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Abstract— This paper considers the problem of data-driven
estimation with sparse measurements for a complex nonlinear
system. While model-based nonlinear estimation methods are
well known, state estimation from partial observations with
unmodeled dynamics is less understood. Here we use a method
for model-free estimation based on an echo-state network (ESN)
where a reasonably accurate set of training data is available
during the training period and some sparse measurements
are obtained during the testing phase. The measurements are
assimilated by an ensemble Kalman filter (EnKF) to improve
the predictor’s performance when compared to a free-running
neural network architecture. The proposed method is applied
to three systems: a low-dimensional chaotic system, a high-
dimensional chaotic system, and a set of real-time traffic data.

I. INTRODUCTION

Recently developed machine-learning techniques have be-
come useful for solving a wide variety of problems, e.g.,
classification, speech recognition [1], and board games [2].
Recurrent neural networks (RNN) have been particularly
useful for model-free prediction of dynamical systems. For
example, an echo-state network (ESN) [3] can model chaotic
systems with great effect [4], [5]. However, these prediction
techniques often assume no measurements are available after
training and rely instead on a free-running neural network to
predict the dynamical system. But in many practical cases, a
stream of sensor measurements, even if sparse and/or noisy,
may be available. Such applications include fluid flow over
an airfoil, atmospheric dynamics, and traffic network data.

In model-based estimation problems, the state estimate is
computed in two steps. First, a forecast estimate is obtained
by the motion update facilitated by the model. Then, a
Bayesian measurement update incorporates the measured
quantities to produce the final estimate. For a linear system
with Gaussian process and measurement noise, the opti-
mal estimator is given by the celebrated Kalman filter [6],
whereas for a nonlinear system, optimal filtering is usually
infinite dimensional and requires the solving a stochastic
partial differential equation. To mitigate this problem, a
variety of suboptimal techniques are usually employed for
the state estimation of a nonlinear system, e.g., the extended
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Kalman filter (EKF) [7], unscented Kalman filter (UKF) [8],
ensemble Kalman filter (EnKF), and particle filter. However,
these methods need a dynamic model to perform the motion
update of the state estimate.

On the other hand, neural-network predictors do not use
a dynamic model. Instead, they utilize the measurement and
state data for training, and then run freely from an initial
condition to predict future states. This prediction requires a
reasonably accurate initial condition and does not incorporate
any subsequent measurements. The ESN-based method of
reservoir observer [4] has been developed to utilize mea-
surements for predicting unmeasured variables in the testing
phase when all of the states are used during the training
phase. The reservoir observer, however, feeds the measured
states directly into the ESN and relies on the ESN’s structure
to assimilate them for prediction of the unmeasured states.
This method also relies only on the current measurement,
rather than the history of measurements, and does not take
measurement noise into account. Recursive training of the
ESN output weights has been developed using a Kalman
filter [9], [10]. These methods enable the recursive least-
square optimization of the ESN output weights as new data
comes in, but they require the observation of the complete
current state in order to estimate the next state.

This paper develops a data-driven sparse estimation
method by combining the strength of a neural network with a
nonlinear filtering algorithm. An echo-state network (ESN)
is chosen as the recurrent neural engine for modeling the
unknown dynamics, because it can be trained quickly with
limited computational resources by cutting the computational
cost of the backpropagation through time. The ESN adopts
an input-output neural network with a randomly generated
recurrent reservoir. Linear regression determines the output
weights. An ESN with fading memory can universally model
nonlinear dynamics [11], [12]. During the training phase,
a full measurement of the states is typically utilized as
the training data. Once the ESN is trained to reasonably
model the dynamics, it is used to generate the motion
update of the data-driven estimation. In spatially complex
high dimensional systems, the requirement of a prohibitively
large reservoir is mitigated by a parallel combination of
smaller reservoirs that exploit the local nature of the spatial
interactions.

Since the ESN models a nonlinear dynamical system,
a nonlinear data-assimilation method is required for the
measurement update. While the EKF and UKF perform well
in model-based scenarios, the computation of the linearized
dynamics is challenging for an ESN. The ensemble Kalman



filter [13] is thus chosen for the measurement update for its
strength in representing the posterior distribution of states
by its sample mean and covariance. The incorporation of
an ensemble Kalman filter in the feedback loop of an
ESN improves measurement assimilation in comparison to
reservoir observer [4], because the former accounts for the
measurement noise with the help of a traditional Bayesian
framework and assimilates a series of measurements over the
testing phase, whereas the latter uses the current (noise-free)
measurement only [4].

