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Abstract— This paper addresses the swimming dynamics and
control of a flexible fish-inspired robot based on closed-loop con-
trol of an internal reaction wheel. Previous studies have shown
that the dynamics of a rigid swimming robot are analogous
to the canonical Chaplygin sleigh, due to the nonholonomic
constraint imposed by the Kutta condition applied to the fish-
like tail. The Chaplygin-sleigh dynamics are used here to design
a propulsion and steering controller for a flexible swimming
robot using state feedback. The desired average heading angle
is achieved using a torque calculated from the instantaneous
heading angle and rate. This feedback law stabilizes a limit
cycle about the desired heading angle and produces forward
swimming motion. Analysis of a global bifurcation in the
dynamics under feedback control reveals the set of control
gains that yield the desired limit cycle. Simulations illustrate
planar swimming motion and preliminary experimental results
are provided.

I. INTRODUCTION

Unmanned underwater vehicles have applications includ-
ing maritime surveillance [1], inspection of underwater struc-
ture [2], and search and recovery missions [3]. Two of the
challenges of existing underwater vehicles are achieving high
maneuverability and long endurance. Motivated by the agile
maneuvers of swimming fish evolved over millions of years,
fish-inspired robots may be capable of agile maneuvers,
energy efficiency, and stealthy swimming [4]–[6].

A fish-inspired robot made of soft material helps overcome
some of the limitations of existing rigid designs. Many
fish robots are comprised of two partitions, the main body
and tail fin, and an exposed articulated joint may limit
agility due to the interaction with water [7], [8]. There have
been various attempts to improve the performance of the
mechanisms of external actuators such as screws, fins, or
wings of underwater vehicles [6], [9], [10]. However, these
types of actuators have drawbacks in that they may generate
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excessive noise, vibration, corrosion, propulsive inefficiency,
or even adverse environmental side effects [11].

Internal actuation commonly used for spacecraft or satel-
lites [12] is an alternative approach to improve maneuverabil-
ity by rotating a reaction wheel. The spinning rotor follows
a periodic profile to rotate the body by the conservation of
angular momentum, and the rotating body generates thrust
for propulsion by interaction with the surrounding fluid.
Internal motors contained in a pressure vessel are prevented
from contacting the water, reducing motor corrosion and
vibration.

Previous works demonstrated translational motion of a
swimming robot using internal actuation such as a spinning
rotor or mass displacement [13]–[15]. Several authors de-
scribed the swimming motion of Chaplygin sleigh using an
internal rotor [16], [17] and heading-angle tracking using
attitude feedback [15], [17].

The swimming motion of a rigid fish robot is known to
have a nonholonomic constraint at the trailing edge due
to the Kutta condition [18], analogous to the Chaplygin
sleigh [19]. The trailing edge of the sleigh is subject to
a nonholonomic constraint that permits no velocity in the
perpendicular direction. A rotating reaction wheel at the
center of mass generates the sleigh’s translational motion,
like the forward swimming motion of a fish robot [15], [19].

To steer a swimming robot using a reaction wheel, various
torque profiles such as symmetric, asymmetric, and impul-
sive have been used [13], [19]. Other works focus on the
analysis of the energy of the Chaplygin sleigh’s motion as
a piecewise-smooth nonholonomic constraint and simulate
transitions between distinct dynamics belonging to the slip
and stick modes [15], [20]. However, these prior works are
limited to solid-bodied robots [15], [17]–[20], and do not use
a state-feedback control.

Prior work within our research group has studied the
control of novel underwater vehicles. Closed-loop control of
a torque-driven flexible fish robot for flow-relative swimming
motion was accomplished in a flow tank using pressure sen-
sor data for estimation [11]. Artificial lateral lines comprised
of pressure sensors were also used to estimate the location of
vortices and actuate a rigid fish robot through a vortex street
in a Kármán gaiting pattern [21]. This paper is an extension
of these works to develop free-swimming capabilities with
an internal rotor.

