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Abstract—This paper presents a nonlinear feedback control
design to stabilize the configuration of two swimmers moving
inline in a uniform flow. We use a control-theoretic analysis
of an experimentally validated model of inline swimming to
characterize the behavior and stable points of the open-loop
system. We find a linear control law that manipulates the
flapping phase offset to stabilize the swimmers to a desired
inline separation distance. We identify an idealized Hamiltonian
version of the system and use it to find a nonlinear control law
to improve the convergence rate of the linear control law. A
combination of the two control laws stabilizes the system to a
specified configuration faster than the natural dynamics.

Index Terms—bioinspiration, hydrodynamics, Lyapunov-
based control, Hamiltonian dynamics

I. INTRODUCTION

Bioinspired robotic fish benefit from greater propulsion
efficiency than traditional propeller-based autonomous under-
water vehicles (AUVs) [1]–[3]. Robotic fish exhibit enhanced
stealthiness attributed to their minimal acoustic signature and
inconspicuous wake structure, features particularly valuable
in defense applications [4]. Schooling principles have also
been applied to underwater gliders for ocean sampling [5],
although not for hydrodynamic benefits as considered here.

To better understand the flow interactions between school-
ing fish, kinematic models of linear arrays of flapping foils
have been developed and experimentally validated. This work
shows that inline swimming promotes group cohesion [6]–
[8]. Additionally, stable configurations of two self-propelled
flapping filaments form as a result of vortex shedding of the
leader [9]. Experimental testing of bioinspired robotic fish
in constant speed flow shows that hydrodynamic benefits of
inline swimming are achieved when the distance between
the fish varies linearly with the flapping phase offset [10].
Feedback control has also been applied to stabilize frequency
uncoordinated swimmers to a cohesive formation [11].

To study inline swimming interactions between fish, we
produce a dynamic model of the inline separation distance
and determine the equilibrium points and stability properties
of the system. We implement a linear control law and then
utilize an idealized Hamiltonian system that exists near the
equilibrium points to derive a nonlinear feedback control law
that stabilizes the two fish to a set distance from one another.

The specific contributions of this paper are (1) a dynamical
systems analysis of an experimentally validated model of
inline swimming motion; (2) the identification of an idealized
Hamiltonian system and a candidate Lyapunov function for
nonlinear control design; and (3) a feedback control law that
stabilizes two swimmers at a prescribed separation distance
with faster convergence rate than the natural dynamics;
This work has applications in bioinspired underwater vehicle
design and maritime applications with multiple vehicles.

The outline of this paper is as follows. Section II intro-
duces an experimentally validated model of inline swimming
behavior and describes the equation of motion. Section III
provides control-theoretic analysis of the natural dynamics
to characterize the location and stability of equilibrium
points. Section IV derives a linear feedback control that is
locally capable of stabilizing trajectories to a desired inline
separation distance. Section V derives a nonlinear control
law to stabilize an idealized system and shows results of the
closed-loop system. Section VI summarizes the key findings
and discusses ongoing and future work.

II. THEORETICAL BACKGROUND

This section introduces the inline swimming system that
was described and validated by Newbolt et al. [6]. It provides
modeling assumptions and a second-order resultant equation
of motion for the inline swimming separation distance.

Fig. 1: System schematic: the upstream swimmer’s (red)
wake interacts with the downstream swimmer (blue).

A. System Definition
Consider two inline swimmers separated by a horizontal

distance x(t), as shown in Figure 1, where x(t) increases in
the downstream direction.



