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Abstract— This paper proposes an optimization framework
for steering a team of mobile actuators to control a diffusion
process with unknown initial conditions. The optimization
problem seeks a guidance strategy that minimizes the quadratic
cost of controlling the diffusion process subject to the worst
possible initial condition and the quadratic cost of steering the
mobile actuators. We turn the problem into an unconstrained
optimization and use a gradient-descent method to solve it. The
solution of the proposed problem is suboptimal for the same
problem with a known initial condition—even for the worst-
case initial condition. This suboptimality property suggests the
guidance strategy can be implemented when the initial condition
of the diffusion process is unknown. A numerical example
compares solutions with known and unknown initial conditions.

I. INTRODUCTION

Monitoring and containing large-scale spatiotemporal pro-
cesses like forest fires, oil spills, and harmful algal blooms
can be challenging. Potential consequences include environ-
mental damage, economic losses, and even health threats
to human operators. A spatiotemporal process varies both
in space and time, which can be modeled by a partial
differential equation (PDE), also known as distributed pa-
rameter systems (DPS). With a dynamical system model
of the process, autonomous aerial/ground/surface/underwater
vehicles can be deployed to estimate and/or control it.
Autonomous vehicles equipped with sensors and actuators
can efficiently and cooperatively complete estimation and
control tasks when they are given suitable guidance.

We propose an optimization framework that guides a team
of mobile actuators to control a DPS. As a representative
physical model, we consider a 1D diffusion process. The op-
timal strategy minimizes the sum of two terms: the quadratic
PDE cost of controlling the diffusion to a zero state subject to
the worst initial condition and the quadratic mobility cost of
steering the mobile actuators. Hence, the optimal guidance
minimizes both the PDE cost and the mobility cost, even
when the process’s initial condition is unknown.

The proposed formulation is well suited for autonomous
vehicles that have limited onboard resources. The problem
has a finite horizon that accounts for limited battery life or
fuel, which does not fit into a framework with unlimited
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time, such as infinite-horizon optimization or Lyapunov-
based methods. The mobility cost can be considered an
inequality constraint that augments the cost function with
Lagrangian multipliers. Hence, the proposed problem is an
intermediate step when there is an explicit constraint on
mobility, such as an upper-bounded total guidance effort.

The control of a DPS can be categorized by the mobility
of the actuators: stationary or mobile. The same category
applies to estimation and parameter identification by sensors,
but we focus on actuator control for brevity. Stationary
actuators can be placed on the boundary of the spatial
domain [1], where the boundary condition is specified as
the control input. The actuators can also be placed within
the spatial domain, where the actuation is specified as a
nonhomogeneous term in the dynamics of a DPS. The
problem of determining the locations of stationary actuators
is called the actuator placement problem. Various optimiza-
tion criteria have been studied for actuator placement, for
example, quadratic cost under the worst initial condition [2],
[3], H2 [4], and maximum controllability [5]. Comparisons
of different criteria have been reported for a simply supported
beam [6] and for a diffusion process [7]. Maximizing the
minimum eigenvalue of the controllability gramian is not a
useful criterion because the lower bound of the eigenvalues
of the controllability gramian is zero [6], [7].

For mobile actuators, the guidance strategy utilizes the
additional degree of freedom induced from mobility to im-
prove the control performance relative to stationary actuators.
Optimal guidance in the sense of linear-quadratic (LQ) cost
has been studied in [8]–[10]. One may design guidance
using Lyapunov-based methods, where a Lyapunov function
is constructed such that its time derivative is made negative
by suitable guidance [11], [12]. Geometric methods can also
be applied to guidance design, such as Centroidal Voronoi
Tessellation [13], [14].

The proposed problem is closely related to a previously
studied problem [10]. The previous work simultaneously
solves for the control input to the DPS and the guidance of
actuators to minimize the same cost function as used here,
but subject to a given (instead of the worst) initial condition.
We show that the solution of the proposed problem is
suboptimal for this previously studied problem—even when
the previous one is subject to the worst initial condition—
using a max-min inequality. Hence, the optimal guidance
for the proposed problem can be applied to steer the mobile
actuators when the initial condition of the PDE is unknown.

