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Abstract— This paper describes an optimization framework
to control a distributed parameter system (DPS) using a team
of mobile actuators. The optimization simultaneously seeks
efficient guidance of the mobile actuators and effective control
of the DPS such that an integrated cost function associated
with both the mobile actuators and the DPS is minimized.
Since the optimization does not have a constraint restricting the
actuators to the domain of the DPS, the actuators may actuate
outside the domain with no contribution towards regulating the
DPS. We show that, under certain conditions, any guidance that
steers the mobile actuators out of the spatial domain is non-
optimal. This result implies that optimal guidance is guaranteed
to restrict the actuators to the domain even without explicit
constraints. A gradient-descent method solves the integrated
optimization problem numerically using its finite-dimensional
approximation. We also synthesize the optimal feedback control
of the DPS given jointly optimal guidance of the mobile
actuators. A numerical example illustrates the optimization
framework and the solution method.

I. INTRODUCTION

Recent development of mobile robots (unmanned aerial
vehicles, terrestrial robots, and underwater vehicles) has
greatly extended the type of distributed parameter system
(DPS) over which mobile actuation and sensing can be
deployed. Such a system is often modeled by a partial differ-
ential equation (PDE), which varies in both time and space.
Exemplary applications of mobile control and estimation of
a DPS can be found in a thermal manufacturing process [1],
monitoring and neutralizing groundwater contamination [2],
and wildfire monitoring [3].

We propose an optimization framework that simultane-
ously solves for the guidance of a team of mobile actua-
tors and the control of a DPS. We consider a 1D diffu-
sion process as the DPS for the convenience of the state-
space representation and explicit expression of the optimal
feedback control. The framework minimizes an integrated
cost function, evaluating both actuator motions and DPS
regulation, subject to the dynamics of the mobile actuators
and the DPS. The integrated problem can better address the
mobile actuator and the DPS as a unified system, instead of
solely regulating the DPS. Furthermore, the additional degree
of freedom endowed by mobility yields improved control
performance in comparison to using fixed actuators.
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The proposed framework is well-suited for the limited
onboard resources of mobile actuators in the following two
aspects: (1) it adopts a finite-horizon optimization scheme
that characterizes the resource limitation more precisely than
the approaches that do not specify a terminal time such as
an infinite-horizon optimization or Lyapunov-based method
and (2) it provides an intermediate step for the optimization
problem that characterizes the limited resources as inequality
constraints, because the constraints can be used to augment
the cost function and turned into the proposed form using
the method of Lagrange multipliers.

The control of a DPS can be categorized by the location
of the actuation. The same category applies to estimation
and parameter identification by sensors, but the literature
review here focus on control and actuation for brevity. When
actuation occurs on the boundary of the spatial domain, it
is called boundary control. Representative work in boundary
control is mainly conducted by Krstic and collaborators [4].
When actuation acts in the interior of the spatial domain, it
is called distributed control. For distributed control, the DPS
is actuated by in-domain actuators that are either fixed or
movable. For fixed actuators, the problem of determining
the location of actuators is called the actuator placement
problem. Actuator placement has been studied for optimality
in the sense of linear-quadratic (LQ) [5], H2 [6], and max-
imum controllability [7]. For mobile actuators, guidance of
the actuators is designed to improve the control performance
in comparison to fixed actuators. Various criteria have been
proposed for guidance, for example, using LQ control [1],
[8], [9], Lyapunov-based methods [10], [11], constant veloc-
ity [12], and Centroidal Voronoi Tessellation [13], [14].

Among the existing approaches, only [9] considers an inte-
grated cost of actuator motion and DPS regulation. However,
the numerical method proposed in [9] reduces the admissible
set of a mobile actuator from the entire spatial domain to a set
of pre-specified points, and this is suboptimal with respect to
the original admissible set. Also, the discretization induces
extra constraints on the displacement of actuator locations
between consecutive decision times to mitigate the violation
of the continuous dynamics of the mobile actuator.

