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Abstract— This paper presents a dynamics and control
framework to accomplish six degree-of-freedom tracking of
attitude, velocity, and rotational rate setpoints for a remotely
operated vehicle with nonlinear thruster dynamics. The thruster
dynamics contain input dead zones that complicate linear state
feedback control design, and are compensated with nonlinear
control strategies, specifically feedback linearization. Modeling
the thruster dynamics in the control design mitigates the input
dead zones. Simulations with experimentally obtained thrust
parameters show improved reference setpoint tracking when
compensating for the thruster dynamics.

I. INTRODUCTION

Remotely operated vehicles (ROVs) are widespread and
versatile, being applicable to deep-sea exploration and min-
ing [1], marine research [2], hull inspection [3], and wreck-
age surveying [4]. To accomplish these tasks, ROV control is
typically accomplished through a variety of methods ranging
from direct human-in-the-loop control to autonomous, logic-
driven control [5]. Controllers for autonomous or semi-
autonomous operation have been designed through a vari-
ety of feedback frameworks, including feedback lineariza-
tion [6], [7], robust control [8], [9], and adaptive control [9],
[10].

Most ROV operations are accomplished by semi-
autonomous or full human control, whereby direct com-
mands from an operator are either processed by a controller
or fed directly to individual thrusters [5]. Direct-controlled
ROVs typically have orthogonal thruster configurations that
allow for intuitive translations from commands to thrusts, but
such actuator placement can complicate the vehicle design.
As a result, fewer thrusters are often used, thus limiting
maneuverability of the ROV [5]. To maintain generality,
we analyze an ROV that has a specific thruster placement
configuration to accomplish fully actuated control. An auto-
stabilizing control system is assumed to process user com-
mands into setpoints.
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This work is presented with relevance to the application
of ROVs to aquatic imaging, the primary function of an
ROV under development by the National Geographic Society
(NGS) shown in Fig. 1. Underwater filmmaking requires
smooth setpoint tracking with human-in-the-loop operations.
Reference setpoint attitudes and velocities are typically
generated through user input and, for complicated thruster
configurations, controllers are capable of effectively tracking
commanded trajectories. Often ROVs maintain only active
closed-loop control of three or four degrees of freedom,
while allowing roll and pitch parameters to be passively
stabilized by relying on the natural stability of the vehicle
due to the relative locations of the centers of gravity and
buoyancy [5], [7], [8], [11]. However, for the purposes of
deep-sea imaging, it is useful to have full user control of all
attitude parameters, similar to a multi-rotor aerial drone, in
order to obtain the desired cinematic effects.

To enhance controller performance and reduce limit-cycle
behavior, actuator dynamics are accounted for in the con-
trol design [8], [12]. A variety of methods for modeling
thrusters for underwater vehicles have been developed in
previous work. A two-state axial flow dynamic model [13]–
[15] accounts for thrust overshoot but is limited to uni-
directional flow characterization. A two-state rotational flow
model [16] has no more model accuracy than the axial
flow model. Lastly, a multi-directional axial flow model [17]
requires a large number of parameters to be identified with
extensive system testing. This paper expands upon a single-
state voltage-driven thruster model presented in [8]. We
consider an analog voltage signal (throttle) as the control
input for the thruster dynamics, which also exhibit a dead
zone nonlinearity. A single-state dynamic thruster model is
valid for low-speed movement [8], [14], [15].

In previous work, robust and adaptive control techniques
have been used for dead zone compensation in the absence
of well-identified model parameters [18], [19]. This paper
utilizes feedback linearization to compensate for nonlinear-
ities in thruster dynamics, because high-quality propeller
speed, thrust, and torque data obtained from a six-axis
Gough-Stewart platform load cell (Fig. 2) are available [20].
Other techniques [18], [19] for improving the robustness of
feedback-linearizing methods are out of the scope of this
paper.