The contributions of this paper are (1) formulation of the
problem of steering a team of mobile actuators to control a



diffusion process under the worst possible initial condition
as an optimization problem; (2) analysis of the suboptimality
of the proposed problem’s solution for a previously studied
problem via the max-min inequality; and (3) transformation
of the proposed problem into an unconstrained optimization
problem and a gradient-based solution method. Potential
applications include wildfire containment, oil spill mitiga-
tion, and harmful algae control using autonomous unmanned
vehicles.

The remainder of the paper is organized as follows.
Section II introduces the relevant mathematical background,
including representation of a diffusion process by an infinite-
dimensional system, the associated LQ optimal control, and
its finite-dimensional approximation. Section III formulates
the optimization problem and analyzes its suboptimality for
the problem studied previously. Section IV details a solution
method that first turns the problem into an unconstrained
optimization and then applies a gradient-descent method
to solve a finite-dimensional problem approximated by the
Galerkin scheme. A numerical example is provided to show
the optimal trajectories and illustrate the suboptimality of
the proposed problem. Section V summarizes the paper and
discusses ongoing work.

II. DYNAMICS AND MODELING APPROXIMATIONS

A. Notation and terminology

The symbol R denotes the set of real numbers. The
boundary of a set M is denoted by ∂M . The n-nary Cartesian
power of a set M is denoted by Mn. We use |·| and ‖·‖ for
the absolute value and norm (with subscript indicating type),
respectively. The superscript ∗ denotes an optimal variable,
whereas ? denotes the adjoint of a linear operator. We use
V ∗(P) to denote the optimal cost of optimization problem (P).
The transpose of matrix A is denoted by AT . The trace of
matrix C is tr (C). An n × n-dimensional diagonal matrix
with elements of vector [a1, a2, . . . , an] on the main diagonal
is denoted by diag(a1, a2, . . . , an). The ith row of a vector
v is [v]i. We adopt the following terminology [10]: guidance
refers to steering of the mobile actuators, whereas control
refers to actuation of the DPS.

B. Dynamics of the DPS and mobile actuators

Consider guiding m mobile actuators to control a 1D
diffusion process modeled by the following PDE:

∂z(x, t)

∂t
= a

∂2z(x, t)

∂x2
+

m∑
i=1

biui(t)Ki(ξi(t), t)(x), (1)

where z(·, ·) denotes a 1D diffusion process that has a
spatial component x ∈ Ω ⊂ R and a time component
t ∈ [0, tf ] for a given terminal time tf ; u(·) ∈ U := {u(t) ∈
U ⊂ Rm, piecewise continuous in t ∈ [0, tf ]}, is a (vector)
function that denotes the magnitude of the actuation input;
Ki : Ω × [0, tf ] → L2(Ω) characterizes how the actuation
affects the diffusion process; and ξ(t) ∈ Rm is a vector of
the locations of the mobile actuators. The coefficients a ∈ R
and bi ∈ R denote the diffusion coefficient and input gain

of actuator i, respectively. The diffusion process has initial
condition z(·, 0) = z0(·) and Dirichlet boundary condition
z(·, t)|∂Ω = 0, t ∈ [0, tf ]. The following linear dynamics
describe the motion of the mobile actuators:

ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0, (2)

where

α = diag(α1, α2, . . . , αm), β = diag(β1, β2, . . . , βm),

αi, βi ∈ R for i = 1, 2, . . . ,m, and the initial locations
ξ0 ∈ Rm are given. The guidance p(·) ∈ P := L2([0, tf ];P )
of the mobile actuators takes values in the admissible set
P ⊆ Rm.