The contributions of this paper are summarized as follows:
(1) the problem of regulating a diffusion process with a team
of mobile actuators is formulated as an integrated optimiza-
tion problem; (2) conditions are showed under which optimal
guidance is guaranteed to restrict the mobile actuators to
the spatial domain even without explicit constraints; and
(3) a gradient-descent method is applied to numerically
solve the approximation of the formulated problem for the



jointly optimal guidance of the mobile actuators and the
(feedback) control of the DPS. The proposed framework
provides a new approach to simultaneously design the guid-
ance and actuation of a team of mobile actuators to control
a DPS. Potential applications include wildland firefighting
using unmanned aerial vehicles and oil spill removal using
autonomous skimmer boats.

A. Notation and terminology

The paper adopts the following notation. The symbol R
denotes the set of real numbers. The interior and boundary
of a set M are denoted by int(M) and ∂M , respectively.
The n-nary Cartesian power of a set M is denoted by Mn.
Calligraphic letters represent operators and abstract spaces.
The direct sum of vector spaces V1 and V2 is denoted by
V1⊕V2. An embedding is denoted by ↪→. We use |·| and ‖·‖
for the absolute value and Euclidean norm, respectively, with
no subscript attached. The superscript ∗ denotes an optimal
variable or an optimal value, whereas ? denotes the adjoint of
a linear operator. The transpose of a matrix A is denoted by
AT , whereas an n×n-dimensional identity matrix is denoted
by In. An n×n-dimensional diagonal matrix with elements
of vector [a1, a2, . . . , an] on the main diagonal is denoted by
diag(a1, a2, . . . , an). The derivative of a function f evaluated
at x is denoted by f ′(x). The term guidance refers to the
control of the mobile actuators, whereas the term control
refers to the control of (or, equivalently, the actuation input
to) the DPS.

B. Paper organization

Section II introduces relevant mathematical background,
including representation of a PDE by an infinite-dimensional
system, the associated LQ optimal control, and its finite-
dimensional approximation. Section III formulates the in-
tegrated optimization problem, states a theorem of optimal
guidance on restricting the mobile actuators to the spa-
tial domain without explicit constraints, and synthesizes a
feedback control of the DPS. Section IV details a solution
method that applies a gradient-descent method and the
Galerkin approximation scheme to solve the resulting finite-
dimensional integrated problem. A numerical example is
provided to illustrate optimal guidance and control solved
by the proposed method. Section V summarizes the paper
and discusses ongoing work.

II. BACKGROUND

Consider controlling a 1D diffusion process with m mobile
actuators modeled by the following PDE:

∂z(x, t)

∂t
= a

∂2z(x, t)

∂x2
+

m∑
i=1

biui(t)δξi(t), (1)

where z(·, ·) denotes a 1D diffusion process that has a spatial
component x ∈ Ω ⊂ R and a time component t ∈ [0, tf ] for
a given terminal time tf ; u(t) ∈ U ⊂ Rm is a (vector)
function that denotes the magnitude of the actuation input
and is piecewise continuous in t; δx(·) is a Dirac delta
function with a unit impulse at x(·) ∈ R; and ξ(·) ∈ Rm is a

vector of the locations of the mobile actuators. We require δx
to be zero if x /∈ int(Ω). The coefficients a ∈ R and
b ∈ Rm denote the diffusion coefficient and input gains of
the actuators, respectively. The diffusion process has a known
initial condition z(·, 0) = z0(·) and a Dirichlet boundary
condition z(·, ·)|∂Ω = 0. The following linear dynamics
describe the motion of the mobile actuators:

ξ̇(t) = αξ(t) + βp(t), (2)
ξ(0) = ξ0, (3)

where

α = diag(α1, α2, . . . , αm), β = diag(β1, β2, . . . , βm),

αi, βi ∈ R for i = 1, 2, . . . ,m, and the initial locations
ξ0 ∈ Rm are given. The guidance p(·) ∈ Rm of the mobile
actuators is a (vector) function piecewise continuous in t.