The contributions of this paper are (1) a nonlinear con-
trol law for throttle-controlled thruster dynamics with in-
put dead zones using experimentally obtained parameters;
and (2) implementation of a feedback-linearizing and dead-
zone-compensating thruster controller for the six degree-of-
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Fig. 1. Computer rendering of the ROV under development by the National
Geographic Society. Body-fixed reference frame axes are marked.

freedom (DOF) attitude and speed setpoint tracking of an
ROV with throttle-controlled thruster dynamics. In addition,
we illustrate the closed-loop control results through simula-
tion and compare these to an alternative thruster controller
based on a lookup table that does not account for actuator dy-
namics. Ongoing work seeks to experimentally demonstrate
the results on an ROV testbed currently under development
(see Fig. 1).

The organization of this paper is as follows. Section II
presents the full six DOF equations of motion for a rigid-
body ROV and a feedback-linearizing thrust control law
to stabilize the setpoint-tracking dynamics of the system.
Section III presents the rotor-speed dynamics of the thrusters
and proposes a nonlinear analog throttle signal control law to
achieve stability of setpoint tracking. Section IV combines
the control methods of the previous sections into the full
state model. Closed-loop performance is illustrated through
simulation and comparison to a controller with uncompen-
sated thruster dynamics. Section V summarizes the paper and
discusses ongoing work.

II. ROV DYNAMICS AND CONTROL

The rigid-body dynamics of an underwater vehicle includ-
ing hydrodynamic drag and added mass parameters defined
in a body-fixed reference frame are [21]

M ν̇ + C(ν)ν +D(ν)ν + g(η) = τ (1)

η̇ = J(η)ν, (2)

where the portion of the state vector describing body frame
linear velocities (u, v, and w) and angular velocities (p, q,
and r) is given by ν = [u, v, w, p, q, r]T , and the terms
describing position and orientation of the body frame with
respect to the Earth-fixed frame are η = [x, y, z, φ, θ, ψ]T ,
where x, y, and z are Earth-fixed position coordinates and
φ, θ, and ψ are the 3-2-1 Euler angles of roll, pitch, and
yaw, respectively [11]. If absolute position or orientation are
not relevant, some or all of the Earth-relative states may be

Fig. 2. Six-axis Gough-Stewart platform testbed setup instrumented with
six load cells used for system identification of an ROV thruster [20].

omitted from the full state vector. We consider the task of
setpoint control, where the Earth-relative coordinates x, y,
and z are not included in the state feedback control. There-
fore, we use the attitude-only state vector, η = [φ, θ, ψ]T .
M denotes the diagonal mass and inertia matrix including

added mass and inertia parameters, C(ν) is the nonlinear
Coriolis and centripetal matrix, D(ν) is the diagonal lin-
ear and quadratic hydrodynamic drag matrix, J(η) is the
transformation matrix describing attitude rate of the vehicle
body-fixed frame relative to the Earth-fixed frame, and g(ν)
is the restoring force and moment vector that combines
gravitational and buoyancy effects. Additionally, the external
force/moment vector is treated as the control input, defined
as [21]

τ = KtT , (3)

where Kt is the thruster configuration matrix that describes
the orientation of each thruster and T is the vector of input
thrusts.

Martin and Whitcomb [6] define the following feedback-
linearizing control law, assuming perfect knowledge of ve-
hicle states:

T =K−1
t [C(ν)ν +D(ν)ν + g(η) +M(ν̇d

−KP (η)∆η −KD∆ν)],
(4)

where Kt is assumed to be invertible (or at least has a
pseudo inverse). The NGS six-thruster ROV is amenable
to this framework. Additionally, let ∆ν = ν − νd and
∆η = η − ηd convert the state-space equations into error
coordinates relative to known reference attitude and velocity
setpoints νd and ηd obtainable from user inputs. Assume ν̇d

is readily known and continuous.
The proportional gain matrix KP (η) is a 6×3 matrix

varying with vehicle orientation relative to the Earth-fixed



frame. The derivative gain matrix KD is a constant positive-
definite symmetric matrix. The control law (4) yields the
closed-loop dynamics [6]

d

dt
(∆ν) = −KP (η)∆η −KD∆ν (5)

d

dt
(∆η) = J(η)∆ν, (6)

which asymptotically stabilize the origin ∆ν = 0 and ∆η =
0 [6].