Assume the swimmers flap at the same frequency, f , but
with tail amplitudes A1 for the upstream swimmer and A2

for the downstream swimmer; the flapping phase offset is ϕ.
The vertical displacements of the upstream and down-

stream swimmer’s tail, y1(t) and y2(t), respectively, are [6]

y1(t) =
1

2
A1 sin(2πft)

y2(t) =
1

2
A2 sin(2πft− ϕ).

We approximate the shape of both fish as an uncambered
hydrofoil with chord length c, span s, coefficient of drag CD,
coefficient of thrust CT , and mass m in a fluid of density ρ.
The thrust T1 and drag D1 on the upstream swimmer are [6]

T1 =
1

2
ρcsCT ẏ

2
1 =

1

2
ρcsCTA

2
1f

2π2 cos2(2πft)

D1 =
1

2
ρcsCDẋ2

1.

Applying Newton’s second law to the upstream swimmer
gives the equation of motion [6]

ẍ1 =
D1 − T1

m
=

ρcs

2m

[
−CTA

2
1f

2π2 cos2(2πft) + CDẋ2
1

]
.

Let ⟨·⟩ denote the operation ⟨·⟩ =
∫ f−1

0
(·)dt, which returns

the time-average value over one flapping period. Assume
that the time-averaged upstream velocity is constant, i.e.,
⟨ẋ1⟩ = −U . The choice of sign convention is consistent
with the fact that the foils propel themselves upstream
in the negative x direction. Applying the relation CD =
π2St2CT /2 [6], where the Strouhal number St = fA/U
is the dimensionless parameter describing oscillatory flows,
simplifies the equations of motion to ⟨ẍ1⟩ = 0.

Next, to calculate the thrust T2 and drag D2 on the
downstream swimmer, assume an idealized vortex shedding
pattern. The distance between like-signed vortices shed by
the upstream swimmer is L = U/f and the vortex strength
does not dissipate over time. The time averaged thrust ⟨T2⟩
and drag ⟨D2⟩ on the downstream swimmer are [6]

⟨T2⟩ =
ρcsCT f

2π2

4

[
A2

2 +A2
1 − 2A1A2 cos(2πf∆t− ϕ)

]
⟨D2⟩ =

1

2
ρcsCD sgn(−⟨ẋ2⟩)⟨ẋ2⟩2,

where ∆t = x/U is the time elapsed since the upstream
swimmer passed the downstream swimmer’s current position.
Using these relations along with the equations for St and
CD, Newton’s second law applied to the time-averaged
downstream swimmer yields the equation of motion ⟨ẍ2⟩ =
1
m (⟨D2⟩ − ⟨T2⟩) or [6]

⟨ẍ2⟩ =
ρcsCT f

2π2

4m

[(
A1

U

)2

sgn(−⟨ẋ2⟩)⟨ẋ2⟩2

−A2
2 −A2

1 + 2A1A2 cos

(
2πx

L
− ϕ

)]
. (1)

Finally, combining the dynamics of the upstream and
downstream swimmers yields the behavior of the time-
averaged inline separation distance. Let x refer to the time-
averaged separation distance, i.e., x = ⟨x2⟩ − ⟨x1⟩. Then
ẋ = ⟨ẋ2⟩ − ⟨ẋ1⟩ = ⟨ẋ2⟩+ U and ẍ = ⟨ẍ2⟩.

These relationships can be used to convert (1) into the
following second-order differential equation in x:

ẍ =
ρcsCT f

2π2

4m

[(
A1

U

)2

sgn(U − ẋ)(ẋ− U)2

−A2
2 −A2

1 + 2A1A2 cos

(
2πx

L
− ϕ

)]
.

Applying the definition of the Strouhal number and choosing
the substitutions a = ρcsCTπ

2St2U2/4m and A = 2A1/A2.
yields the equation of motion

ẍ =
4a

A2

[
A2

4
sgn

(
1− ẋ

U

)(
1− ẋ

U

)2

− 1− A2

4

+A cos

(
2πx

L
− ϕ

)]
. (2)

The next section provides a dynamical system interpretation
and analysis of (2), which represents a substantial reduction
in the dimensionality of the original fluid dynamics.