Since partial differential equations can be formulated as
differential equations on an abstract linear vector space of in-
finite dimension [15], we can compactly represent system (1)
as an infinite-dimensional linear system

Ż(t) = AZ(t) + Bξ(t)u(t), Z(0) = z0, (4)

where Z belongs to a Hilbert space H with inner product
〈·, ·〉 and induced norm ‖·‖H. Here, the variable Z(·) is
the state of the DPS and space H is the state space. Let
V be a reflexive Banach space with norm ‖·‖V . Let V?
be the conjugate dual of V with ‖·‖V? denoting the usual
uniform operator norm on V?. Note that V ↪→ H ↪→ V?
and both embeddings are dense and continuous [10]. In
this paper, we adopt H = L2(Ω) and Sobolev spaces
V = H1

0 (Ω) and V? = H−1(Ω). The operator A is
defined as Aψ = a∂2ψ(x)/∂x2 with ψ ∈ Dom(A) =
{ψ ∈ H1

0 (Ω), ∇2ψ ∈ L2(Ω)} = H2(Ω) ∩ H1
0 (Ω) [10].

The operator Bξ(·) ∈ C([0, tf ];L(U ;V?)) is the Dirac
delta in the sense of a linear operator in V? such that
Bξ(·) = [b1δξ1(·), b2δξ2(·), . . . , bmδξm(·)].

Remark 1: Since Bξ(·)u is continuous for all u ∈ U ,
by [16], the evolution equation (4) has a unique mild
solution. Here, a mild solution of (4) is given by

Z(t) = F (t)Z(0) +

∫ t

0

F (t− τ)Bξ(τ)u(τ)dτ

if Z belongs to C([0, tf ];H), where F is a strongly contin-
uous semigroup generated by A.

Assuming state Z is available for full-state feedback
control, we do not specify an output equation. Ongoing work
investigates the design of a state observer to estimate the
state.

Similar to a finite-dimensional system, we can formulate a
linear-quadratic regulator (LQR) with the differential equa-
tion (4). A general LQR minimizes the following cost:

J(Z, u) =
1

2

∫ tf

0

(
〈Z(t),QZ(t)〉+ u(t)TRu(t)

)
dt

+
1

2
〈Z(tf ),QfZ(tf )〉, (5)



where Q ∈ L(V) and Qf ∈ L(V) are self-adjoint, nonnega-
tive, Hilbert-Schmidt operators that evaluate the running cost
and terminal cost, respectively, of the state Z . The coefficient
R is an m×m-dimensional symmetric and positive-definite
real matrix that weights the control effort of the DPS. By [16,
Theorem 7.3], an optimal feedback control associated with
a given trajectory ξ(·) of actuators is

u∗(t) = −R−1B?ξ (t)S(t)Z(t), (6)

where S : V → V is a self-adjoint and nonnegative operator
that satisfies the operator differential Riccati equation

Ṡ(t) =−A?S(t)− S(t)A−Q
+ S(t)Bξ(t)R−1B?ξ (t)S(t), (7)

S(tf ) = Qf . (8)

Remark 2: The existence of a unique mild solution to (7)
can be established according to [16, Theorem 7.2]. It is
omitted for space constraints.

Approximations to (4) and (7) permit numerical compu-
tation. Consider a finite-dimensional subspace HN ⊂ H
with dimension N . The inner product and norm of HN are
inherited from that of H. Let PN : H → HN denote the
orthogonal projection of H onto HN . We make a standard
assumption [17] that

lim
N→∞

‖PNφ− φ‖V = 0, ∀φ ∈ V. (9)

Let zN (·) ∈ RN and SN (·) ∈ RN×N denote the finite-
dimensional approximation of Z(·) and S(·), respectively,
where zN (·) = PNZ(·) and SN (·) = PNS(·)PN . A finite-
dimensional approximation of (4) is

żN (t) = ANzN (t) +Bξ,N (t)u(t), (10)
zN (0) = zN0 = PNz0, (11)

where AN ∈ L(HN ) and Bξ,N (·) ∈ L(U,HN ) are approx-
imations of A and Bξ(·), respectively. Correspondingly, the
finite-dimensional approximation of (7) is

