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Abstract— This paper presents a nonlinear control design
for the stabilization of parallel and circular motion in a model
school of robotic fish. The closed-loop swimming dynamics of
the fish robots are represented by the canonical Chaplygin
sleigh—a nonholonomic mechanical system driven by an inter-
nal rotor. The fish robots exchange relative state information
according to a connected, undirected communication graph
and form a system of coupled, nonlinear, second-order oscil-
lators. Prior work on collective motion of constant-speed, self-
propelled particles serves as the foundation of our approach.
However, unlike the self-propelled particle, the fish robots follow
limit-cycle dynamics to sustain periodic flapping for forward
motion with a varying speed. Parallel and circular motions
are achieved in an average sense. The proposed control laws
do not include feedback linearization of the agents’ dynamics.
Numerical simulations illustrate the approach.

I. INTRODUCTION

Collective behavior of mobile agents has received sig-
nificant interest recently in fields such as biology, physics,
computer science, and control engineering [1]–[3]. Research
in this area is allowing scientists to better understand swarm-
ing behavior in nature and benefits control engineers in
numerous applications by mimicking nature’s behavior in
engineered mobile systems such as unmanned ground, air,
and underwater vehicles.

Within our research group, we previously investigated the
design, sensing, and control of a single fish-inspired robot
that is driven by an internal rotor [4]–[6]. Here, we present
control laws that stabilize planar formations of a school of
robotic fish (Fig. 1). Challenges in underwater sensing and
communication, especially for small, low-power robotic fish,
motivate the use of consensus control to achieve collective
motions by communicating only with nearby agents.

Consensus control in Euclidean space, which assumes that
the states of the system live on RN , is a well-studied topic
[7]. The goal of consensus control is to steer N agents
into identical states. Similarly, average-consensus control
laws steer agents towards the average value of the initial
conditions of the agents [8]. Consensus and average consen-
sus are typically studied for single-integrator dynamics [9],
which may contain linear or nonlinear drift vector fields [10].
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Fig. 1: A school of robotic fish serves as a testbed for formation
control experiments at the University of Maryland’s Neutral Buoy-
ancy Research Facility.

Interactions between agents can be static [11], time-varying
[12], all-to-all [11], or limited [13]. These interactions are
typically described using the Laplacian matrix from algebraic
graph theory [14] to compute relative state information, such
as relative position. Consensus and average consensus in
Euclidean space have also been studied for double-integrator
dynamics [15] and second-order systems with a nonlinear
drift vector field that represents the vehicle dynamics [16].
Furthermore, consensus control on a nonlinear manifold has
been investigated [17], [18]. For example, consensus on the
N -torus—also called synchronization—arises in the control
of planar formations, where the heading orientation is a phase
angle on the unit circle [19]. Orientation and translation
control of agents in the plane utilizes the special Euclidean
group [20]. Many synchronization approaches are based on
the theory of coupled oscillators, such as the celebrated
Kuramoto model [19], and invoke the graph Laplacian for
cooperative control of first-order dynamics on the N -torus
[21]. Second-order consensus of coupled oscillators with
double-integrator dynamics [22] uses the gradient of a phase
potential.

Another class of collective behaviors of multi-agent sys-
tems are circular formations. Previous works in this area
studied circular formations on the N -torus, where agents
are first-order, self-propelled particles with unit velocity.
Feedback control laws designed in [19] stabilize the agents
on a circular formation having a fixed center and a constant
radius. Some extensions to this work consider a circular
formation with a fixed flow field [23] and constant non-
unitary velocity, or with a constraint bounding the circular
formation to a region of interest [24]. Other extensions
include time-varying centers, so that the circular formation
position is not fixed [25], [26]. Some authors assume agents



use relative-position sensing to achieve circular formations
around a given center and radius that is known only to
a subset of agents [27]. Circular formation control on the
tangent bundle of the N -torus has also been investigated
where agents are second-order self-propelled particles [19],
[22].