The contributions of this paper are (1) providing a data-
driven framework for estimation of a high-dimensional com-
plex nonlinear system when sparse noisy measurements are
available during the testing phase along with sufficient data
during the training phase; (2) combining the prediction power
of a recurrent neural network with the traditional Bayesian
measurement update model of an ensemble Kalman filter;
(3) improving the estimation accuracy over time for a chaotic
nonlinear system relative to prior work; and (4) application of
the estimation method to a real set of mobility data in order
to predict daily cycles of traffic congestion. The model-free
estimation algorithm developed here has wide applications
for estimation of complex dynamics from noisy observations
when a reliable model is not available.

The paper is organized as follows. Section II provides
a brief overview of the echo-state network (ESN). Section
III presents the ensemble Kalman filtering algorithm with
the ESN-based motion-update model. Section IV illustrates
the applications to three different problems: two synthetic
data streams generated by chaotic nonlinear systems and one
real set of data traffic sensor data. Section V concludes the
manuscript and discusses ongoing and future work.

II. ECHO-STATE NETWORKS: A UNIVERSAL PREDICTOR

Echo-state networks (ESNs) are a special kind of fixed
recurrent neural network (RNN) in which a large, random,
and fixed RNN is driven by the input signal. The nonlinear
response signals thus induced in the neurons are then linearly
combined to match a desired output signal. The random,
fixed network is called a reservoir and the technique is also
known as reservoir computing (RC) [11].

An ESN is composed of three principal components: a
linear input layer u with m input nodes, a recurrent nonlinear
reservoir network r with n neurons, and a linear output layer
y with p output nodes. The reservoir network evolves with
the following dynamics [11]

r(t+ ∆t) = (1− α)r(t) + αψ(Wr(t) +Winu(t)), (1)

where W is the n × n reservoir weight matrix, Win is the
n × m input weight matrix, u is the m-dimensional input
signal, and y is the p-dimensional output signal. The time
step ∆t is chosen according to the sampling interval of the
training data. The parameter α ∈ (0, 1] is called the leakage
rate, which forces the reservoir to evolve more slowly as α→
0. The activation function ψ is usually a sigmoid function,
e.g., tanh(·) or a logistic function. The output is taken as a

linear combination of the reservoir states [11], i.e.,

y(t) = Woutr(t), (2)

where Wout is the p× n output weight matrix. The weights
Win and W are initially randomly drawn and then held fixed.
The weight Wout is adjusted during the training process.
The reservoir weight matrix W is usually kept sparse for
computational efficiency.

During the training phase, the ESN is driven by an input
sequence {u(t1), . . . ,u(tN )} that yields a sequence of reser-
voir states {r(t1), . . . , r(tN )}. The reservoir states are stored
in a matrix R = [r(t1), . . . , r(tN )]. The correct outputs
{y(t1), . . . ,y(tN )}, which are part of the training data, are
also arranged in a matrix Y = [y(t1), . . . ,y(tN )]. The
training is carried out by a linear regression with Tikhonov
regularization as follows [3]:

Wout = (RRT + βI)−1RY, (3)

where β > 0 is a regularization parameter that ensures non-
singularity.

Remark 1. For an ESN to be an universal approximator, i.e.,
to realize every nonlinear operator with bounded memory
arbitrarily accurately, it must satisfy the echo state property
(ESP) [3], which states that the reservoir will asymptotically
wash out any information from the initial conditions. For the
tanh(·) activation function, it is empirically observed that the
ESP holds for any input if the spectral radius of W is smaller
than unity [3]. To ensure this condition, W is normalized by
its spectral radius.

III. KALMAN FILTERING WITH ECHO-STATE
NETWORKS: A SPARSE ESTIMATION TECHNIQUE

An ESN can be trained to predict a time-series {xti ∈
Rd : i ∈ N} generated by a dynamical system by setting
u(t) and y(t) as the current and next state value (i.e., xtk

and xtk+1
) respectively. The network is trained for a certain

training length N of the time-series data {xti , i = 1, . . . , N},
and then can run freely by feeding the output ytk back to the
input utk+1

of the reservoir. In this case, both u and y have
the same dimension d as that of the time-series data. This
setup is shown in Fig. 1(b), where a trained ESN is used
to predict the next states of a dynamical time series starting
from an initial condition.