Since PDEs can be formulated as differential equations
on an abstract linear vector space of infinite dimension
[15], we can compactly represent system (1) as an infinite-
dimensional linear system

Ż(t) = AZ(t) + B(ξ(t), t)u(t), Z(0) = Z0 = z0, (3)

where Z(t) belongs to a Hilbert space H with inner product
〈·, ·〉 and induced norm ‖·‖H. Here, the variable Z is the
state of the DPS and space H := L2(Ω) is the state
space. The operator A is defined as Aφ = a∂2φ(x)/∂x2

with φ ∈ Dom(A) = {φ ∈ H2(Ω) ∩ H1
0 (Ω)}. The

operator B(ξ(t), t) ∈ L(U ;H) is the input operator, where
[B(ξ(t), t)]i := biKi(ξi(t), t).

Assume that A is an infinitesimal generator of a strongly
continuous semigroup F(t) on H. The dynamical system
(3) has a unique mild solution Z(·) ∈ C([0, tf ];H) for any
Z0 ∈ H and any u(·) ∈ L2([0, tf ];U) such that

Z(t) = F(t)Z0 +

∫ t

0

F(t− τ)B(ξ(τ), τ)u(τ)dτ.

(Assuming state Z(t) is available for full-state feedback
control, we do not specify an output equation. One may refer
to [16] for an estimation framework with a team of mobile
sensors.)

Similar to a finite-dimensional system, we can formulate
a linear-quadratic regulator (LQR) associated to the differ-
ential equation (3). A general LQR minimizes the following
quadratic cost:

J(Z, u) =

∫ tf

0

(
〈Z(t),QZ(t)〉+ u(t)TRu(t)

)
dt

+ 〈Z(tf ),QfZ(tf )〉, (4)

where Q ∈ L(H) and Qf ∈ L(H) are self-adjoint, nonnega-
tive, Hilbert-Schmidt operators that evaluate the running cost
and terminal cost, respectively, of the state Z . The coefficient
R is an m×m-dimensional symmetric and positive definite
real matrix that weights the control effort of the DPS. The
optimal feedback control associated with a given trajectory
ξ(·) of actuators is [15]

u∗(t) = −R−1B?(ξ(t), t)S(t)Z(t), (5)

where S ∈ L(H) is a self-adjoint and nonnegative operator



that satisfies the operator differential Riccati equation

Ṡ(t) = −A?S(t)− S(t)A−Q
+ S(t)B̄B̄?(ξ(t), t)S(t), (6)

S(tf ) = Qf , (7)

where B̄B̄?(ξ(t), t) is short for B(ξ(t), t)R−1B?(ξ(t), t).
Moreover, the optimal quadratic cost J∗(Z∗, u∗) with the
optimal control u∗ and the corresponding optimal state Z∗
satisfies J∗(Z∗, u∗) = 〈Z0,S(0)Z0〉 [15]. The maximum
quadratic cost under the worst initial condition is the operator
norm of the Riccati operator S(0) [2], i.e.,

‖S(0)‖op = maximize
Z0∈H,‖Z0‖=1

〈Z0,S(0)Z0〉. (8)

C. Approximations of the infinite-dimensional variables

Approximations to (3) and (6) permit numerical compu-
tation. Consider a finite-dimensional subspace HN ⊂ H
with dimension N . The inner product and norm of HN are
inherited from that of H. Let PN : H → HN denote the
orthogonal projection of H onto HN . Let ZN (t) ∈ RN and
SN (t) ∈ RN×N denote the finite-dimensional approximation
of Z(t) and S(t), respectively, where ZN (t) = PNZ(t)
and SN (t) = PNS(t)PN , t ∈ [0, tf ]. A finite-dimensional
approximation of (3) is

ŻN (t) = ANZN (t) +BN (ξ(t), t)u(t), (9)
ZN (0) = ZN,0 = PNZ0, (10)

where AN ∈ L(HN ) and BN (ξ(t), t) ∈ L(U,HN ) are
approximations of A and B(ξ(t), t), respectively. Let FN (t)
denote the semigroup generated by AN . We make standard
assumptions of the approximation [15]:

(A1) For z ∈ H, the following holds uniformly in t in
bounded intervals:

‖FN (t)PNz −F(t)z‖H → 0,∥∥FTN (t)PNz −F?(t)z
∥∥
H → 0.