III. THRUSTER DYNAMICS AND CONTROL

A. Dynamic Thruster Model with an Input Dead Zone

The control law in (4) defines a desired set of actuator
thrusts that stabilize the closed-loop setpoint-tracking dy-
namics of the ROV. Thrust can be related to the propeller
angular velocity of an ROV thruster by a dead zone func-
tion [8]

T (n) =


kT1(n|n| − δT1), n|n| ≤ δT1

0, δT1 < n|n| < δT2

kT2(n|n| − δT2), n|n| ≥ δT2,

(7)

where n represents propeller angular velocity, the constants
kT1, kT2, and δT2 are positive, and δT1 is negative. In order
to determine the desired propeller angular velocity nd for
a desired thrust Td, inverting the dead zone function (7)
yields [8]

nd =


sgn(Td)

√
| Td

kT1
+ δT1|, Td < 0

0, Td = 0

sgn(Td)
√
| Td

kT2
+ δT2|, Td > 0.

(8)

The desired propeller angular velocity nd is fed back into
a control scheme for the actuator dynamics. Bessa et al. [8]
propose the following voltage-driven dynamic model for an
ROV thruster:

ṅ = −k1n− k2n|n|+ kvu, (9)

where u is the input motor voltage and the constants k1, k2,
and kv are positive. Equation (9) is a single-state thruster
model that is valid at low propeller speeds [8].

We consider an alternate version of (9) that, instead of
being driven by a direct motor voltage, is controlled by an
analog voltage throttle signal with a dead zone around zero
volts. The new model is

ṅ = −k1n− k2Q(n) + γ(u), (10)

where Q(n) is the reaction torque on the propeller, and the
function γ(u) relates throttle signal u to motor torque by a
dead zone function

γ(u) =


kv1(u− δv1), u ≤ δv1
0, δv1 < u < δv2

kv2(u− δv2), u ≥ δv2.
(11)

The effects of the nonlinear function (11) on (10) are
presented in Fig. 3 by plotting steady-state propeller speed
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Fig. 3. Steady-state propeller angular velocity data from [20] resulting
from constant throttle inputs show the nonlinear dead zone behavior of the
model (10).

data as a function of the constant throttle voltages that drive
the system to those operating points. A fit based on (10)
is also plotted to validate the accuracy of the model. Note
that (11) can be inverted as

γ−1(α) =


k−1
v1 α+ δv1, α < 0

0, α = 0

k−1
v2 α+ δv2, α > 0,

(12)

for any generic commanded motor torque α.
In (10), Q represents the collected inertial and hydrody-

namic reaction torque enacted on the thrusters, which is often
a quadratic function of n, and may be defined with a dead
zone similar to (7), i.e.,

Q(n) =


kQ1(n|n| − δQ1), n|n| ≤ δQ1

0, δQ1 < n|n| < δQ2

kQ2(n|n| − δQ2), n|n| ≥ δQ2,

(13)

with positive constants kQ1, kQ2, and δQ2, and negative
constant δQ1. Steady-state thrust and torque data of a
thruster [20] were used to identify the parameters in the
models (7) and (13). The models were fit to these data as
shown in Fig. 4.

B. Feedback-Linearizing Control Design

To drive the dynamics (10) to a known setpoint nd
we use the inverse dead zone function (12) and feedback
linearization to derive a control law that compensates for
nonlinearities in the thruster dynamics. We show below that
this framework exponentially stabilizes n = nd.

Theorem 1: Assuming u can change instantaneously, the
dynamics (10) exponentially stabilize the setpoint ∆n = n−
nd = 0 using the control law

u = γ−1(α), (14)

where γ−1(α) is defined in (12) and

α = ṅd + k1n+ k2Q(n)− ku∆n, (15)



-3000 -2000 -1000 0 1000 2000 3000

Propeller Speed [rpm]

-60

-40

-20

0

20

40

60
T

h
ru

st
 [

N
]

-1

-0.5

0

0.5

1

1.5

2

T
o
rq

u
e 

[N
m

]

Experiment

Model

Experiment

Model

Fig. 4. Steady-state thruster model compared to experimental data
from [20] for thrust and torque.

for ku > 0.
Proof: Consider the scenario where the system is

operating under the first condition in (12), i.e., α < 0.
Therefore, (10) becomes

ṅ =−k1n− k2Q(n) + ṅd + k1n+ k2Q(n)− ku∆n
= ṅd − ku∆n,

(16)

which implies
d

dt
(∆n) = −ku∆n. (17)

Equation (17) is a scalar Hurwitz linear system in error
coordinates relative to the setpoint nd.