III. OPEN-LOOP DYNAMICS

This section applies a control-theoretic analysis to the
model (2) to characterize local behavior near equilibrium
conditions. The insights gained from this analysis are used
in designing a control law in Sections IV and V.

A. State-Space System and Equilibrium Points

The components of (2) are caused by the drag and thrust
on the downstream swimmer, i.e., ẍ = d(ẋ)−τ(x, ϕ), where
d(ẋ) and τ(x, ϕ) are

d(ẋ) = a sgn

(
1− ẋ

U

)(
1− ẋ

U

)2

(3)

τ(x, ϕ) =
4a

A2

[
1 +

A2

4
−A cos

(
2πx

L
− ϕ

)]
. (4)

Recall that ϕ is the phase shift of the follower’s tail flapping.
To obtain a state-space model of the system, let the state
vector ζ be ζ =

(
x, ẋ

)T
. Then the state-space form of (2) is

ζ̇1 = ζ2 (5)
ζ̇2 = d(ζ2)− τ(ζ1, ϕ).

To find the equilibrium points ζ∗ such that ζ̇∗ = 0, observe
that the condition ζ̇∗1 = 0 implies that ζ∗2 = 0. The component
of acceleration due to thrust is unaffected by this condition,
whereas the component due to drag becomes d(ζ∗2 = 0) = a.
The constant drag component corresponds to the blue dashed
lines in Figure 2. The red dashed lines correspond to the
velocity and acceleration of the system when drag is zero.

Enforcing the equilibrium conditions ζ∗2 = ζ̇∗2 = 0 yields
d(0)−τ(ζ∗1 , ϕ) = a−τ(ζ∗1 , ϕ) = A cos(2πζ∗1/L−ϕ)−1 = 0.
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Fig. 2: Acceleration due to drag d(ẋ). Blue markers indicate
the effect of drag when the system is in equilibrium. Red
marker indicates the critical value where the drag is zero.
Plotted using the value a = 0.0601 m/s2.

Solving for ζ∗1 gives ζ∗1 = L
2π [cos

−1(1/A) + ϕ]. We assign
the inverse cosine term the notation θ = cos−1(1/A).

Note that, in order for an equilibrium to exist, we require
|1/A| < 1. In terms of physical parameters, this implies
A2 < 2A1, i.e., the tailbeat amplitude of the downstream fish
cannot exceed twice the tailbeat amplitude of the upstream
fish. Additionally, the θ value is not unique; there are two
solutions for θ in every L-period of ζ1 in the first and fourth
quadrants. Because 2πζ1/L appears within a cosine term in
the equations of motion, ζ1 can be thought of as an element
of the unit sphere S1, with periodic behavior, rather than an
element of the real line, R1. As a consequence, the location
and behavior of equilibrium points are also periodic.

B. Open-Loop Stability Analysis

The local stability of the equilibrium points can be deter-
mined by linearizing the system about each point and eval-
uating the eigenvalues of the Jacobian matrix. The relevant
partials required for this process evaluate to

∂τ(ζ1)

∂ζ1

∣∣∣
ζ∗

=
8πa

AL
sin (θ) = ± 8πa

A2L

√
A2 − 1 (6)

∂d(ζ2)

∂ζ2

∣∣∣
ζ∗

= −2a

U
(7)

In (6), the positive value corresponds to θ = cos−1 (1/A) ∈
(0, π

2 ) and the negative value corresponds to θ ∈ (−π
2 , 0).

Throughout this paper, ± notation will imply this relationship
between θ and the sign of the value, whereas ∓ notation will
imply the inverse relationship. The Jacobian of the system
ζ̇ = f(ζ) is ∂f

∂ζ

∣∣∣
ζ∗

, which evaluates to(
0 1

−∂t(ζ1)
∂ζ1

∂d(ζ2)
∂ζ2

)∣∣∣∣∣
ζ∗

=

(
0 1

∓ 8πa
A2L

√
A2 − 1 − 2a

U

)
.