Here, we present swimming and steering of a novel
bioinspired underwater vehicle using a reaction wheel as an
internal actuator. The contributions of this paper are (1) the
fish-inspired design of a free-swimming underwater vehicle



made of flexible silicone and 3D-printed material; (2) state-
feedback control for heading control using reaction-wheel
torque including preliminary experimental demonstration of
the closed-loop results; and (3) limit cycle and bifurcation
analysis of the closed-loop dynamics.

The outline of this paper is as follows. Section II provides
mathematical background on the Chaplygin sleigh dynamics
and motor equations. Section III presents the feedback con-
trol law and analyzes the closed-loop system to determine
the range of control gains that produce the desired motion.
Section IV presents the design of an internally actuated robot
and preliminary experimental results. Section V summarizes
the paper and discusses ongoing work.

II. BACKGROUND

This section describes the mathematical modeling for
swimming motion under a nonholonomic constraint using
the Chaplygin sleigh dynamics and discusses the motor
dynamics for internal actuation of the fish robot.

A. Chaplygin sleigh dynamics

Let x and y be the center of mass of the Chaplygin sleigh, l
be the distance from the center of mass to a fixed knife edge.
θ represents the heading angle in the inertial coordinates, as
shown in Fig. 1. The rotation angle of the reaction wheel
with respect to the body frame is ψ . The total mass of the
body and wheel is denoted as m. The moment of inertia of
the body about the z-axis is J and that of the reaction wheel
is Jw. Consider a body-fixed reference frame Xb and Yb. The
translational velocity of the robot has magnitude v and is
constrained to point in the Xb direction. This nonholonomic
constraint is expressed as [16]

ẋsinθ − ẏcosθ + lθ̇ = 0. (1)

The velocity of the center of mass of the body is described
in terms of the velocities ẋw and ẏw of the wheel

ẋ = ẋw− lθ̇ sinθ

ẏ = ẏw + lθ̇ cosθ , (2)

Fig. 1: Coordinates for a fish robot modelled as a Chaplygin
sleigh

where ẋω and ẏw are equivalent to vcosθ and vsinθ ,
respectively. When an input torque is applied to the body,
the drag-free equations of motion are [16], [22]

ẋ = vcosθ − lθ̇ sinθ (3)
ẏ = vsinθ + lθ̇ cosθ (4)
v̇ = lθ̇ 2 (5)

θ̈ = −mlvθ̇ +u
J+ml2 (6)

ψ̈ =
Jwmlvθ̇ +(J+ Jw +ml2)u

(J+ml2)Jw
(7)

where ψ̇ is the angular rate of the wheel. Applying input
torque u to the wheel in (6) enables the robot to swim and
steer.

B. Motor model

To generate input torque using a DC motor and a wheel,
we introduce the following relationships:

τm = Kτ i, e = KeΩ, (8)

where Kτ is the motor torque constant, τm is motor torque, i is
current, Ke is the back EMF (Electromotive Force) constant,
Ω is the motor angular rate, and e is the back-EMF voltage.
Modeling the motor system as a closed-loop RLC circuit
yields V = L di

dt + iR+ e. Neglecting the inductance L,

V = iR+KeΩ, (9)

where V denotes applied total voltage and R is the resistance
of the motor winding. When a torque τm is applied by the
motor, it is amplified by the gear ratio Kg, thus the input
torque applied to the reaction wheel is u=Kgτm. The angular
rate ψ̇ of the reaction wheel, which is measured by an en-
coder, is reduced by the gear ratio to ψ̇ =Ω/Kg. Substituting
(8) and the gear ratio into (9) yields the relationships

V =
τm

Kτ

R+KeKgψ̇ (10)

=
u

KgKτ

R+KeKgψ̇, (11)

u =C1V −C2ψ̇, (12)

where the constants are C1 = Kτ Kg/R and C2 = Kτ KeK2
g/R.