This work investigates planar formations in a novel setting:
a system of second-order oscillators with nonlinear dynamics
and nonholonomic constraints on the tangent bundle of the
N -torus. The closed-loop swimming dynamics of the fish
robots are represented by the Chaplygin sleigh [28], [6], a
nonholonomic mechanical system driven by an internal rotor.
Our control design is inspired by prior work on collective
motion of self-propelled particles [19], [22], [23]; however,
a key distinction is that agents have second-order limit-
cycle dynamics with time-varying speed. Thus, parallel and
circular formations are achieved in an average sense. The
contributions of this paper are (1) a control design that
achieves parallel motion (on average) for a school of robotic
fish, represented by a system of coupled, nonlinear, second-
order oscillators with Chaplygin sleigh dynamics using only
relative state information; and (2) a control design that
achieves circular motion (on average) for the same system.
The proposed control algorithms are illustrated through nu-
merical simulations. Implementation of the control results in
an experimental testbed is ongoing (see Fig. 1).

The remainder of the paper is organized as follows.
Section II provides preliminaries on graph theory, the self-
propelled particle model, and Chaplygin sleigh dynamics.
Section III present control designs to achieve parallel and
circular formations for a robotic fish school. Last, Section
IV summarizes the paper and discusses ongoing work.

II. BACKGROUND

This section reviews concepts from graph theory, presents
the self-propelled particle model, and summarizes the dy-
namics of a Chaplygin sleigh, which models our robotic fish.

A. Graph Theory
A graph is used to represent the communication topology

of an interacting system of agents. The communication graph
is built upon a set of nodes V = {1, . . . , N} that represent
agents. An edge denoted by the pair (k, j) exists between
agent k ∈ V and j ∈ V if information flows from j to k.
The set of all edges is denoted E ⊆ V2. The set of nodes V
and the edges E define a graph G = (V, E) [29]. A sequence
of edges {(k, k1), (k1, k2), . . . , (kL, j)} with distinct nodes
kl ∈ V , kl 6= k, kl 6= j, for l = 1, 2, . . . , L is called a path
from node k to node j. A graph G is called undirected if
(k, j) ∈ E implies (j, k) ∈ E . For a undirected graph, the set
of neighbors to node k is denoted Nk = {v ∈ V : (k, v) ∈
E}. If there exists a path between any pair of distinct nodes
k, j ∈ V , then an undirected graph G is called connected.
Edges are expressed using the adjacency matrix A ∈ RN×N ,
where the entry on the ith row and jth column is

Akj =

{
1 if (k, j) ∈ E
0 otherwise .

The degree matrix D ∈ RN×N encodes how many unique
edges are connected to each node and has nonzero elements
on the diagonal, i.e.,

Dkj =

{∑N
n=1Akn if k = j

0 otherwise .

The symmetric and positive semi-definite Laplacian matrix
L ∈ RN×N associated with the undirected graph G is
L = D−A. The Laplacian is used to compute relative state
information communicated between agents. The quadratic
form xTLx ≥ 0, where x ∈ RN , is equal to zero if and
only if xk = xj , for all k, j ∈ V .

B. Self-propelled Particle Model

The self-propelled particle model [20] has often been used
to describe the collective motion of N planar vehicles that
move at a constant speed with steering controls inputs. The
planar position of the kth particle with respect to the origin
of the inertial frame is expressed using complex coordinates
as rk = xk + iyk ∈ C, where n ∈ V . The dynamics of the
kth particle are

ṙk = vke
iθk

θ̇k = uk,
(1)

where, for the kth particle, vk ,
√
ẋ2k + ẏ2k ∈ R is a constant

speed, θk , atan(ẏk/ẋk) ∈ T1 is the orientation of the
velocity (also called the phase of the particle), T , S1 is the
torus, and uk ∈ R is the steering control. The unit vector
eiθk is called the phasor of particle k and is aligned with
its heading, whereas ieiθk is perpendicular to the heading
(see Fig. 2a). For a constant speed, vk = v0, and a constant
turn-rate, θ̇k = ω0, the particle moves on a circle with radius
|v0ω−10 | and center ck = rk + iv0ω

−1
0 eiθk . This fixed-radius

circle will later serve as a reference for stabilizing circular
formations.