By inspection, the trace of the matrix (8) is negative and
the sign of the determinant is positive when ∂τ(ζ1)

∂ζ1

∣∣∣
ζ∗

> 0

and negative when ∂τ(ζ1)
∂ζ1

∣∣∣
ζ∗

< 0. We, therefore, expect to see

a series of alternating stable equilibrium points and unstable
saddle points, L-periodically. The stable equilibrium points
correspond to the evaluation of θ = cos−1 (1/A) in the first
quadrant, whereas the unstable equilibria correspond to the
evaluation in the fourth quadrant.

The resulting pattern of equilibrium points are shown in
Figure 3. Changing the parameter ϕ shifts equilibrium points
along x; changing the parameter A changes the spacing
between alternating points.
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Fig. 3: Evaluating the acceleration function ẍ when ẋ = 0
shows the location and stability of equilibrium points in the
open-loop dynamics. Plotted using the values a = 0.0601
m/s2, A = 3, and ϕ = π/4.

C. Open-Loop Phase Portrait

We illustrate the open-loop analysis by creating a phase
portrait using the following system parameters: A = 3, ϕ =
π/4 rad, U = 0.08 m/s, a = 0.0601 m/s2, and L = 0.0435 m.
The phase portrait is shown over two periods in Figure 4. As
expected, we see a pattern of alternating stable equilibrium
points and unstable saddle points along the ẋ = 0 line, which
align with those seen in Figure 3. For this particular set of
parameters, we see that the stable points are spirals, which
can be verified by checking that the determinant of (8) is
greater than one-fourth of the trace squared.
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Fig. 4: Phase portrait of the open-loop dynamics.

The equilibrium distances depend on the flapping phase
offset ϕ. The goal of the next section is to stabilize the
swimmers to a desired inline distance apart by adjusting the
phase shift, ϕ, using feedback control.



IV. LINEAR FEEDBACK CONTROL

This section derives a feedback control law to stabilize the
swimmers to a desired inline separation distance. We first
define where the control input u(t) enters the system and
modify the dynamics accordingly. Then we derive a linear
control law and prove that the closed-loop system is stable.

A. Closed-Loop State-Space System
In Section III, the phase offset between the upstream and

downstream swimmer was considered a system parameter.
However, ϕ̇(t) is a natural choice for a control input as it
is a variable that the swimmer can manipulate directly and
variations in the derivative of the phase, as opposed to the
phase itself, prevent sudden changes in swimming behavior.
To accommodate the addition of an input term, a new state
ζ3 is added to the two-dimensional state-space system from
(5) to become the three-dimensional state-space system

ζ̇1 = ζ2, ζ̇2 = d(ζ2)− τ(ζ1, ζ3), ζ̇3 = u(ζ), (8)

where ζ3 = ϕ. To simplify the closed-loop analysis, we
shift the system such that the origin is an equilibrium point.
Observe that ζ̇∗1 = 0 implies ζ∗2 = 0 and ζ̇∗3 = 0 implies
u(ζ∗) = 0. The equilibrium condition ζ̇∗2 = 0 implies
2πζ∗1/L − ζ∗3 = cos−1 (1/A) = θ. Depending on whether θ
is a realization of cos−1 (1/A) in the first or fourth quadrant,
the equilibrium condition describes a manifold of stable
or unstable equilibrium points, respectively. Thus, for any
reference inline separation distance xref , the corresponding
phase offset such that the system is in equilibrium is ζ∗3 =
ϕref = 2πxref/L− θ.

Now define the state vector y(t) = ζ(t)− ζ∗, where ζ∗ is
an equilibrium point with ζ∗1 = xref as

y1 = ζ1 − xref , y2 = ζ2, y3 = ζ3 − ϕref . (9)

Taking the derivative of each term in (9) and plugging in (8)
yields the following state equations for y(t):

ẏ1 = y2, ẏ2 = d(y2)− τ(y1, y3 − θ), ẏ3 = u(y). (10)

Redefining the system this way allows us to create a control
law to stabilize the origin without explicit reference to the
desired separation distance xref .