(A2) For z ∈ H, u ∈ U , and x ∈ Ω, the following holds
uniformly in t in bounded intervals:

‖BN (x, t)u− B(x, t)u‖H → 0,∥∥BTN (x, t)PNz − B?(x, t)z
∥∥
Rm → 0.

(A3) The family of pairs (AN , BN ) is uniformly exponen-
tially stabilizable.

The finite-dimensional approximation of (6) is

ṠN (t) =− (AN )TSN (t)− SN (t)AN −QN
+ SN (t)B̄N B̄

T
N (ξ(t), t)SN (t), (11)

SN (tf ) = QfN , (12)

where QN = PNQPN , QfN = PNQfPN , and
B̄N B̄

T
N (ξ(t), t) is short for BN (ξ(t), t)R−1BTN (ξ(t), t). The

convergence of the approximation SN (·) to S(·) can be es-
tablished under suitable assumptions (see [17, Theorem 3.5]),

under which the following holds as N →∞:

sup
t∈[0,tf ]

‖S(t)− SN (t)‖op → 0. (13)

III. OPTIMAL GUIDANCE SUBJECT TO THE WORST
INITIAL CONDITION

A. Problem formulation

This subsection introduces the optimal guidance of the
mobile actuators such that the following cost is minimized:

a2
IC ‖S(0)‖op + Jm(ξ, p). (14)

Here, ‖S(0)‖op is the operator norm of the Riccati operator
solved from (6) with initial condition (7). The value of this
operator norm represents the maximum value of the quadratic
PDE cost (4) under the worst initial condition. The coefficient
a2

IC scales the operator norm for the cases with non-unit norm
of the initial condition Z0, i.e., when ‖Z0‖H = aIC > 0. The
mobility cost Jm(ξ, p) represents the cost incurred from the
motion of the actuator. Consider a quadratic mobility cost

Jm(ξ, p) =

∫ tf

0

(
ξ(t)T qξ(t) + p(t)T γp(t)

)
dt

+ (ξ(tf )− ξf )T qf (ξ(tf )− ξf ),

where q and qf are m × m-dimensional symmetric and
positive semidefinite matrices, respectively; γ is an m×m-
dimensional positive definite matrix; and ξf ∈ Ωm is the
vector of terminal locations for the mobile actuators. Such
terminal locations may be user-specified in some applica-
tions.

The problem is

minimize
p∈P

a2
IC ‖S(0)‖op + Jm(ξ, p)

subject to ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0,
(P)

where the optimization constraint is the dynamics of the
mobile actuators. Therefore, problem (P) identifies a guid-
ance p(·) whose quadratic PDE cost subject to the worst
initial condition plus the mobility cost is minimum among
other feasible guidance. Problem (P) is closely related to a
previously studied problem [10]. In fact, the solution of (P)
is suboptimal for the previous problem, even when the latter
is subject to the worst possible initial condition of the PDE,
as we discuss in the next subsection.

B. Suboptimality of (P)

The problem studied in [10] finds both PDE control u(·)
and actuator guidance p(·) such that the sum of the quadratic
PDE cost J(Z, u) and mobility cost Jm(ξ, p) is minimized:

min
p∈P

min
u∈U

J(Z, u) + Jm(ξ, p)

subject to Ż(t) = AZ(t) + B(ξ(t), t)u(t), Z(0) = Z0,

ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0.
(P1)

In this subsection, without loss of generality, assume the
initial condition Z0 is scaled to have unit H-norm, i.e., Z0

is taken from the unit ball H0 := {Z ∈ H| ‖Z‖H = 1}.



Problem (P1) can be written in the following form using
properties of LQR [15]:

minimize
p∈P

〈Z0,S(0)Z0〉+ Jm(ξ, p)

subject to ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0,
(P2)

for a given Z0 ∈ H0. Note that a solution p∗(·) of (P2) is also
a solution of (P1). Furthermore, the optimal control u∗(·) of
(P1) can be computed by (5) with the actuator trajectory ξ∗(·)
steered by the optimal guidance p∗(·). Hence, V ∗(P1) = V ∗(P2).