When referring to the positions, phase arrangement, refer-
ence circle centers, and control inputs of the collective of N
particles, we use bold letters, i.e., r , [r1, . . . , rk]T ∈ CN ,
θ , [θ1, . . . , θk]T ∈ TN , c , [c1, . . . , ck]T ∈ CN , and
u = [u1, . . . , uk]T ∈ RN , respectively. Similarly, eiθ ,
[eiθ1 , . . . , eiθk ]T ∈ CN . For complex numbers, z1, z2 ∈ C,
the inner product is defined as 〈z1, z2〉 = Re{z1z2}, where
z1 is the complex conjugate of z1. This inner product is
equivalent to the standard inner product on R2. For complex
vectors, z,y ∈ CN , the inner product is similarly defined as
〈z,y〉 =

∑N
i=1 Re{ziyi}. The modulus of a complex number

is denoted | · | =
√
〈·, ·〉.

Cooperative control laws for stabilizing the collective
motion of identical, unit-speed, self-propelled particles in
parallel or circular formations are well known, and have
been extended to include an external flow field [23], mo-
tion on spherical surfaces [18], and various communication
topologies [19], [21]. For parallel formations, all particles
are synchronized when they have equal and constant phase,
θ = θ01, where 1 = [1, . . . , 1]T is the N -by-1 vector
of ones, for some constant θ0 ∈ T. For synchronization,



the relative positions of particles are arbitrary. For circular
formations, all particles move in the same direction and along
the same circle, that is, θ̇ = ω01 for some constant ω0 and
c = c01 for some constant c0. In a circular formation, the
relative phases of the particles are arbitrary.

Parallel and circular formations may be achieved using
Lyapunov-based control design to minimize a potential func-
tion for a desired formation. Consider the Laplacian parallel
formation potential [30]

Up(θ) ,
1

2
〈eiθ, Leiθ〉 , (2)

which is minimized when the agents are synchronized.
Assume the Laplacian matrix L corresponds to a time-
invariant, connected, and undirected graph G representing the
communication topology of the agents. The time-derivative
of Up(θ) along trajectories of (1) is [30]

U̇p(θ) =

N∑
k=1

∂Up(θ)

∂θk

∂θk
∂t

=

N∑
k=1

〈ieiθk , Lkeiθ〉uk , (3)

where Lk is the kth row of the Laplacian matrix. The term
Lke

iθ is the sum of the phasor of the kth agent relative to
the phasors of all connected agents, i.e., Lkeiθ = |Nk|eiθk−∑
j∈Nk

eiθj . Choosing the gradient control [30]

uk = −K〈ieiθ, Lkeiθ〉 , (4)

for K > 0, makes (3) negative semi-definite and drives
Up(θ) to zero so that agents converge to the set of syn-
chronized parallel formations.

Similarly, to achieve a circular formation, the Laplacian
circular formation potential [30]

Uc(r,θ) ,
1

2
〈c, Lc〉 , (5)

may be used. The potential Uc(r,θ) has a minimum value
when the agents are in a circular formation. The time-
derivative of Uc(r,θ) along trajectories of the self-propelled
particle (1) is [30]

U̇c(r,θ) = v0ω
−1
0

N∑
k=1

(v−10 ω0vk − uk)〈eiθj , Ljc〉 . (6)

Choosing the circular formation control [30]

uk = v−10 ω0(vk +K0〈eiθk , Lkc〉) , (7)

makes (6) negative semi-definite and drives Uc(r,θ) towards
zero so that the agents’ reference circles align.

C. Chaplygin Sleigh Dynamics

The Chaplygin sleigh is a canonical nonholonomic me-
chanical system that consists of a rigid body moving in the
plane that is supported by two frictionless sliding points
and a third knife edge that allows no motion perpendicular
to its edge [31]. Previous studies have demonstrated that
a fish robot driven by an internal rotor can be modeled
as a Chaplygin sleigh due to the nonholonomic constraint
imposed by the Kutta condition [28], [6], which constrains

(a) Self-propelled particle (b) Rotor-driven robotic fish

Fig. 2: Coordinates and unit vectors: (a) the self-propelled particle;
(b) the Chaplygin-sleigh model of a robotic fish. In (b), the hydrofoil
shape represents the fish robot body and a bronze-colored rotor is
shown at the center of mass.

the fluid flow at the trailing edge. As the rotor spins back
and forth, it flaps the robot’s body, which interacts with the
surrounding fluid to generate thrust.