Since voltage V applied to the motor is proportional to
the duty ratio of Pulse Width Modulation (PWM), then
V =VmaxPWM/255 and any arbitrary torque profile can be
determined by PWM. The relation between wheel torque and
PWM is

u =
Kτ Kg

R

(
Vmax

PWM
255

−KeKgψ̇

)
. (13)

The PWM corresponding to u is

PWM =
255R

Kτ KgVmax

(
u+

Kτ KeK2
g ψ̇

R

)
. (14)

To characterize the motor used in experiments, Kτ and
Ke were determined offline as follows. Stall current was
measured at 3 A when a torque load of 0.595 Nm was applied



Parameter Value Units Parameter Value Units
Kτ 0.01 Nm/A Saturation 255 -
Ke 0.01 Nms Deadband 26 -
Kg 20.4 - R 4 ohm
m 1.8 kg K1 1 -
l 0.2 m K2 4 -
b 0.045 kgm2 d 0.5 sec−1

TABLE I: Parameters for motor (top) and simulation (bot-
tom)

to the motor. A maximum speed of 500 rpm with free load
was measured at a rated voltage (12V). Then, Kτ and Ke
in (8) were determined to be 0.01 [Nm/A] and 0.01 [Vs],
respectively. Given the resistance R and a gear ratio of Kg
20.4, plugging them into (11) yields C1 = 0.05 [Nm/V] and
C2= 0.01 [Nms] in (12).

The PWM range is from 0 to 255 and increasing PWM
generates more torque by applying more voltage. However,
the motor eventually reaches saturation in generating torque.
Hence, if an input torque requires more than the physical
upper limit of motor torque, its PWM command stays at 255,
while maintaining the maximum torque level. In addition,
there also exists a deadband where small PWM commands
under lower limit do not generate any torque.

III. STATE-FEEDBACK CONTROL DESIGN AND ANALYSIS

This section presents the design of a state-feedback control
for the dynamic model based on the Chaplygin sleigh. The
control law causes a bifurcation of the closed-loop system
that yields either desired or undesired limit-cycle behavior,
depending on the control gains.

A. State-feedback control design

For closed-loop control of heading angle, control input
torque u to the wheel in (6) uses feedback of angular rate
θ̇=ω and orientation θ . Let θd be the desired heading angle.
Consider the control law

u = b(−K1ω−K2 sin(θd−θ)) , (15)

where b is the moment of inertia J+ml2, K1 and K2 are the
feedback gains, and the PWM input is determined by using
(15) in (14).

In state-space form, ignoring the (x,y) position and
wheel angle ψ and rate ψ̇ , the reduced state vector, z is[
v θ ω

]T . The feedback law (15) with drag coefficient
d ≥ 0, mass m > 0 , length l > 0, moment of inertia b > 0,
K1 > 0, and K2 > 0 results in the closed-loop dynamics:

v̇ = lω2−dv (16)
θ̇ = ω (17)

ω̇ = −ml
b

vω +K1ω +K2 sin(θd−θ), (18)

Evaluating (18) with θd=θ and ω̇=0 predicts the average
swimming speed to be v̄ = K1b

ml .

Fig. 2: Simulation with varying drag coefficient. Desired
heading angle θd is set to 30◦ until 20 seconds and then
becomes 90◦

Fig. 3: Simulated swimming speed vs. angular rate for
various drag coefficients

Simulations using the parameters in Table I are shown in
Fig. 2 and 3. Changing the reference heading angle θd during
swimming steers the vehicle to the new heading reference.
The forward swimming distance decreases when the drag
coefficient increases and the heading angle exhibits larger
oscillations as shown in Fig. 2. The relationship between
swimming speed and angular rate under drag creates a limit
cycle as shown in Fig. 3. As the drag coefficient increases,
the limit cycle shifts to the left and the amplitude of ω

increases.