The same steps yield identical results for the third con-
dition of (12), so operating on either end of the dead
zone yields the system (17). In the case that α = 0,
substituting (15) into (10) also yields (17), which completes
the proof.

If perfect knowledge of ṅd is not available in practice, a
piecewise constant estimate may be used in its place. We
observe the following result.

Corollary 1.1: Let δ > 0. Using the estimate ˙̃nd = ṅd+ε,
where the estimation error ε satisfies |ε| < δ, the solution to
the closed-loop dynamics (17) using the control law (14) is
bounded by |∆n| ≤ δ/ku.

Proof: With the estimate ˙̃nd = ṅd + ε, (17) becomes

d

dt
(∆n) = −ku∆n+ ε. (18)

The time-derivative of the quadratic Lyapunov function V =
(∆n)2/2 along solutions of (18) satisfies

V̇ ≤ −ku(∆n)2 + |∆n|δ, (19)

which implies the closed-loop dynamics (17) converge to
|∆n| ≤ δ/ku.

In practice, physical thrusters have a maximum ramp
speed, i.e., u cannot change instantaneously, which limits
the convergence rate to the desired setpoint. We model this
limitation as a maximum allowable throttle change rate,

i.e., u̇max. Since u cannot change instantaneously, it may
pass through the dead zone. The maximum amount of time
the motor spends in the dead zone while transitioning to a
thruster operating point outside the dead zone is

tmax =
δv2 − δv1
u̇max

> 0. (20)

During this time, the dynamics (10) will be unforced, requir-
ing additional analysis of the system in this scenario.

Theorem 2: Consider the dynamics (10). When u is
within the throttle dead zone, the zero-input dynamics

ṅ = −k1n− k2Q(n) (21)

exponentially stabilize the origin n = 0.
Proof: We analyze the stability properties of the un-

forced system (21) with the quadratic Lyapunov function

V =
1

2
n2, (22)

which varies according to

V̇ = −k1n2 − k2Q(n)n. (23)

Equation (23) can take one of three forms depending on the
value of n. Because the constants k1 and k2 are positive, V̇
is negative definite if Q(n)n is positive semi-definite for all
n. According to (13), Q(n) either has the same sign as n or
is zero for δQ1 < n|n| < δQ2, because kQ1, kQ2, and δQ2

are all positive and δQ1 is negative. We therefore conclude
Q(n)n is positive semi-definite, and V̇ is negative definite
for all n. Note that kan2 ≤ V ≤ kbn

2 and V̇ ≤ −k1n2
for kb > 0.5 > ka > 0, which implies that the unforced
system (21) exponentially stabilizes the origin.

The thruster motor operates in the dead zone in one of only
three scenarios: during startup, wind-down, or a transition
between forward and reverse thrust. In all of these scenarios,
convergence to zero propeller speed is either advantageous
or inconsequential (as in the case of motor startup). Typically
tmax in (20) is on the order of tens of milliseconds, whereas
the wind-down time for an ROV thruster was experimentally
observed to be as much as half a second [20]. As a result,
crossing the throttle dead zone is not predicted to destabilize
the physical system during regular operation. Fig. 5 depicts
a simulation of the dead-zone-compensating controller (14)
successfully driving the actuator dynamics from multiple
operating points of n to a positive setpoint value of nd, taking
into account the limitation |u̇| ≤ u̇max.