ṠN (t) =− (AN )TSN (t)− SN (t)AN −QN
+ SN (t)Bξ,N (t)R−1BTξ,N (t)SN (t), (12)

SN (tf ) = QfN , (13)

where QN = PNQPN and QfN = PNQfPN . By [17,
Theorem 4.1], the approximation SN converges to S, that
is limN→∞ ‖SN (t)− S(t)‖H = 0, with the convergence
uniform in t for t ∈ [0, tf ] and H denotes the Hilbert space
of Hilbert-Schmidt operators from H to H.

III. PROBLEM FORMULATION

A. Integrated optimal control problem

This subsection introduces the formulation of the inte-
grated optimal control problem, which simultaneously solves
for optimal (open-loop) guidance of the mobile actuators and
optimal (open-loop) control of the DPS. Specifically, the cost
functions evaluating actuator motions and DPS regulation
are integrated into one cost function. Consequently, the

dynamics of the DPS and that of the mobile actuator are
both constraints. The integrated problem is

minimize
u∈U,p∈Rm

J(Z, u) + Jm(ξ, p)

subject to Ż(t) = AZ(t) + Bξ(t)u(t), Z(0) = Z0,

ξ̇(t) = αξ(t) + βp(t), ξ(0) = ξ0,

(P)

where Jm(ξ, p) is the cost associated with mobility, i.e.,

Jm(ξ, p) =
1

2

∫ tf

0

(
ξ(t)Tκξ(t) + p(t)T γp(t)

)
dt

+
1

2
(ξ(tf )− ξf )Tκf (ξ(tf )− ξf );

κ and κf are m ×m-dimensional symmetric and positive-
semidefinite matrices, respectively; γ is an m × m-
dimensional positive-definite matrix; and ξf ∈ Rm is the
vector of terminal locations for the mobile actuators. Such
terminal locations may represent user-specified evacuation
locations for the mobile actuators in some applications.

Problem (P) does not constrain the actuators to the spatial
domain Ω. Hence, the actuators may wander out of the
domain and dispense no actuation input to the DPS. The
following theorem specifies a special case of (P) where
mobile actuators under optimal guidance will not wander
out of the domain.

Theorem 1: Consider problem (P) where the dynamics of
each mobile actuator is a single integrator (i.e., α = 0),
the running state cost for the mobile actuators is zero (i.e.,
κ = 0), and all actuators have initial locations in the interior
of the domain (i.e., ξ0 ∈ int(Ωm)). If either the terminal
locations are in the domain (i.e., ξf ∈ Ωm), or there is no
terminal cost for the mobile actuators (i.e., κf = 0), then any
guidance that steers the mobile actuators out of the domain Ω
is non-optimal.

Remark 3: A direct consequence of Theorem 1 is that,
under the conditions of Theorem 1, optimal guidance will
restrict the mobile actuators to the spatial domain Ω even
without explicit constraints. The proof of Theorem 1 is
omitted for space constraints.

B. Synthesis of optimal feedback control of the DPS

For now, suppose we can solve problem (P) for jointly
optimal control u∗(·) and guidance p∗(·), which are both
in open-loop form. We will introduce a numerical approach
to solve (P) using a finite-dimensional approximation of
the PDE in Section IV-A. We now demonstrate how to
utilize optimal guidance p∗(·) for the synthesis of an optimal
feedback control law of the DPS.

Given the dynamics (2) and optimal guidance p∗(·), a
unique trajectory ξ∗(·) of the mobile actuators is obtained
to yield the control input operator Bξ∗(·). Furthermore, we
can formulate a subproblem of (P) that only minimizes the
cost of regulating the DPS as follows:

minimize
ū(·)∈U

J(Z, ū)

subject to Ż(t) = AZ(t) + Bξ∗(t)ū(t), Z(0) = z0.
(P1)



By [16, Theorem 7.2], an optimal feedback control ū∗ is

ū∗(t) = −R−1B?ξ∗(t)S(t)Z∗(t), (14)

where S(·) is the unique mild solution of the differential
Riccati equation (7) associated with an optimal trajectory ξ∗.