Although a sufficiently large free-running ESN trained
with enough data can predict a dynamical system reasonably
well [4], [5], it has some shortcomings. The initial input
to the ESN during the free-running phase must match the
exact time series data or the initial condition on the tra-
jectory that is predicted. But for a data-driven estimation
problem, the state might not be fully observable. Moreover,
the free-running ESN does not take into account any change
in the availability of possibly sparse observations that are
available during the testing phase. A solution to this prob-
lem is presented in [4] where an ESN is trained with all
state measurements available, and then predicts the states
with only a limited subset of them measured. However,
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Fig. 1: Architecture of an EnKF-ESN: (a) the basic ESN, (b) a free-running ESN for time-series prediction, and (c) an ESN with a
feedback Kalman filter

this method, called a reservoir observer, uses the ESN’s
internal connections in the testing phase to assimilate the
measurement of the current time step only, and does not
take measurement noise into consideration.

We propose an alternative method for measurement assim-
ilation after training by adding an ensemble Kalman filter
(EnKF) [14] in the feedback loop of the ESN (Fig. 1(c)).
The EnKF block takes sparse observations and uses the
state forecast from the reservoir output to generate a state
estimate for feedback to the reservoir input. The ensemble
Kalman filter is realized as follows. For time-step k = 0,
an ensemble Xt0 = [x

(1)
t0 , . . . ,x

(M)
t0 ] is chosen from a

Gaussian distribution with an ensemble covariance Rx. Then
for k = 0, 1, . . . , the following steps are computed:

Xtk = [x
(1)
tk
, . . . ,x

(M)
tk

] (4)

x
(i)
tk+1

= Woutψ(Wrtk +Winx
(i)
tk

), for i = 1, . . . ,M

Xf
tk+1

= [x
(1)
tk+1

, . . . ,x
(M)
tk+1

]

These steps carry out the motion update for the ensemble
using the ESN. The superscript (i) denotes the ith ensemble
member. The forecast ensemble is collected in the Xf

tk+1

matrix. Next, the observations are assimilated through an
ensemble Kalman filter as follows:

Ytk+1
= h(Xf

tk+1
) (5)

Pxy(tk+1) = (Xf
tk+1
−X

f

tk+1
)(Ytk+1

− Ytk+1
)T

Pyy(tk+1) = (Ytk+1
− Ytk+1

)(Ytk+1
− Ytk+1

)T

Ktk+1
= Pxy(tk+1)Pyy(tk+1)−1

ˆXtk+1
= Xf

tk+1
+Ktk+1

(Ytk+1
− Ytk+1

)

x̂tk+1
=

1

M

M∑
i=1

x
(i)
tk+1

,

where Ytk+1
= [ytk+1

, . . . ,ytk+1
] is a matrix constructed by

stacking M copies of the true observation. This filtering step
assumes Gaussian observation model with measurement map
h : Rd → Rp and ytk = h(xtk) + νk where νk ∼ N (0,Σk)
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Fig. 2: Estimation of the time-series using an ESN with an EnKF
for the Lorenz system: (a) true and estimated signal, (b) error-
comparison between a free-running ESN and an ESN with an
ensemble Kalman filter (Note the EnKF does not require the initial
condition to be known.)

i. i. d. Gaussian noise. Pxy(tk+1) denotes the sample cross-
covariance between the states and the observation, whereas
Pyy(tk+1) denotes the sample observation covariance. The
sample mean is taken as the state estimate x̂tk+1

.

Remark 2. An ESN with an ensemble Kalman filter for
the measurement update is particularly useful for estimation
problems where the state is fully observable during the
training phase but only partial and noisy measurements
can be obtained during the testing phase. Some of these
applications include prediction of atmospheric quantities [15]
and flow estimation over an airfoil [16]. Knowledge of
initial condition is not required. It also improves estimation
accuracy over reservoir observer [4] by assimilating all the
past measurements in a Bayesian framework whereas the
latter uses current measurements only.