IV. FULL MODEL AND SIMULATION RESULTS

With analysis of the capabilities of the thruster control
design complete, we further verify its performance with
full system simulations. The systems in (1), (2), and (10)
represent the full system dynamics of the ROV, including
rigid-body dynamics and uncoupled actuator dynamics for
each thruster, i.e.,

ẋ = f(x) + g(u), (24)
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Fig. 5. Simulations of the dead-zone-compensating controller driving a
thruster from multiple operating points to a positive setpoint with consider-
ation for u̇max.

where x = [ηT νT nT ]T and n is the vector of the (six)
thruster states of the ROV. The vector fields f(x) and g(u)
are

f(x) =

 J(η)ν
M−1[KtT (n)− C(ν)ν −D(ν)ν − g(η)]

−Knn−KQQ(n)

 ,
(25)

and g(u) = [0 · · · 0 γ(u)]T , where Kn and KQ are diagonal
matrices containing the parameters of the dynamics from (10)
for each individual thruster. The closed-loop dynamics take
the form

d

dt

∆η∆ν
∆n

 =

 J(η)∆ν
−KP (η)∆η −KD∆ν

−Ku∆n

 (26)

where Ku is the diagonal matrix of feedback gains.
Theorem 3: The full closed-loop dynamics for the

ROV (26) asymptotically stabilize the origin ∆x = x−xd =
0.

Proof: The system (26) combines the dynamics in (1)
and (2), which asymptotically stabilize the origin ∆ν = 0
and ∆η = 0, with the dynamics of the thrusters (10)
which are fully uncoupled and each exponentially stabilize
the origin ∆n = 0. Therefore, because each sub-system is
asymptotically stable, the full closed-loop system asymptot-
ically stabilizes the origin ∆x = 0.

Simulations of the system (24) verify the setpoint-tracking
performance of the dead-zone-compensating controller (14)
when implemented in a full-vehicle scenario. Tracking per-
formance of the control scheme compares favorably to a
lookup table that is based solely on data presented in Fig. 3.
The lookup table determines the control input that drives a
thruster to the desired steady-state propeller angular velocity.
This method does not account for actuator dynamics, and
assumes rapid convergence to steady-state propeller speed.

Fig. 6 indicates superior performance of the dead-zone-
compensating controller over the lookup-table method. The

tracking task involves varying setpoints in forward velocity
u, pitch rate q, and pitch θ. Parameter values used in
simulation of the thruster dynamics are reported in Ta-
ble I. Physical parameters for the thrusters were determined
via system identification methods using a six-axis Gough-
Stewart platform load cell [20].

To further compare performance of the control methods,
the root-mean-square tracking error (RMSE) was calculated
for each degree of freedom over the course of the simulation
time period and normalized by the average value of each
respective degree of freedom. Normalized RMSE results are
presented in Fig. 7. The dead-zone-compensating controller
displays comparable tracking performance in linear velocities
when compared to the lookup-table method, but significant
improvement comes in tracking attitude and angular velocity
setpoints, with tracking errors being reduced by as much as
50%. Divergence from the reference setpoint displayed in
the performance of the lookup-table controller is attributed
to the trade-off of tracking forward velocity with the other
states, as multiple setpoints were processed simultaneously.

V. CONCLUSION

This paper presents a modeling and control framework for
using feedback-linearizing control methods on throttle-driven
ROV thrusters that have input dead zones. Compensating
the nonlinearities in the actuator dynamics achieves better
setpoint tracking performance in simulation when compared
to lookup-table control methods that do not account for
thruster dynamics. Overall the use of feedback linearization
to stabilize both the rigid-body vehicle dynamics and the
thruster behavior is effective as long as sufficient knowledge
of model parameters is available. Ongoing work seeks to
extend this framework to a two-state model of thruster
dynamics with the inclusion of axial flow as an unmeasured
state. Current and future control schemes will support up-
coming field trials with the NGS ROV.

TABLE I
THRUSTER MODEL PARAMETER VALUES

Parameter Value Units
kT1 1.047×10-5 N·rpm-2

kT2 9.045×10-6 N·rpm-2

δT1 -2.919 rpm2

δT2 0.1994 rpm2

kQ1 1.729×10-7 N·m·rpm-2

kQ2 3.570×10-7 N·m·rpm-2

δQ1 -1.962 rpm2

δQ2 1.748 rpm2

kv1 7578 rpm·(V·s)-1

kv2 6770 rpm·(V·s)-1

δv1 -0.8475 V
δv2 0.9254 V
k1 11.30 s-1

k2 646.1 rpm·(N·m·s)-1

u̇max 100 V·s-1
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Fig. 6. Setpoint tracking performance comparison between the proposed dead-zone-compensating controller and thrust-table-based control for (a) linear
forward velocity, (b) angular pitch velocity, and (c) pitch angle.