B. Proportional Feedback Law
As already noted, the natural dynamics of the open-loop

system have stable equilibrium configurations that depend on
the phase offset between the swimmers. A simple solution to
realize a desired configuration xref is to apply a proportional
control law to shift the phase offset.

Theorem 1. The proportional feedback control law

u(y) = −µy3, µ > 0 (11)

asymptotically stabilizes the origin of the system (10).

Proof. To apply Lyapunov’s indirect method, consider the
eigenvalues of the Jacobian of ẏ = g(y), i.e.,

∂g

∂y
=

 0 1 0

−∂τ(y1,y3−θ)
∂y1

∂d(y2)
∂y2

−∂τ(y1,y3−θ)
∂y3

0 0 −µ

 .

Evaluating the partials found in (6) and (7) along with
∂τ(y1,y3−θ)

∂y3

∣∣∣
y∗=0

= ∓ 4a
A2

√
A2 − 1, the Jacobian of the

closed-loop dynamics using the control law (11) evaluated
at the origin is

∂g

∂y

∣∣∣∣∣
y∗=0

=

 0 1 0

− 8πa
A2L

√
A2 − 1 − 2a

U
4a
A2

√
A2 − 1

0 0 −µ

 .

The eigenvalues of this matrix are (details omitted):

λ1,2 =
−aA2L±

√
aA2L(aA2L− 8πU2

√
A2 − 1)

A2LU
λ3 = −µ.

All the system parameters that appear in these terms are
positive real numbers, therefore each eigenvalue is guaranteed
to have a negative real component.

Intuitively, the state feedback input (11) smoothly shifts
the equilibrium inline distances and then relies on the natural
dynamics to stabilize that configuration. Indeed, the eigen-
values λ1,2 of the closed-loop system are the same as those
of the open-loop system. This means that, for sufficiently
large gain µ, the convergence rate of the closed-loop system
under proportional feedback control is fixed by the open-
loop system. One option to address this is adding y1 and y2
terms to the control law, i.e., u = −µ1y1 − µ2y2 − µ3y3.
Alternatively, we examine a nonlinear control design that
locally preserves the dynamics and illustrates the underlying
structure of the system.

V. NONLINEAR FEEDBACK CONTROL

This section identifies an idealized Hamiltonian system and
uses it to find a nonlinear feedback control law that stabilizes
the origin of the system (10). We prove that the closed-loop
system is locally stable and show simulated results.

A. Idealized Hamiltonian System
To improve the convergence rate of the open loop dy-

namics, we seek a Lyapunov-based control. Unlike a lin-
ear feedback control, this design would have the benefit
of accounting for nonlinear system behavior far from the
equilibrium points. It is challenging, however, to derive a
useful Lyapunov function for the full closed-loop dynamics.
Instead, consider a simplified version of the system.

As discussed in Section III, at the equilibrium condition
where ζ∗2 = y∗2 = 0, the drag effect contributes a constant
term d(0) = a to the acceleration. Suppose the drag is
constant. Under this condition, the state-space system in y
coordinates becomes

ẏ1 = y2

ẏ2 =
4a

A2

[
A cos

(
2πy1
L

− y3 + θ

)
− 1

]
ẏ3 = u(y)

Consider the substitutions z1 = 2πy1/L − y3 and z2 = y2.
The new state-space system is now only two dimensional:

ż1 =
2πz2
L

− u(z), ż2 =
4a

A2
[A cos(z1 + θ)− 1] (12)



Notice that, in the unforced system, the origin z∗ = 0 is
an equilibrium point. Furthermore, (12) is Hamiltonian, with

H(z1, z2) =
πz22
L

+
4a

A2
[z1 −A sin(z1 + θ)] (13)

satisfying ż1 = ∂H
∂z2

and ż2 = − ∂H
∂z1

. This Hamiltonian
structure comes from the assumption that the drag term is
constant. There cannot be any nodes or spirals in (12), only
centers or saddle points [12]. This model is non-physical
and neglects some of the system dynamics. However, the
modified system captures the system behavior local to some
of the equilibrium points and the resulting Hamiltonian
conveniently acts as a Lyapunov function that we use to
design a nonlinear control law.

