. 5.2, where the drone’s first estimation of the tag’s position showed a discrepancy

of approximately 5cm from the ground truth. However, implementing a pause in the drone’s

movement to allow for hovering significantly enhanced the accuracy of the pose estimate. This

refinement is significant, as the inspection routine’s effectiveness is directly tied to the precision

of AprilTag localization. This adjustment, while introducing a slight delay in the operation,

results in a more reliable estimate, bringing it closer to the ground truth.

Analysis of Detection Confidence in Relation to Inspection Time

To further illustrate the relationship between the quality of the tag’s localization and the

inspection routine, Fig.5.3 showcases the detection confidence plotted against inspection time for

different buckets of Target 0 (T01). Here, we see the detection process reporting, one at a time,

the bounding box coordinates in the image frame along with the confidence probability of the

detected class.

As detailed in Section 3.5, the drone autonomously navigates to inspection poses upon

locating the corresponding AprilTag. A key factor governing the transition from one inspection

1Throughout the remainder of the results, ’T’ will denote ’Target’ (e.g., Target 1 as T1) and ’B’ will denote
’bucket’ (e.g., bucket 2a as B2a). For further details on each target’s specifics, see Section 3.2.1.
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Figure 5.2: 3D pose estimation comparison between the first estimate, the filtered estimate, and
the ground truth pose of the tag

point to the next is the program’s confidence in the current bucket’s detection. If the drone stays

looking at a bucket for the maximum allowed time without achieving the acceptance threshold

for detection confidence, it reports the bucket as an anomaly. In the mission reported in Fig. 5.3,

the acceptance threshold for the average confidence was set at 85% as shown in the dashed line,

with a minimum required number of readings set at 50. Considering the object detection model

reports inferences at approximately 10Hz, it takes around 5 to 6 seconds to gather the necessary

amount of readings to evaluate against the confidence threshold. The maximum wait time at each

bucket is set to 20 seconds.

Fig. 5.3a shows this during inspection windows across the 8 buckets, where detection

confidence consistently exceeds the 85% threshold. This resulted in an even time allocation for

each inspection window, averaging around 14 seconds. This timing includes approximately 5-6

seconds of inspection per bucket, followed by an orientation change to inspect the next bucket,
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and navigation to the next set of buckets for the proceeding inspection window.

Conversely, Fig. 5.3b highlights instances where the drone spent the maximum time allowed

at specific markers, particularly buckets 2 and 2a, which were then reported as anomalies. The

initial localization of the targets notably influenced the inspection window for these two buckets.

Their pre-recorded inspection required close proximity to the AprilTag, which in turn required

precise localization for clear detection, explaining their longer inspection time compared to other

markers.

Fig. 5.4 further illustrates this issue in action, contrasting the drone’s inspection positioning

for bucket 2 with filtered (a) and initial (b) tag pose estimations. The precision of localization

directly impacts the inspection’s effectiveness; the filtered estimate leads to a more centered and

clear view of the bucket, whereas the initial estimate results in a less focused and thus, lower

confidence inspection. This comparison underscores the significance of the filtering process in

enhancing the accuracy of the inspection routine and highlights the need for precision in the

drone’s target localization mechanism to integrate dynamic corrections for the target’s location

while executing the inspections.

Fig. 5.5 shows the autonomous inspection routine for T1 in action. The left side of the

figure displays the drone’s actual orientation during the flight, while the right side shows the

output of the onboard object detection model. The figure demos how the drone navigates through

specific inspection points, systematically focusing on each bucket. Initially, the drone starts

centering B3, then it yaws to inspect B3a, then it progresses to B4 and B4a according to the pre-

recorded inspection poses. During this phase, the model’s output displays the detection bounding

boxes, providing real-time feedback on the detection process.
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Figure 5.3: Detection confidence vs. inspection time for Target 0 when using AprilTag pose: (a)
after filtering, and (b) using the initial estimate

Figure 5.4: Comparison of experimental drone inspection positioning using filtered (a) and intial
(b) AprilTag pose estimations
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Figure 5.5: Illustration of the drone’s autonomous inspection routine execution for T1, showing
drone positioning and real-time object detection outputs for each marker
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Field Evaluation of Full System Integration

To evaluate the system integration for the full mission, we test that using by placing the

three targets randomly in the lab for the drone to autonomously search for them and inspect

them. Fig. 5.6 presents illustration of the system’s integrated functionality, where it shows the

drone’s actual trajectory in the lab’s netted area from the real experiment, paired with a 3D plot

that showcases the interplay between search and inspection phases. The 3D trajectory visualizes

the drone’s systematic transition between searching for targets and shifting into inspection mode

upon target localization. The smoothness in this transition back and forth underscores the effi-

ciency of the integrated system.