Fig. 3: The parallel ESN scheme with ensemble Kalman filter
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Fig. 4: Lorenz-96 time series estimation: (a) true and estimated
signal for an unmeasured state, (b) L2 error comparison between
free-running parallel ESN with and without an Ensemble Kalman
filter

IV. EXAMPLES

This section illustrates the ESN-based sparse estimation on
three data-assimilation problems. The first two are time series
generated by chaotic dynamical systems. The last one is a
real-time series of traffic flow data obtained from the Numina
sensor nodes [17] installed on the University of Maryland
campus.

A. Lorenz System

We tested the ESN with the ensemble Kalman filter to
estimate a time series generated by the Lorenz system:

ẋ1 = σ(x2 − x1) (6)
ẋ2 = x1(ρ− x3)− x2
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Fig. 5: Correlation between estimated data and the actual data for
the Lorenz-96 model with error-bars: estimation by parallel ESNs
with an ensemble Kalman filter has a higher average correlation
then the prediction with parallel ESNs by a reservoir observer [4]

ẋ3 = x1x2 − βx3,

where σ = 10, ρ = 28, and β = 8/3 produces chaotic
behavior. The time-series of x(tk) = [x1(tk), x2(tk), x3(tk)]
is available during the training phase with ∆t = 0.1. An
ESN with 1000 reservoir nodes is trained with data spanning
1000 time-steps. The reservoir weight matrix is constructed
as the adjacency matrix of an Erdös-Rényi graph G(n, p)
where n = 1000 is the number of the reservoir nodes and
p = 0.01 denotes the probability that an edge is present,
independent of the other edges. Being the adjacency matrix
of an undirected graph, W is symmetric. In the testing
phase, only x2 is observed with an i.i.d. additive zero-mean
Gaussian noise of covariance 0.01. This measurement is fed
into the ensemble Kalman filter with an ensemble size of
100. The reservoir nodes are initialized with random initial
conditions and an initial guess of the time series is chosen.
The estimated signal is compared with the true signal in
Fig 2(a).

Remark 3. The introduction of the ensemble Kalman filter
in the ESN feedback loop enables it to accurately estimate
the time-series signal even if the initial error is large, for
example if the testing phase does not start immediately after
the training phase. A free-running ESN can only predict the
time series with a sufficiently accurate initial condition.

The comparison of the L2 error between a free-running
ESN predictor and the ESN-EnKF driven by sparse mea-
surements is depicted in Fig. 2(b). Evidently, an ESN with
sparse measurements performs significantly better than its
free-running counterpart.

B. Lorenz-96 Model

Next, the ESN-EnKF estimation algorithm is tested with
the Lorenz-96 model [18], a spatially correlated high-
dimensional chaotic system developed by E. N. Lorenz in
1996 to describe the variation of an atmospheric quantity
of interest, such as temperature and vorticity, at discrete
locations on a periodic lattice representing a latitude circle
on the earth. This model has been widely used as a model



Fig. 6: Traffic congestion pattern of five intersections over a single week, Each revolution denotes a day of the week with times marked
as angles; the number of vehicles is denoted by the colormap. The daily pattern of peak congestion between mornings and afternoons is
evident.

for atmospheric prediction and the study of spatiotemporal
chaos.

Mathematically, Lorenz-96 is a linear lattice of K vari-
ables, where the dynamics of the ith variable are

ẋi = (xi+1 − xi−2)xi−1 − xi + F, (7)

assuming x−1 = xK−1, x0 = xK , and xK+1 = x1. The
parameter F is a forcing constant with F = 8 being a
common value causing chaotic behavior.

Let K = 40 be the total number of lattice points, which
can be thought of as the sensors on a latitude circle that
measure the atmospheric quantity of interest. For a large
number of state variables the size of the ESN reservoir
required to predict the system using a single reservoir must
also be large. This makes the single reservoir prediction
intractable for large values of K. In order to mitigate the
problem, the local nature of the interactions among the state
variables xi in (7) is utilized. From (7), xi depends only on
its neighbors xi−2 to xi+1 as in [5]. A parallel set of ESNs
is used, each of which predicts the state-variable xi. ESN i
takes input from the states xi−2 to xi+1 and produces the
prediction for xi. This scheme is depicted in Fig. 3.