Next, consider how bad the performance of problem (P1)
or (P2) could be when Z0 ∈ H0 is unknown. In other words,
we would like to solve the following problem to find the
worst initial condition and the associated optimal guidance:

max
Z0∈H0

min
p∈P

〈Z0,S(0)Z0〉+ Jm(ξ, p)

subject to ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0.
(P3)

Problem (P3) may not have a closed-form solution. In
addition, any iterative numerical procedure would need to
solve the inner problem (P2) or (P1) repeatedly with initial
conditions in the set H0. Solving (P2) or (P1) is already
challenging because of the high dimensionality induced in
the approximation of the infinite-dimensional components
and the nonlinearity of the dynamics of the approximated
problem [10, Remark 6]. Therefore, we do not seek to
solve (P3). Rather, we switch the order of maximization and
minimization in (P3) and observe that the resulting problem
is exactly problem (P) with aIC = 1 (using (8)):

min
p∈P

max
Z0∈H0

〈Z0,S(0)Z0〉+ Jm(ξ, p)

subject to ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0.
(P4)

Hence, V ∗(P4) = V ∗(P) and a solution of (P) is also a solution
of (P4).

Proposition 1: Consider problems (P), (P1), and (P3). The
following inequalities hold:

V ∗(P) ≥ V ∗(P3) ≥ V ∗(P1). (15)
Proof: We shall use the max-min inequality: for any

function f : X × Y → R [18],

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

Hence, we conclude V ∗(P4) ≥ V ∗(P3). Since V ∗(P4) = V ∗(P), V
∗

(P3) ≥
V ∗(P2), and V ∗(P2) = V ∗(P1), the desired inequalities follow.

Remark 1: An alternative way to show V ∗(P) ≥ V ∗(P1) is by
plugging the optimal guidance of (P) in problem (P1)’s cost
function, whose value is denoted by V̄(P1). It follows that
V ∗(P) ≥ V̄(P1) ≥ V ∗(P1).

The inequalities of (15) indicate that a solution of (P) is
suboptimal for (P1). The suboptimality holds even when (P1)
is subject to the worst initial condition, which is (P3).

Problem (P) is an alternative problem to solve when the
initial condition Z0 is not exactly known except for its norm.
In this situation, problem (P1) cannot be solved due to the
unknown value of Z0. Since the optimal guidance of (P) can
be pre-computed given ‖Z0‖H, this guidance can always be
applied to steer the actuators as an initial attempt that is

suboptimal for (P1).

IV. GRADIENT-BASED SOLUTION METHOD

We propose a numerical procedure to solve problem (P).
Before we proceed, note that problem (P) can be turned into
an unconstrained problem, because the actuator state can be
uniquely determined by the guidance through the following
equation:

ξ(t) = eαtξ0 +

∫ t

0

eατβp(τ)dτ. (16)

This equation indicates that both ‖S(0)‖op and Jm(ξ, p)

are mappings from L2([0, tf ];P ) to R, which allows the
derivation of the Fréchet derivative of ‖S(0)‖op and Jm(ξ, p)
with respect to p:

Dp ‖S(0)‖op = DS(0) ‖S(0)‖op

◦DB̄B̄?S(0) ◦DξB̄B̄? ◦Dpξ, (17)

DpJm(ξ, p) = Dξ

∫ tf

0

ξ(t)T qξ(t)dt ◦Dpξ

+Dp

∫ tf

0

p(t)T rp(t)dt

+Dξ(tf )

(
ξ(tf )T qfξ(tf )

)
◦Dpξ(tf ). (18)

Hence, gradient-based methods are sufficient to solve prob-
lem (P) for a local minimum.