B. Bifurcation analysis of closed-loop system

The closed-loop system exhibits bifurcation behavior in
which the desired limit cycle corresponding to forward
swimming behavior is achieved only for certain values of the



Fig. 4: Bifurcations of the nonlinear pendulum in phase space: (Left) unstable limit cycle for −2
√

K2 < a < 0; (Middle)
stable limit cycle for 0 < a < 2

√
K2; and (Right) two stable limit cycles for a > a∗ > 2

√
K2. Black dashed lines are the

stable and unstable manifolds of the linearization of the saddle point at θ =±π .

control gains K1 and K2. For other values of these gains, the
angular velocity in the resulting limit cycle does not switch
signs and the model fish spins in a circle. We now establish
the existence of the desired limit cycle and determine the
allowable range of gains.

First, (16) can be re-written as

v̇ = d
(

l
d

ω
2− v

)
(19)

For ω̇ = 0, i.e., ω = ω0 constant, the subsystem in (19)
exponential stabilizes v = l

d ω2
0 with Lyapunov function

V1(v) =
1
2

(
l
d

ω
2
0 − v

)2

.

For d � 1, there is a time-scale separation between the
v subsystem (fast) and the (θ ,ω) subsystem (slow). Let
a = ml2

bd > 0. Without loss of generality, let reference angle
θd = 0. Substituting the solution v= l

d ω2 (with ω treated as
a constant) into the slow subsystem (17)–(18) yields

θ̇ = ω

ω̇ = −aω
3 +K1ω−K2 sinθ , (20)

which is the equation of motion of a pendulum with non-
linear damping and natural frequency

√
K2. The system (20)

has equilibrium points (0,0) and (±π,0). As we will show,
it also has a limit cycle for certain values of a and K1.

The Jacobian of (20) is

∂ f
∂ z

=

[
0 1

−K2 cosθ −3aω2 +K1

]
,

which implies the origin (0,0) is an unstable node or focus
and the point (±π,0) is a saddle. To facilitate analysis of
the limit cycle in (20), let K1 = a, which yields

θ̇ = ω (21)
ω̇ = a(−ω

3 +ω)−K2 sinθ . (22)

The linearization of (21)–(22) at (θ ,ω) = (0,0) becomes

∂ f
∂ z

∣∣∣∣
(0,0)

=

[
0 1
−K2 a

]
,

which has eigenvalues λ1,2 = a
2 ±

1
2

√
a2−4K2. Therefore,

the eigenvalues are complex if |a|< 2
√

K2. Consider a as a
bifurcation parameter. For −2

√
K2 < a < 0, the origin is a

stable focus and, for 0 < a < 2
√

K2, the origin is an unstable
focus. Therefore, as a passes through zero, there is a Hopf
bifurcation [23] giving rise to a stable limit cycle for 0 <
a < 2

√
K2 (and an unstable limit cycle for −2

√
K2 < a < 0).

For some a∗> 0, there is another global bifurcation and the
limit cycle splits into two limit cycles that orbit the phase
cylinder [24]: one in the positive direction and one in the
negative direction. This global bifurcation occurs when the
limit cycle tangentially intersects the stable manifold of the
saddle point at θ =±π .

For the case where K1 6= a, a numerical analysis to
determine the presence of the desired limit cycle uses the
following scheme. For a given set of parameters a,K1,K2 > 0,
choose an initial condition near the origin (θ ,ω) = (0,0),
which is an unstable fixed point. Simulate the system dy-
namics for a length of time observed to be much higher than
the period of the limit cycle. If, at the end of the simulation,
|θ | > π , then the desirable limit cycle is not present. This
bifurcation analysis shows that if a trajectory reaches the
saddle point (±π,0), the desired limit cycle breaks into two
undesired ones as shown in Fig. 4.

To determine which gains (K1,K2) result in the desired
behavior for a given set of physical parameters a, we

Fig. 5: Numerical bifurcation analysis: the region above a
given curve results in the desired limit cycle.



performed this numurical simulation scheme across many
values of K1,K2, and a. Fig. 5 shows the results where,
for a given a, pairs (K1,K2) above the curve result in the
desirable limit cycle and those below do not. Gain K1 has
an indirect effect on the amplitude of oscillations about
the desired heading angle: larger K1 creates larger heading
oscillations and faster average speed v. Gain K2 appears in
the dynamics as the square of the natural frequency of a
pendulum system, so oscillations about the desired heading
angle occur at frequency

√
K2. This analysis shows that for

a given K2, K1 can be increased only up to the bounding
curve in Fig. 5.