The ESNs are trained for N = 2000 time steps. Each of
these ESNs can be trained in parallel, thereby reducing the
computation time. We have compared the performance of the
proposed estimation algorithm with a free-running parallel
ESN scheme. Here, a random 50% of the lattice points
are assumed measurable during the Kalman filter update.
The measurements are corrupted by additive i.i.d. zero mean
Gaussian noise with covariance 0.01 and assimilated by an
ensemble Kalman filter with an ensemble size of 100. A
comparison between the estimated time-series signal and the
true data for one unobserved node is shown in Fig. 4(a). The
L2 error comparison between the free-running parallel ESN
structure and the ESN-EnKF with sparse measurements is
presented in Fig. 4(b). The ESN-EnKF algorithm is further
compared with the reservoir observer, a model-free predic-
tion scheme for unmeasured variables [4]. In the reservoir
observer, a subset of the state variables is measured and
fed into the parallel ESNs at each step, but without the

measurement update step used in the ensemble Kalman filter.
The average correlation between the true and estimated time
series with 20 independent Monte-Carlo trials for both the
proposed algorithm and the reservoir observer is depicted in
Fig. 5. The proposed algorithm significantly outperforms the
reservoir observer, especially when only a moderate number
of states are observable.

(a) (b)

Fig. 7: Schematic diagram of traffic data training and testing: (a)
University of Maryland road network with Numina sensors, (b) time
frame of the data (red intersections are always observed and green
intersections are conditionally observed.)
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Fig. 8: Estimation of traffic congestion in the third node while only
the fifth one is being observed (x3 denotes the estimated number
of vehicles at the 3rd intersection)

Remark 4. Lorenz-96 is an example where an ESN-based
approach is greatly improved by assimilating sparse mea-
surements through an ensemble Kalman filter. This insight
has applications in atmospheric and oceanic data assimilation
where the sensor measurements are sparse in time and space.
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Fig. 9: Correlation between estimated and actual data for traffic
congestion: estimation by ESN with an ensemble Kalman filter has
a higher average correlation than the prediction with an ESN by a
reservoir observer [4]

C. Prediction of Traffic Congestion in a Road Network

The proposed algorithm is now applied to a data set of
traffic counts obtained from Numina sensors [17] at five
different road intersections on the University of Maryland
campus. Fig. 7(a) presents the road network along with the
sensor locations. Each sensor counts the number of vehicles,
pedestrians, and bicycles at those intersections and records
them in a central server. An ESN of 1000 reservoirs are
trained from hourly traffic congestion data (total number of
vehicles) in all five of these intersections for two months.
The training and testing timeline is presented in Fig. 7(b).
Since the number of vehicles is non-negative, the activation
function ψ is modified to be a rectified tanh function with
the negative part set to zero. The network is then tested for
a week with only one sensor active. The ensemble Kalman
filter is modified to have positive ensemble members only.
The estimates are rounded to the nearest positive integer.
Fig. 8 shows the traffic congestion estimator’s performance.
The algorithm is also compared against the reservoir observer
[4] with different numbers of available sensors. The average
correlation between the estimated and true traffic congestion
time series is computed for 20 independent Monte-Carlo
trials and presented in Fig. 9 for both the proposed predictor
and the reservoir observer. The Kalman-filter-driven ESN
has significantly higher average correlation for partially
observable cases.

Remark 5. The measurement noise for the traffic sensors
is not Gaussian since the sensors can only report positive
integer values, which may account for the relatively large
prediction error when the congestion is low.

V. CONCLUSION

This paper describes a data-driven sparse estimation tech-
nique for complex dynamical systems and uses it to esti-
mate the states of three nonlinear systems from time-series
data. The method utilizes the echo-state network (ESN)
for model identification from the time-series training data
and an ensemble Kalman filter for data assimilation in the
testing phase. The estimation is carried out in a data-driven

way without a dynamic model. The method is applied to
a real data set of traffic patterns on the road network of
the University of Maryland, College Park campus to predict
the traffic congestion at various intersections. The method is
also extended to the Lorenz-96 model for atmospheric data
assimilation with a parallel-reservoir ESN. In ongoing and
future work, a data-driven controller design using the ESN
will be investigated.
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