To solve (P) numerically, we approximate the PDE com-
ponents using the Galerkin method with sinusoidal basis
{φn}Nn=1, where φn(x) =

√
2 sin(nπx), which consists of

the first N eigenfunctions of A. This approximation method
satisfies the general assumptions (A1)–(A3). Now, we have
the following unconstrained problem:

minimize
p∈P

a2
IC ‖SN (0)‖op + Jm(ξ, p). (AP)

Correspondingly, the Fréchet derivative of ‖SN (0)‖op with
respect to p is

Dp ‖SN (0)‖op = DSN (0) ‖SN (0)‖op

◦DB̄B̄T
N
SN (0) ◦DξB̄B̄

T
N ◦Dpξ. (19)

Using (19), we can evaluate increments of ‖SN (0)‖op when
p has small increments (which leads to the computation
of the gradient of ‖SN (0)‖op with respect to p). Denote a
small increment of p by ∆p, where p + ∆p ∈ P and the
corresponding increment ∆ ‖SN (0)‖op is

∆ ‖SN (0)‖op (∆p) = tr
(
vvT

(
ΛN ◦DξB̄B̄

T
N ◦Dpξ(∆p)

))
,

(20)
where v ∈ RN is the eigenvector of SN (0) associated with
the maximum eigenvalue and ΛN ∈ RN×N is the finite-
dimensional approximation of Λ := DB̄B̄?S(0) such that for
h ∈ L(C([0, tf ]; J1(H))) [19]

Λh = −
∫ tf

0

F?(τ)
(

(Λh)(τ)B̄B̄?(ξ(τ), τ)S(τ)

+ S(τ)B̄B̄?(ξ(τ), τ)(Λh)(τ)

+ S(τ)(Λh)(τ)S(τ)
)
F(τ)dτ. (21)



Remark 2: For a symmetric matrix S ∈ Rn×n, since
‖S‖op equals the maximum eigenvalue of S, the (Fréchet)
derivative of ‖S‖op with respect to S is

d ‖S‖op

dS
= vmaxv

T
max, (22)

where vmax ∈ Rn is the eigenvector of S associated with the
maximum eigenvalue. Note that (22) holds if the maximum
eigenvalue of S is simple, which we assume here.

To utilize the Fréchet derivatives (18) and (19) in the
gradient-based method, we choose a basis that spans the
space of guidance functions. Let Tf := tf/∆t for a small
time interval ∆t and ΨP ⊂ L2([0, tf ],R) be a set of basis
functions {ψn}

Tf

n=1 such that

ψn(t) =

{
1 t ∈ [(n− 1)∆t, n∆t)

0 otherwise.
(23)

The set ΨP characterizes an approximation of the guidance
function by time discretization such that the guidance takes
constant values for each interval with length ∆t. Choose
∆t to be sufficiently small to mimic continuous time. Let
the gradient of ‖SN (0)‖op with respect to p on the space
spanned by the basis functions in ΨP be a Tf -dimensional
vector, denoted by ∇p ‖SN (0)‖op, where[

∇p ‖SN (0)‖op

]
n

= ∆ ‖SN (0)‖op (ψn). (24)

Since [∇p ‖SN (0)‖op]n depends only on ψn, parallel com-
putation can be implemented to speed up its computation.

Remark 3: When problem (P) degenerates to the case of
stationary actuators, the mobility cost Jm(ξ, p) = 0 and
the (initial) location ξ0 is the optimization variable. Such a
problem has been studied in [2]. A subgradient-based method
is applied to solve the problem after a convex reformulation
[20].

A. Numerical example

We use the following values in a numerical example with
one mobile actuator:

Ω = [0, 1], N = 14,m = 1, tf = 1, γ = 0.1, q = 0, qf = 0,

α = 0, β = 1, U = R, P = R, R = 0.1, a = 0.01, b1 = 1,

Q(x, y) = χ(x, y),Qf (x, y) = χ(x, y),

K1(ξ1(t))(x) =

{
100 |x− ξ(t)| ≤ 1

200

0 otherwise.

where q(·, ·) and qf (·, ·) are the integral kernels of Hilbert-
Schmidt operators Q and Qf , respectively, and the indicator
function χ(x, y) = 1 if x = y and χ(x, y) = 0 otherwise.
Notice that we set the terminal cost in Jm(ξ, p) to 0 by
setting qf = 0. The forward propagation of ξ and backward
propagation of SN and ΛN are computed using the Runge-
Kutta method. We use gradient descent with fixed-size step
length. The iteration terminates if |fk+1 − fk| ≤ 10−6(1 +
|fk|), where fk is the value of the cost function of (AP) at
iteration k.