Furthermore, Fig. 5.7 incorporates a heatmap plot, which points out areas where the drone

spent the most time during the mission. This heatmap could be looked at as an indirect indicator

of potential anomalies, providing insights into mission execution. Such insights can guide future

mission planning, which would enable more efficient path planning and resource allocation

during actual deployments in SAR missions.

Fig. 5.8 presents a series of mission scenarios, each featuring different arrangements of

targets within the indoor area. This diversity in target placement provides a way to assess

how the drone adapts its search and inspection strategies in varied cases. The figure maps the

drone’s 2D path in each scenario as a visual representation of the autonomous mission executed.

Table 5.1 quantifies the outcomes of each mission. It shows the details about the total mission

time, inspection duration for detected targets, the count of accurately detected markers inside the

buckets, and the reported potential anomalies. ’Markers Detected’ reflects accurately identified

labels out of the total present, confirmed with average confidence ≥ 85%. ’Anomalies Identified’
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Figure 5.6: 3D representation of the drone’s complete mission trajectory in the experiment,
showing the transition between search and inspection phases

Figure 5.7: 2D path and corresponding heatmap, highlighting time spent in various mission areas
and identifying potential anomalies
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Figure 5.8: Drone’s 2D path across various mission scenarios with different target placements in
the experiments
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Table 5.1: Tabulated results depicting inspection times, target detection efficiency, and anomalies
identified for Targets 0 to 2 (T0-T2), across multiple missions, demonstrating the system’s
operational capabilities and areas for optimization.

Mission
ID

Mission
Time

Target 0 (T0) Target 1 (T1) Target 2 (T2) Markers
Detected

Anomalies
IdentifiedInspection

Time Mean Inspection
Time Mean Inspection

Time Mean

A
317.53 s

(5.29 min)

94.88 s

(1.58 min)

95.93 s

(1.60 min)

54.87 s

(0.91 min)

40.89 s

(0.68 min)

—

28.54 s

(0.48 min)

9/12

(75%)

3

(B2 at T0,
B4 & B4a at T1)

B
302.34 s

(5.04 min)

82.70 s

(1.38 min)

34.65 s

(0.58 min)
—

12/12

(100%)
0

C
322.35 s

(5.37 min)

92.54 s

(1.54 min)

40.31 s

(0.67 min)

29.48 s

(0.49 min

14/15

(93.3%)

1

(B2 at T0)

D
330.37 s

(5.51 min)

113.61 s

(1.89 min)

33.72 s

(0.56 min)

27.60 s

(0.46 min)

13/15

(86.7%)

2

(B2 & B4 at T0)

enumerates buckets not meeting the confidence threshold, with ’B’ indicating ’bucket’.

Target arrangement influences mission outcomes. Aligned targets in Mission B, unlike

in Mission A, led to reduced operational times and zero anomalies, hinting at environmental

effects on system performance. The consistent detection accuracy across scenarios underscores

the detection model’s robustness. Yet, longer inspection times in some missions suggest the

potential for system refinement.

The table reveals the effect of target orientation on inspection times. For T0, Mission B

was anomaly-free, with a total inspection time of 82.7 seconds. Conversely, Missions A and C

each reported an anomaly in bucket B2, and Mission D reported two anomalies, extending the

inspection duration to 113.61 seconds. T1 required more inspection time in Mission A, resulting

in two anomalies, while other missions reported none. Inspection times for T2 in Missions C and

D were comparable, with no anomalies noted. Target positioning provides additional context.

Missions A and B, hosting the same targets but with varying inclinations, demonstrate how
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shadows affect detection—darker buckets like B2, B2a, B4, and B4a prove more challenging

due to diminished visibility in shadowed areas.

5.2 Performance in Simulated Cluttered Environments

The results presented in this section are derived from the SITL simulation using a Gazebo

environment, where an Iris drone, augmented with a depth sensor, executes a mission under the

control of a PX4 flight controller. The planner operates in offboard mode, receiving commands

from the ROS environment visualized in Rviz on the left side as shown in Fig. 5.9.