Remark 4: Note that the feedback control ū∗ and optimal
guidance p∗ are jointly optimal for (P). From now on, the
notation ū∗ refers to the optimal feedback control associated
with the jointly optimal guidance p∗.

IV. SOLUTION METHOD

We propose a numerical procedure to solve the optimal
control of the DPS and guidance of the mobile actuators that
jointly minimize the following finite-dimensional approxima-
tion of (P):

minimize
u∈U,p∈Rm

JN (zN , u) + Jm(ξ, p)

subject to żN (t) = ANzN (t) +Bξ,N (t)u(t),

ξ̇(t) = αξ(t) + βp(t),

zN (0) = zN0, ξ(0) = ξ0,

(AP)

where JN (zN , u) represents the finite-dimensional approxi-
mation of the cost of DPS regulation such that

JN (zN , u) =
1

2

∫ tf

t0

(
zN (t)TQNzN (t) + u(t)TRu(t)

)
dt

+
1

2
zN (tf )TQfNzN (tf ).

Remark 5: Problem (AP) is well-posed because the right-
hand sides of the dynamics are Lipschitz continuous and,
hence, there exists a unique solution of the differential
equations [18].

Remark 6: Problem (AP) is not an LQR because Bξ,N (·)
is not linear in ξ(·), i.e., Bξ1,N (t)+Bξ2,N (t) 6= Bξ1+ξ2,N (t)
for all ξ1(t), ξ2(t) ∈ Rm and for all t.

A. Gradient-descent method for the approximate integrated
problem

To find a local minimum of (AP), we use Pontryagin’s
maximum principle, which establishes the following dynam-
ics of the costates λ(·) ∈ RN and µ(·) ∈ Rm associated with
zN (·) and ξ(·), respectively:

λ̇(t) =−ATNλ(t)−QNzN (t), (15a)

µ̇(t) =− αTµ(t)− κξ(t)−
[∂Bξ,N (t)u(t)

∂ξ

]T
λ(t), (15b)

with terminal conditions:

λ(tf ) = QfNzN (tf ), (16a)
µ(tf ) = κf (ξ(tf )− ξf ). (16b)

The jointly optimal control u∗(·) and guidance p∗(·) satisfy

Ru∗(t) +BTξ∗,N (t)λ∗(t) = 0, (17a)

γp∗(t) + βµ∗(t) = 0. (17b)

To obtain optimal control and guidance, we have to find
a pair of states (z∗N (·), ξ∗(·)) and costates (λ∗(·), µ∗(·)) that

satisfies (10), (2), and (15) with initial conditions (11), (3),
and terminal condition (16). We adopt the gradient-descent
method [19], [20] to numerically solve for z∗N (·), ξ∗(·),
λ∗(·), and µ∗(·) that yield a local minimum of (AP).

B. Galerkin approximation

We use the Galerkin approximation scheme [21], which
satisfies (9) [22], to approximate the infinite-dimensional
system. We choose the standard first-order B-splines on the
interval Ω, denoted by {φi}Ni=1, as the basis functions that
span HN , where for i = 1, 2, . . . , N ,

φi(x) = 1− |(N + 1)x− i|,

if
x− Ωl

Ωr − Ωl
∈
[ i− 1

N + 1
,
i+ 1

N + 1

]
, (18)

and φi(x) = 0 otherwise, where Ωl and Ωr denote the left
and right boundary of Ω, respectively. Let

ΦN (·) =
[
φ1(·), φ2(·), . . . , φN (·)

]T
. (19)

Consequently, the finite-dimensional approximation zN (t) of
Z(t) satisfies

Z(t) = ΦTNzN (t), (20)

where the equality holds in the weak sense such that
〈Z(t), ψ〉 = 〈ΦTNzN (t), ψ〉 holds for any smooth test func-
tion ψ ∈ H.