Fig. 1 shows the optimal cost of (AP) when the initial
location ξ0 varies from 0.1 to 0.9. Two cases are considered:
a2

IC = 1 and a2
IC = 10. As can be seen in Fig. 1, the optimal

cost of (AP) is left-right symmetric about the middle of the
spatial domain. For each ξ0, we take the worst-case initial
condition Z0,N associated with the maximum eigenvalue of
SN (0) of the optimal solution of (AP) such that

a2
IC ‖SN (0)‖op = 〈Z0,N , SN (0)Z0,N 〉,

Z0,N (x) = aICv
TΦN (x),

where v ∈ RN is the eigenvector associated with the
maximum eigenvalue of SN (0), ΦN is a N -dimensional
vector function, and [ΦN ]k = φk. Subsequently, Z0,N and ξ0
are fed to problem (P1), which is solved using the method in
[10]. The optimal cost of (P1) is also shown in Fig. 1, which
validates the suboptimality of problem (P)’s solution for (P1):
V ∗(P) ≈ V ∗(AP) ≥ V ∗(P1). Left-right symmetry of Z0,N associated
with symmetric initial locations can be observed (not shown),
for example, Z0.1

0,N (x) = Z0.9
0,N (1−x) for x ∈ Ω (superscript

indicates the value of ξ0). The symmetry is expected because
the diffusion modelled by (1) is isotropic.

Fig. 2 compares the norm of the PDE state and the optimal
actuator trajectory solved from (AP) and (P1), respectively,
with a2

IC being 1 or 10 and ξ0 = 0.5. The optimal control of
(P1) initially reduces the norm of the PDE state, though the
norm at the terminal time is slightly bigger than that associ-
ated with (AP). The optimal trajectory of (AP) traverses more
area in the spatial domain than that of (P1) since the former
is optimal for the worst case, whereas the latter is not. For
both (AP) and (P1), the optimal trajectory associated with
a2

IC = 10 is more aggressive than the one associated with
a2

IC = 1 because the former requires the actuator to move
more agilely and to dispense more actuation than the latter
in order to bring the diffusion to a zero state. The detailed
evolution of the PDE state Z under the control and guidance
solved from (AP) with ξ0 = 0.5 is shown in Fig. 3.
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Fig. 1: Optimal costs of (AP) and (P1). The vertical axis
of the bottom figure has been scaled up to show the gap
between optimal costs of (AP) and (P1).
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Fig. 2: Norm of the PDE state and the optimal trajectory
with ξ0 = 0.5.
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Fig. 3: Evolution of the optimal PDE state Z∗ with optimal
control and guidance solved from (AP). The x-coordinate of
optimal control indicates the location of the actuator, whereas
the y-coordinate indicates its amplitude.

V. CONCLUSION

This paper formulates an optimization problem for mobile
actuators to find the guidance that minimizes the quadratic
PDE cost under the worst initial condition, plus a mobility
cost. We claim that the solution of the problem studied
here is suboptimal for a previously studied problem that has
the same cost criterion but with a given initial condition.
The suboptimality holds even when the previous problem
is subject to the worst initial condition. The suboptimality
allows the optimal guidance of the proposed problem to
steer the mobile actuators as an initial attempt when the
initial condition of the PDE is unknown except for its
norm. We turn the proposed problem into an unconstrained
optimization and solve it using a gradient-based method. A
numerical example demonstrates the suboptimality.

Ongoing work includes the extension of the proposed
problem to a 2D domain with advection terms in addition
to diffusion. Also, conditions under which the approximated
solution converges to the original problem’s solution will be
investigated.
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