IV. EXPERIMENTAL TESTBED AND RESULTS

We designed a fish robot made of flexible silicon rubber
and 3D-printed material as shown in Fig. 6. Inspired by the
body shape of carangiform fish [25], the robot was modeled
with a Bluegill side silhouette and a Joukowski airfoil top
silhouette, to be used in the mathematical analysis of flow
sensing [21].

The robot body is made of Dragon Skin 10, a flexible sil-
icon rubber that is easily molded to any shape. Its flexibility
provides tail flapping motion when the reaction wheel rotates.
To accommodate the motor and electronic components, the
robot contains a pressure vessel made of 3D-printed PLA
plastic coated with epoxy to be watertight. To stabilize and
restore the body against rolling motion, the reaction wheel is
placed just below the center of buoyancy so that the center
of mass is lower than the center of buoyancy. The physical
specification is provided in Table II.

The robot is embedded with various hardware compo-
nents shown in Fig. 7. It includes the ARM Cortex-M4
micro processor, reaction wheel, Pololu 20.4:1 geared DC
motor, motor driver, 48 pulse rotary encoder, 11.1V LiPo

Item Robot Wheel Units
Size 317(L) x 80(W) x 150(H) 59(D) mm
Mass 1.4 0.4 kg
Inertia 0.005 0.0003 kgm2

TABLE II: Fish robot specification

Fig. 6: A reaction-wheel-based swimming robot made from
flexible material. All electronic modules are contained in a
watertight pressure vessel

battery, micro SD card, custom interface PCB, power switch,
umbilical port for charging and programming, color LEDs,
5/3.3 V regulators, multiplexer, 2.4GHz XBee transceiver,
and MPU9250 IMU sensor. The communication between the
micro processor and the devices is via serial SPI and I2C, and
onboard data is stored in a micro SD card for data analysis. A
XBee module transmits data wireless to a remote PC in real
time. Wireless communication supports several commands
such as start and stop for swimming, heading angle reset,
feedback gain setting, and retrieving the files saved on the
SD card. The RGB LEDs are activated to convey the state
of the robot while swimming.

Swimming motion and steering tests for a submerged
vehicle have been demonstrated in the Neutral Buoyancy Re-
search Facility of the University of Maryland (Fig. 8b). The
facility is equipped with 16 Qualisys underwater cameras to
track two reflective markers mounted on either side of the
fish robot. The desired heading angle is set to zero when the
reaction wheel starts to spin and the robot swims forward.
To verify the trajectory and heading angle, the trajectory
from the Qualisys camera system is depicted in Fig. 8a.
The heading angle error may be caused by yaw rate drift of
the IMU sensor, unmodeled motor friction, or water currents
around the bottom of the water tank (Fig. 8b).

V. CONCLUSION

This paper presents a novel design of a flexible swimming
robot actuated by an internal reaction wheel for closed-loop
control of heading control. We examine a dynamic model
based on the Chaplygin sleigh. A state-feedback control
law propels the robot along the desired heading angle.
Bifurcation analysis shows that the swimming motion of
a fish robot is affected by the stability of a limit cycle
in phase space. We determine the set of gains for which
swimming motion occurs. Simulations illustrate tracking a
heading reference and preliminary underwater tests demon-
strate successful swimming motion. In ongoing work, we
seek to refine the model to include rotational drag from the
fluid and friction in the motor dynamics. Furthermore, we
seek to implement flow sensing and multi-vehicle control.

Fig. 7: A custom PCB interfaces electronic devices in a 3D-
printed pressure vessel. The two-layer PCB is designed to
have an elliptical shape to fit the container



(a) (b)

Fig. 8: (a) Trajectory captured by the Qualisys motion capture system in (b) the UMD Neutral Buoyancy Research Facility
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