Consider a system of N fish robots each modeled as a
Chaplygin sleigh with the following dynamics in state-space
form [6]:

ṙk = vke
iθk

θ̇k = ωk

v̇k = lω2
k − dvk

ω̇k = −mlvk
b

ωk −
uk
b
,

(8)

where rk ∈ C is the position of the trailing edge of the
fish robot (see Fig. 2b), vk ∈ R is the swimming speed,
θk ∈ T is the velocity orientation, ωk ∈ R is the angular
rate of the kth fish, and uk ∈ R is the applied torque, where
k = 1, . . . , N . Furthermore, d ≥ 0 is the drag coefficient, and
m > 0, l > 0, and b > 0 are the mass, length, and moment
of inertia, respectively. Unlike the self-propelled particle (1),
the speed of the Chaplygin sleigh (8) is not constant and the
control input is a torque rather than an angular rate.

Prior work has established that the Chaplygin-sleigh model
exhibits limit-cycle dynamics under open-loop periodic con-
trol inputs [32], as well as feedback control [6]. Consider
the feedback control [6]

uk = b(−K1ωk −K2 sin(θ̄k − θk)) , (9)

where θ̄k is the desired heading angle of the kth fish, and
K1,K2 > 0 are feedback gains. Substituting (9) into (8)
yields the closed-loop system [6]

ṙk = vke
iθk

θ̇k = ωk

v̇k = lω2
k − dvk

ω̇k = −ml
b
vkωk +K1ωk +K2 sin(θ̄k − θk) .

(10)

The system (10) can be divided into a slow and fast
subsystem [6], where the fast vk-subsystem [6], v̇k =
d
(
l
dω

2
k − vk

)
, converges to vk → l/dω2

k for a sufficiently
large drag coefficient d. Let a = ml2/bd > 0. The slow



(θk, ωk)-subsystem becomes [6]

θ̇k = ωk

ω̇k = −aω3
k +K1ωk +K2 sin(θ̄k − θk) .

(11)

Observe that (11) gives the equations of motion of a pen-
dulum with nonlinear damping and natural frequency

√
K2

[6]. The system (11) has two equilibrium points (θk, ωk) =
(θ̄k, 0) and (θk, ωk) = (θ̄k − π mod 2π, 0). Both equilibria
are unstable and the system exhibits a stable limit cycle cen-
tered on (θ̄k, 0) in the (θk, ωk) plane [6]. The corresponding
limit cycle of (10) is evident in the (vk, ωk) plane as well.
The limit cycle propels the robot in the desired direction by
flapping the tail; however, the limit cycle is achieved only
for certain values of the control gains K1 and K2 [6]. The
average swimming velocity is proportional to K1, but if K1

is too large, then the angular rate in the resulting limit cycle
does not switch signs and the robot spins in a circle [6].
The control law (9) that enables each fish robot to swim in
a desired direction can be modified, with interactions from
neighboring fish, to achieve collective motion of the school,
as described next.

III. PLANAR FORMATION CONTROL

We propose a nonlinear control design for the stabilization
of parallel and circular formations in a model of a school of
robotic fish. Our approach bridges collective motion of self-
propelled particles [30] and feedback control of a fish robot
modeled by Chaplygin sleigh dynamics [6]. Since [30] as-
sumes a constant-speed particle, it cannot be applied directly
to control fish robots that follow limit-cycle dynamics with
a varying speed. Furthermore, since the fish robots oscillate,
parallel and circular motions are achieved only in an average
sense. Novel formation potential functions are required for
Lyapunov-based control design.

A. Parallel Formations

Consider a collection of N identical fish robots modeled
by the Chaplygin sleigh system (8). Assume a sufficiently
large drag coefficient so that vk → (l/d)ω2

k and the (θk, ωk)
dynamics follow (11). For the purposes of control design,
the simplified Chaplygin sleigh system (8) becomes

ṙk = (l/d)ω2
ke
iθk

θ̇k = ωk

ω̇k = −aω3
k −

uk
b
.