The Galerkin approximation takes the basis functions
{φi}Ni=1 to be the test function. Let MN ∈ RN×N , LN ∈
RN×N be such that

MN =

∫
Ω

dΦN (x)

dx
dΦTN (x)

dx
dx, (21)

LN =

∫
Ω

ΦN (x)ΦTN (x)dx. (22)

Now, the finite-dimensional approximation of (4) is

LN żN (t) =−MNzN (t) + B̄ξ,N (t)u(t), (23)

zN (0) =

∫
Ω

z0(x)ΦN (x)dx, (24)

where B̄ξ,N (·) is an N×m-dimensional matrix whose entry
on the ith row and jth column is

[B̄ξ,N (t)]i,j =

∫
Ω

bjδ(x− ξj(t))φi(x)dx = bjφi(ξj(t)).

Hence, the parameters AN and Bξ,N (·) in (10) are such that

AN = −(LN )−1MN , Bξ,N (·) = (LN )−1B̄ξ,N (·). (25)

Let Q and Qf have kernel representations where there
exist square-integrable functions q : Ω × Ω → R and qf :
Ω× Ω→ R, such that for any ψ ∈ H and x ∈ Ω

Qψ(x) =

∫
Ω

q(x, y)ψ(y)dy, (26)

Qfψ(x) =

∫
Ω

qf (x, y)ψ(y)dy. (27)

To compute the optimal feedback control ū∗, assume that
operator S admits a kernel representation s : Ω × Ω ×



[0, tf ] → R such that for every x ∈ Ω, t ∈ [0, tf ], and
ψ ∈ H,

S(t)ψ(x) =

∫
Ω

s(x, y, t)ψ(y)dy. (28)

The operator S admits a kernel representation if S is a
Hilbert-Schmidt operator on L2(Ω) [23].

Now, the differential Riccati equation with respect to s is

st(x, y, t) =− sxx(x, y, t)− syy(x, y, t)− q(x, y)

+ s(x, ξ∗(t), t)R−1s(ξ∗(t), y, t), (29)
s(x, y, tf ) = qf (x, y). (30)

Similar to (20), the Galerkin approximation of kernel s
is spanned by bivariate B-spline basis {φi(x)φj(y)}Ni,j=1

with the coordinates denoted by an N × N -dimensional
real matrix SN (·) such that s(x, y, t) = ΦTN (x)SN (t)ΦN (y).
This equality holds in the weak sense such that, for any ψ
in a Hilbert space with spatial domain Ω× Ω,∫

Ω

∫
Ω

[s(x, y, t)− ΦTN (x)SN (t)ΦN (y)]ψ(x, y)dxdy = 0.

The finite-dimensional approximation of (29) is

ṠN (t) =−ANSN (t)− SN (t)ATN − (LN )−1QN (LN )−1

+ SN (t)B̄ξ∗,N (t)R−1B̄Tξ∗,N (t)SN (t), (31)

SN (tf ) = QfN , (32)

where q(x, y) = ΦTN (x)QNΦN (y) and qf (x, y) =
ΦTN (x)QfNΦN (y) hold in the weak sense.

The optimal state feedback control (subject to the given
trajectory ξ of the mobile actuators) is

ū∗ = −R−1B̄Tξ∗,N (t)SN (t)LNzN (t). (33)

C. Numerical example

We use the following values in a numerical example:

Ω = [0, 1], N = 50,m = 4, tf = 1,

α = 0, β = I4, U = Rm, R = 0.1I4,

γ = 0.1I4, κ = 0, κf = I4, z0(x) = 4x− 4x2,

q(x, y) = 51(x = y), qf (x, y) = 1(x = y), a = 0.1,

bi = 1, [ξ(0)]i = 0.01, [ξf ]i = 0.2i, for i = 1, 2, . . . ,m,

where 1(x = y) = 1 if x = y, and 1(x = y) = 0 if
x 6= y. The forward propagation of zN and ξ and backward
propagation of λ and µ are computed using the Runge-Kutta
method. The same method is also applied to propagate SN
in (31).