B. Lyapunov-Based Control Law

This subsection uses Lyapunov-based analysis and
LaSalle’s invariance principle to design a nonlinear control
law that stabilizes the origin of system (12).

Theorem 2. The feedback control law

u(z) = −γ [A cos(z1 + θ)− 1] (14)

for γ > 0 asymptotically stabilizes the origin of (12).

Proof. Consider the candidate Lyapunov function V (z) =
H(z)−H(0), i.e.,

V (z) =
πz22
L

+
4a

A2

[
z1 −A sin(z1 + θ) +

√
A2 − 1

]
. (15)

By construction, (15) satisfies V (0) = 0. Let domain D
satisfy V (z) > 0 for z ∈ D\{0}. To show D exists, consider
the case z2 = 0, which produces the smallest evaluations of
V (z). If V (z1, 0) =

4a
A2

[
z1 −A sin(z1 + θ) +

√
A2 − 1

]
>

0 within a neighborhood of z1, then this condition is satisfied.
Notice that at z = 0, V = 0, ∂V

∂z1
= 0, and ∂2V

∂z2
1
= 4a

√
A2−1
A .

As long as A > 1, ∂2V
∂z2

1
> 0 making z1 = 0 a local minima

of V (z1, z2 = 0), which means the domain exists.
Next apply the control law (14) to take the time derivative

of the Lyapunov candidate function along solutions of (12):

V̇ (z) =
2πz2
L

ż2 +
4a

A2
[ż1 −Aż1 cos(z1 + θ)]

= −γ [A cos(z1 + θ)− 1]
2

The time derivative is negative semi-definite, so the origin is
stable [13]. To show that the origin is in fact asymptotically
stable, we apply LaSalle’s invariance principle [13]. Consider
the compact set Ωϵ =

{
z
∣∣ ∥z∥ ≤ ϵ

}
, where ϵ is chosen such

that V (z) ≥ 0 ∀ z ∈ Ωϵ and cos(z1 + θ) = 1 only once in
the domain. In this domain, let E =

{
z ∈ Ωϵ

∣∣ V̇ (z) = 0
}

,
which is equivalent to E =

{
z ∈ Ωϵ

∣∣z1 = 0
}

, the portion of
the z2 axis that falls in Ωϵ.

In order for a solution to remain in E for all time, we need
z1 = ż1 = 0. This condition implies that

ż1 =
2πaz2
L

+ γ [A cos(0 + θ)− 1] =
2πaz2
L

= 0.

The only solution in this set is the origin.

Recall that control law (14) is designed for the idealized
dynamics (12). Because the structure of the Hamiltonian
system is similar to the full non-idealized dynamics, particu-
larly near equilibrium points, we conjecture it is an effective
control law for the original system as well. Additionally,
notice that the origin z = 0 corresponds to 2πζ1/L− ζ3 = θ
and ζ2 = 0 in the original ζ coordinates. Because of our
choice of variables, the desired value xref does not influence
the origin in the z coordinates. Consequently, the control law
in (14) can stabilize the system to the stable manifold, but not
to a specific configuration on the manifold. For this reason,
it is useful to test a control law that incorporates both (11)
and (14) recast into y coordinates to account for nonlinear
dynamics, while still maintaining the ability to stabilize to a
specific reference value on the stable manifold.

C. Hybrid Control Law

We now examine the behavior of the closed-loop system
(10) when a controller is designed incorporating terms from
both the linear (11) and nonlinear (14) control laws.