(12)

Inspired by the Laplacian parallel formation potential (2) for
the self-propelled particle, consider the potential

Vp(θ,ω) =
1

2
ωTω +

1

2N
K2〈eiθ, Leiθ〉 . (13)

The time-derivative of Vp(θ) is

V̇p(θ,ω) = ω̇Tω +
1

N
K2〈

d

dt
eiθ, Leiθ〉 , (14)

where, along trajectories of (12),

ω̇Tω =

N∑
k=1

(
−aω3

k − b−1uk
)
ωk , (15)

and

〈 d
dt
eiθ, Leiθ〉 =

N∑
k=1

〈ieiθk , Lkeiθ〉ωk . (16)

By choosing the control

uk = b(−K1ωk +
K2

N
〈ieiθk , Lkeiθ〉) (17)

and substituting (15)–(17) into (14), V̇p(θ,ω) becomes

V̇p(θ,ω) =

N∑
k=1

(−aω2
k +K1)ω2

k . (18)

The feedback control law (17) relies only on relative-
state measurements between agents and does not include
feedback linearization of the agents’ dynamics. Since (18)
is a summation of concave functions with roots at ωk = 0
and ω2

k =
√
K1/a, then V̇ < 0 outside Ωp = {(θ,ω) ∈

TN × RN : ω2
k ≤

√
K1/a ∀ k ∈ V}. Therefore, all

trajectories are trapped in Ωp. The gain K2 in (17) is chosen
to ensure forward flapping motion for (8), as discussed in
Section II-C.

Parameter Symbol Value
Mass m 1.4 kg
Length l 0.31 m
Drag coefficient d 0.5
Moment of inertia b 0.1395 kg·m2

Control gains (K1,K2,K3) (0.5, 3, 1)

TABLE I: Parameters used to simulate the fish robot system, based
on the experimental testbed.

The control law (17) is numerically illustrated by simu-
lating the fish robot school using control (17) and the full
dynamics (8) rather than approximate dynamics (12). The
simulation was conducted for 150 seconds with N = 8
robots using the parameters listed in Table I. The robots
where initialized with random heading, zero velocity, and
zero angular rate. A communication range of three meters
determined the communication topology, which remained
invariant during the simulation based on the random initial
positions of the agents. Figures 3a and 3b show all N
robots converging to the same limit cycle in the (θk, ωk)
and (vk, ωk) planes. As a result, all robots move in the same
direction (on average), as shown in Fig. 3c. The parallel
potential, Vp(t), initially decreases (see Fig. 3d) and then
oscillates around a fixed value as the robots converge to the
limit cycle.

B. Circular Formations

The parallel formation control (17) is based on the forward
swimming control (9); however, a desired heading was not
prescribed, but rather the average heading emerged through



(a) Limit cycle in (vk, ωk) plane (b) Limit cycle in (θk, ωk) plane (c) Paths of fish robots (d) Parallel potential, Vp(t)

Fig. 3: Simulation of (8) with parallel formation control (17) and N = 8 identical fish. The black circular markers in (a)–(c) indicate the
initial simulation states. The last 10 seconds of the limit cycle in (a) and (b) are shown with colored lines.

interactions among agents (depending on their initial con-
ditions). Similarly, a circular formation control is proposed
here that drives the fish robots to continuously adjust their
heading at a known average rate, while aligning the center
position of the nominal circles to an (average) consensus
value. Virtual fish can be introduced to achieve a reference
heading or position [19], [21].

Consider the following circular formation potential in-
spired by (5):

Vc(t, r,θ,ω) =
1

2
ωTω −K2γ

T1 +
1

2
K3〈c, Lc〉 , (19)

where γ = [γ1, . . . , γk]T with γk(t) = cos(θk − ω0t). The
time-derivative of Vc along trajectories of (12) is

V̇c(t, r,θ,ω) = ω̇Tω −K2γ̇
T1 +K3〈ċ, Lc〉 , (20)

where γ̇T1 = −
∑N
k=1 sin(θk − ω0t)(ωk − ω0) , and ω̇Tω

is given in (15).