To demonstrate the performance of the optimal feedback
control ū∗ subject to the optimal trajectory ξ∗, we define
semi-naive control usn and naive control un as follows:
both the semi-naive control and naive control dispense the
actuation input whose magnitude is the unit negative value
of the PDE at the locations of the actuators, i.e.,

usn(t) = −zsn(ξ∗(t), t), un(t) = −zn(ξn(t), t). (34)

The semi-naive actuators follow the optimal trajectory ξ∗,
whereas the naive actuators follow the trajectory ξn, which

moves at a constant speed from ξ0 to ξf .
In the simulation, a mobile pointwise disturbance

0.3δξd(t), whose trajectory is ξd(t) = 0.5 − 0.49 sin(4πt),
is added to the right-hand side of the dynamics (1). The
same type of disturbance has been applied in [10]. Table I
shows the cost breakdown of all the control and guidance in
comparison. The optimal feedback control yields a smaller
cost than the optimal open-loop control due to the capability
of feedback control in rejecting disturbances. Simulations
with a disturbance-free model (not shown) yield identical
total cost for optimal open-loop control and optimal feedback
control, which justifies the correctness of the synthesis. Fig. 1
compares the norm of the disturbed DPS state regulated by
the control listed in Table I and zero control input u ≡ 0.
As can be seen, the disturbed DPS is effectively regulated
using optimal feedback control. Fig. 2 shows the optimal
actuation input ū∗ and optimal trajectory ξ∗ of each actuator.
Actuator 4 dispenses the most actuation input to the DPS,
compared with that by other actuators, because it reacts to the
peak of the DPS before other actuators reach it. Fig. 3 shows
the spatiotemporal distribution of the disturbed DPS with
optimal feedback control ū∗ dispensed by actuators following
the optimal trajectory ξ∗.

TABLE I: Cost breakdown of control and guidance in
comparison. All costs are normalized with respect to the total
cost of the naive control and guidance.

Control (C) and Guidance (G) Cost

C G JN Jm Total

opt. feedback ū∗ ξ∗ 41.3% 19.6% 60.9%
opt. open-loop u∗ ξ∗ 46.0% 19.6% 65.7%
semi-naive usn ξ∗ 61.4% 19.6% 81.0%
naive un ξn 89.6% 10.4% 100.0%
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Fig. 1: Norm of the disturbed DPS state using different
control and guidance

V. CONCLUSION

This paper proposes a guidance and control scheme that
steers a team of mobile actuators to regulate a DPS modeled
by a 1D diffusion process using an optimal control method.
Specifically, jointly optimal guidance of the mobile actuators
and control of the DPS are solved such that an integrated
cost function is minimized subject to the dynamics of the
diffusion process and the dynamics of the mobile actuators.
We show that optimal guidance of the integrated problem,
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Fig. 2: Optimal actuation input (a) and trajectory (b) of
each actuator. The circles in (b) indicate the desired terminal
locations.
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Fig. 3: Spatiotemporal distribution of the perturbed DPS. The
sinusoidal curve shows the pointwise disturbance following
the trajectory ξd.

under certain conditions, restricts the mobile actuators to the
spatial domain even without explicit constraints. A gradient-
descent method is applied to solve a finite-dimensional
approximation of the integrated problem. We also provide
a synthesis of the optimal feedback control with the jointly
optimal trajectory of the mobile actuators using LQR theory.
Lastly, we demonstrate our guidance and control in a nu-
merical example where the Galerkin approximation scheme
is applied for approximating the infinite-dimensional DPS.

Ongoing and future work includes establishing conditions
under which the guidance solved from the approximated
problem (AP) converges to the optimal guidance of (P);
developing more efficient numerical methods to solve the
integrated problem; extending the current work to a diffusion
process in a 2D spatial domain; establishing a framework of
simultaneous estimation and regulation of a DPS with a team
of mobile sensor-actuators.
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