Theorem 3. The composite control law

u(y) = −γ

[
A cos

(
2πy1
L

− y3 + θ

)
− 1

]
− µy3 (16)

for µ, γ > 0, asymptotically stabilizes the origin of (10).

Proof. Local stability of the origin is established using Lya-
punov’s indirect method. We already derived all the partials
of ẏ1 and ẏ2. Now including the partials ∂u(y)

∂y1
and ∂u(y)

∂y3
to

the Jacobian yields (see proof of Theorem 1)

∂g

∂y

∣∣∣∣∣
y∗=0

=

 0 1 0

− 8πa
A2L

√
A2 − 1 − 2a

U
4a
A2

√
A2 − 1

2πγ
L

√
A2 − 1 0 −γ

√
A2 − 1− µ

 .

(17)
The characteristic polynomial of the Jacobian (17) is

λ3 + b2λ
2 + b1λ+ b0 = 0, (18)

where coefficients b0, b1, and b2 are

b0 =
8πaµ

√
A2 − 1

A2L
,

b1 =
8πa

√
A2 − 1

A2L
+

2a

U

(
γ
√
A2 − 1 + µ

)
,

b2 =
2a

U
+ γ
√

A2 − 1 + µ.

The Routh-Hurwitz condition [14] states that, if b0, b1, b2 > 0
and b1b2 > b0, then the system is Hurwitz [14]. Each of the
terms in the coefficients represent physical parameters with
positive values, so the first condition is satisfied. To see that
the second condition is satisfied, note that

b1b2 =

[
2a

U
+ γ
√

A2 − 1

]
b1 + µb1

=

[
2a

U
+ γ
√

A2 − 1

]
b1 +

2aµ

U

(
γ
√
A2 − 1 + µ

)
+ b0.

The first two terms are positive, making b1b2 > b0. Thus, the
linearized system is Hurwitz.



D. Simulation Results

Next, we simulate the system (10) using the control law
(16). The desired inline separation distance is set to xref =
0.4L ≈ 0.0174m with gain parameters µ = 0.4 and γ = 0.2.
The remaining system parameters match Section III.

Fig. 5: Three-dimensional phase portrait of closed-loop tra-
jectories: blue and red dashed lines show the continuum of
stable and unstable equilibrium points (respectively); black
curves show sample trajectories in phase-space.

Figure 5 shows a three-dimensional phase portrait of
the closed-loop system. This plot is an extension of the
two-dimensional phase portrait in Figure 4, which shows
equilibrium points and sample trajectories when the phase
is held constant at ϕ = π/4. Figure 5 extends into a third
dimension to reflect how the phase and, consequently the
equilibrium condition, changes with feedback control. As a
visual reference, the blue and red dots correspond to the
points shown in Figure 4. The blue and red dashed lines show
the continuous set of stable and unstable equilibrium points
that arise as the phase offset is shifted. Trajectories, shown
in solid black lines, converge to one of the blue lines such
that x∞ = xref +LN,N = 0,±1,±2, . . . as a consequence
of the L-periodic behavior inherent to the system.

To gain a deeper insight into the behavior of the trajectories
presented in Figure 5 and to show the time scale, Figure 6
displays each of the three states in a single sample trajectory
plotted against time along with their corresponding desired
steady-state values, indicated by dashed lines.

VI. CONCLUSION

This paper presents a control-theoretic analysis of an
experimentally validated model of inline swimming. We
derive and verify linear, nonlinear, and combined control
laws to achieve a desired swimming configuration between
two fish swimming inline. Ongoing work includes finding a
Lyapunov function that proves stability of the closed-loop
system and applying this control law to an intermittently
flapping downstream swimmer. Intermittent flapping allows
sensors on a downstream robotic fish to obtain more accurate
measurements. Determining success of control to stabilize
the inline swimming configuration under these conditions is
a practical concern for implementation on robotic platforms.
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