The figure shows the drone’s environment as sensed by the depth sensor, which informs

the planner’s decision-making process. The ESDF voxel grid occupancy map visualized in

Rviz reflects the environment’s three-dimensional structure. In the planning sequence, the red

trajectory indicates the original planned path, derived from the existing knowledge of the environ-

ment. This path is then further optimized, marked in yellow. These two trajectories adapt to the

drone’s live positional feedback and environmental data. The green trajectory showcases the

drone’s actual flown path. When setting a new goal through Rviz’s 2D nav goal feature, the

planner adjusts the drone’s horizontal orientation towards the goal, while maintaining altitude

consistent with the drone’s current flight level. Future implementation could be made to allow

for three-dimensional navigation goals.

The figure also shows how re-planning occurs in response to the drone’s detection of new

obstacles while navigating through unknown space. This is evident in the shift from the second

to the third image, where the drone’s path adapts to the newly perceived obstacles.

Fig. 5.10 presents the local planning strategy executed within a defined receding horizon.
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Figure 5.9: Visualization of autonomous drone path planning in SITL simulation environment
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The approach constrains map generation and pathfinding to the immediate area defined by the

user around the drone, as visualized in the first image via Rviz. This technique conservatively

utilizes computational resources by only processing the necessary spatial information, thereby

negating the need to build and frequently update a larger, more complex map.

The second image in Fig. 5.10 demonstrates the planner’s proficiency in navigating within

the local horizon. Starting from the origin point, the algorithm successfully computes a path that

guides the drone through the constraints of the simulated environment. The results underscore

the planner’s ability to work with limited data to deliver a viable navigation path, underscoring

its potential utility in real-world applications where processing power and time are at a premium.

Fig. 5.11 highlights the critical role of parameter tuning in the planning algorithm, specifi-

cally regarding obstacle inflation and the collision cost’s weighting factor within the cost function.

The top image reveals the consequences of an inadequate obstacle inflation value, which neglects

to accommodate the drone’s physical dimensions. This results in the generation of a seemingly

feasible but ultimately unsafe path, leading the drone to erroneously attempt passage between

closely spaced obstacles, resulting in collision.

In contrast, the bottom image demonstrates the impact of a better value for the inflation

coupled with a higher weighting factor for the collision cost. These adjustments produce a

slightly more conservative map where obstacles are appropriately inflated, thereby preventing

the planner from proposing a path between the narrowly spaced obstacles.

Fig.5.12 illustrates a scenario that reveals a limitation of the local planning horizon in the

context of large obstacles, such as walls. The depicted scenario reveals that the planner suggests

a direct trajectory towards the goal, despite it being located on the other side of a wall, resulting

from the goal’s position extending beyond the local horizon of the map. This behavior is not
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Figure 5.10: Local planning horizon implementation in drone trajectory planning for
computational efficiency
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Figure 5.11: Effect of parameter tuning on drone path planning: obstacle inflation and collision
cost
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ideal, as it prompts the drone to attempt to navigate through the wall, an obviously infeasible

action. In practical terms, the drone’s actions become inefficient, characterized by a back-and-

forth motion along the wall as it continuously engages in re-planning to find a viable path around

the obstacle. This process is time-consuming and may not lead to the most efficient route.

Moreover, since the yaw angle is not factored into the cost function of the planning algo-

rithm, the drone may execute unnecessary rotations to align with the desired orientation, even

during the search for a path while in motion. This leads to a suboptimal behaviour in terms

of energy, which could be minimized if energy efficiency was a considered component in the

planning cost function.

In conclusion, although the planner effectively navigates within its local scope in near

real-time, there’s room for improvement. Specifically, it needs enhancements to manage larger

obstacles better and incorporate energy efficiency.