When averaged over time, the motion of a fish robot
resembles that of a self-propelled particle. Recall that the
reference circle center for a self-propelled particle is ck =
rk + v0ω

−1
0 ieiθk . Since the average swimming speed of the

robots is bK1/ml [6] then, by setting v0 = bK1/ml, the
parameter ω0 may be chosen to yield an average turn rate
and reference circle with radius |v0ω−10 |. However, ω0 should
be sufficiently small to ensure that ωk switches signs along
the limit-cycle so that the robots flap. The third term in (20),
along trajectories of (12), is

〈ċ, Lc〉 =

N∑
k=1

[
l

d
ωk −

v0
ω0

]
ωk〈eiθk , Lkc〉 , (21)

and (20) is rewritten as

V̇c(t, r,θ,ω) =

N∑
k=1

[(
−aω3

k − b−1uk
)
ωk

+K2 sin(θk − ω0t)(ωk − ω0)

+K3

[
l

d
ωk −

v0
ω0

]
ωk〈eiθk , Lkc〉

]
.

(22)

Choosing the control

uk =b(−K1ωk +K2 sin(θk − ω0t)

+K3

[
l

d
ωk −

v0
ω0

]
〈eiθk , Lkc〉) ,

(23)

the derivative (22) becomes

V̇c =

N∑
k=1

[
(−aω2

k +K1)ω2
k −K2ω0 sin(θk − ω0t)

]
≤

N∑
k=1

[
(−aω2

k +K1)ω2
k +K2|ω0|] .

(24)

Thus, V̇c < 0 outside Ωc = {(θ,ω) ∈ TN × RN : ω2
k ≤

(K1 +
√
K2

1 + 4aK2|ω0|)/2a ∀ k ∈ V}, which implies
the system is driven to a bounded set containing the limit
cycle. The K3 term in (23) biases the torque to align the
reference circles, whereas the remaining terms produce a
flapping motion with a given average turn rate. Although
(24) remains negative for any positive K3, this gain must
be chosen sufficiently small to ensure flapping. As with
(17), the feedback control (23) relies only on relative-state
measurements between agents and does not include feedback
linearization of the agents’ dynamics.

The circular formation feedback control (17) is numer-
ically illustrated by simulating (8) with parameters from
Table I and using ω0 = 0.05 rad/s. The simulation was
conducted for ten minutes to demonstrate circular motion.
Figure 4a shows all N robots converge to the same limit
cycle in the (vk, ωk) plane. The orbits in Fig. 4b resemble
the limit cycle in Fig. 3b, however, due to the time-varying
term in (19), they translates along the perimeter of the phase
cylinder. The net result is motion along a circle whose center
position is determined by the initial conditions of the agents
(Fig. 4c). Since the oscillating centers are aligned when all
robots have identical position and phase, the controller drives
all the robots to one side of the circle. In ongoing work,
we seek to stabilize symmetric circular formations [19],
[21]. The circular potential exhibits low and high frequency
oscillations (see Fig. 4d), which correspond to motion around
the reference circle and flapping, respectively.



(a) Limit cycle in (vk, ωk) plane (b) Limit cycle in (θk, ωk) plane (c) Paths of fish robots (d) Circular potential, Vc(t)

Fig. 4: Simulation of (8) with circular formation control (23) and N = 8 identical fish. Black circular markers in (a)–(d) indicate initial
simulation states. The last 5 seconds of the simulation are shown with colored lines in (a) and (b), and the last 90 seconds in (c).

IV. CONCLUSION

Nonlinear control laws are proposed that stabilize parallel
and circular formations in a model of N planar fish robots.
The control design approach extends prior work on collective
motion of self-propelled particles to a school of robotic fish
with Chaplygin sleigh dynamics. The feedback control laws
rely only on relative-state measurements between agents that
interact according to a connected, undirected, communica-
tion graph, and do not include feedback linearization of
the agents’ dynamics. Numerical simulations illustrate the
approach. In ongoing work, we aim to test our control strat-
egy experimentally at the University of Maryland’s Neutral
Buoyancy Research Facility using a robotic fish testbed.
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