Figure 5.12: Challenges in path planning with large obstacles
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Chapter 6: Conclusion

6.1 Summary of Contributions

This thesis investigates the use of UAVs in autonomous missions to advance SAR operations

by developing and integrating key innovations. First, the thesis introduces a new autonomous

inspection routine, specifically designed for UAVs to navigate to and inspect targets autonomously

within closer proximity, identified by fiducial markers. This routine enables UAVs to perform

comprehensive inspections from multiple angles without manual intervention. Second, the thesis

details the integration of a custom-trained object detection model to enhance the UAV’s target

recognition capabilities. This model is optimized for detecting vision acuity markers, and it

runs directly on the UAV’s onboard computer system, providing real-time analysis during flight

missions. This integration augments the UAV’s operational effectiveness during the inspection

of targets. Third, an extensive autonomous mission framework is created to facilitate the UAV’s

seamless transition between the search and inspection phases of a mission. This framework

supports the UAV’s autonomous exploration and precise localization of targets, utilizing the

developed object detection capabilities. The implementation is validated through rigorous empiri-

cal testing across different scenarios, demonstrating the system’s robustness and adaptability.

Moreover, the thesis offers a comparative analysis of some of the state-of-the-art path planning

algorithms, and provides an in-depth examination of one of them, critically analyzing its applica-
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tion in cluttered spaces through software-in-the-loop simulation, and setting the stage for its

potential real-world adaptation.

6.2 Future Work

Future work should focus on several key areas to refine and expand upon the current

research:

• Enhancement of UAV Systems: Future work will require an upgrade of the UAV’s opera-

tional capabilities by enhancing both the perception systems and on-board processing power.

Integrating higher resolution cameras equipped with gimbals will significantly improve

situational awareness and inspection flexibility, allowing for more dynamic adaptations in

viewing angles and more precise visual coverage. Concurrently, upgrading the companion

computer will address current limitations in multitasking and data processing. This will

help eliminating performance bottlenecks and enabling more effective mission execution.

• Integration of Depth Sensing in Inspection Tasks: Depth sensing could be integrated to

augment the UAV’s ability to understand its spatial relationship with targets, particularly in

scenarios where visual markers are partially occluded or the environment is complex. This

will aid in more accurate repositioning and orientation adjustments, thereby increasing the

precision and reliability of target inspections.

• Refinement of Object Detection with Confidence Modeling: Enhancing object detection

algorithms to include temporal confidence modeling will significantly improve the robust-

ness of detection processes. Rather than processing individual frames in isolation without
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leveraging historical data from previous detections, employing advanced object tracking

algorithms can facilitate the accumulation of detection confidence over time. Such work

will refine the UAV’s decision-making process and enable the system to accurately assess

and confirm target identifications.

• Advancement in Autonomous Exploration and 3D Mapping: Future efforts should

focus on advancing the UAV’s capabilities for autonomous exploration and 3D mapping

to better adapt to cluttered environments. This requires rigorous development and real-

world testing of autonomous exploration algorithms coupled with the implementation of

sophisticated 3D mapping technologies for better situational awareness.
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Appendix A: Acuity Markers Detection Model Precision and Recall Analysis

This appendix provides further details on the model’s performance evaluation through

precision and recall analysis. Precision indicates the model’s capability to generate relevant

results over irrelevant ones, whereas recall measures the effectiveness in identifying all pertinent

instances within the dataset.

Fig. A.1 shows the precision and recall curves, which further reinforce the model’s relia-

bility. To illustrate, precision portrays the model’s ability to return more relevant results over

irrelevant ones, while recall measures its success in finding all relevant cases in the dataset. The

proximity of these curves to the top-right corner of the graph shows an optimal outcome for the

model’s performance by having a high level of precision and recall.

Other ways to look at the performance of the model is by looking at the Precision-Confi-

dence curve as shown in Fig. A.2, and the Recall-Confidence curve as shown in Fig. A.3, which

illustrate precision and recall levels across varying confidence thresholds. The Precision-Confidence

graph shows high levels across all classes, supporting confidence in the model’s predictions.

Conversely, the Recall-Confidence graph shows a plateau at high recall levels to indicate the

model’s adeptness at identifying relevant objects without missing many. Finally, Fig. A.4 integrates

precision and recall into a single metric; the F1 score. It Provides a harmonic view of the model’s

overall accuracy. The F1 plot suggests a balanced precision-recall relationship, which shows a
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Figure A.1: Precision-Recall Curve displaying model accuracy per class

well-trained model that neither overlooks relevant objects nor outputs lots of false alarms.
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Figure A.2: Precision-Confidence Curve outlining prediction correctness vs. confidence

Figure A.3: Recall-Confidence Curve showing true positive detection confidence
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Figure A.4: F1-Confidence Curve indicating the harmonic mean of precision and recall
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