ACKNOWLEDGMENT

The authors would like to thank Arthur Clarke, Alan
Turchik, and Cody Goldhahn of the National Geographic
Society for their assistance with thruster testing and data
collection.

REFERENCES

[1] M. Ludvigsen, F. Søreide, K. Aasly, S. Ellefmo, M. Zylstra, and
M. Pardey, “ROV based drilling for deep sea mining exploration,”
in OCEANS Aberdeen, June 2017, pp. 1–6.

[2] R. Nian, B. He, J. Yu, Z. Bao, and Y. Wang, “ROV-based underwater
vision system for intelligent fish ethology research,” International
Journal of Advanced Robotic Systems, vol. 10, no. 9, p. 326, 2013.

[3] S. Negahdaripour and P. Firoozfam, “An ROV stereovision system for
ship-hull inspection,” IEEE Journal of Oceanic Engineering, vol. 31,
no. 3, pp. 551–564, July 2006.

[4] S. M. Nornes, M. Ludvigsen, Ø. Ødegard, and A. J. Sørensen,
“Underwater photogrammetric mapping of an intact standing steel
wreck with ROV,” IFAC-PapersOnLine, vol. 48, no. 2, pp. 206 – 211,
2015.

[5] R. D. Christ and R. L. Wernli, The ROV Manual: A User Guide for
Remotely Operated Vehicles, 2nd ed. Waltham, MA, USA: Elsevier,
2014.

[6] S. C. Martin and L. L. Whitcomb, “Preliminary experiments in fully
actuated model based control with six degree-of-freedom coupled dy-
namical plant models for underwater vehicles,” in IEEE International
Conference on Robotics and Automation, May 2013, pp. 4621–4628.

Linear Velocity Angular Velocity Attitude

Degrees of Freedom

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
rm

al
iz

ed
 R

M
S

E

Lookup Table

Dead-Zone Compensator

Fig. 7. Tracking errors for each degree of freedom involved in setpoint
tracking.

[7] ——, “Nonlinear model-based tracking control of underwater vehicles
with three degree-of-freedom fully coupled dynamical plant models:
Theory and experimental evaluation,” IEEE Transactions on Control
Systems Technology, vol. 26, no. 2, pp. 404–414, March 2018.

[8] W. M. Bessa, M. S. Dutra, and E. Kreuzer, “Dynamic positioning
of underwater robotic vehicles with thruster dynamics compensation,”
International Journal of Advanced Robotic Systems, vol. 10, no. 9, p.
325, 2013.

[9] L. G. Garca-Valdovinos, T. Salgado-Jimnez, M. Bandala-Snchez,
L. Nava-Balanzar, R. Hernndez-Alvarado, and J. A. Cruz-Ledesma,
“Modelling, design and robust control of a remotely operated under-
water vehicle,” International Journal of Advanced Robotic Systems,
vol. 11, no. 1, p. 1, 2014.

[10] P.-M. Lee, B.-H. Jeon, S.-W. Hong, Y.-K. Lim, C.-M. Lee, J.-W. Park,
and C.-M. Lee, “System design of an ROV with manipulators and
adaptive control of it,” in Proceedings of the International Symposium
on Underwater Technology, May 2000, pp. 431–436.

[11] H. D. Nguyen, S. Malalagama, and D. Ranmuthugala, “Design,
modelling and simulation of a remotely operated vehicle–Part 1,”
Journal of Computer Science and Cybernetics, vol. 29, no. 4, pp.
299–312, 2013.

[12] L. L. Whitcomb and D. R. Yoerger, “Development, comparison, and
preliminary experimental validation of nonlinear dynamic thruster
models,” IEEE Journal of Oceanic Engineering, vol. 24, no. 4, pp.
481–494, Oct 1999.

[13] A. J. Healey, S. M. Rock, S. Cody, D. Miles, and J. P. Brown, “Toward
an improved understanding of thruster dynamics for underwater vehi-
cles,” in Proceedings of IEEE Symposium on Autonomous Underwater
Vehicle Technology, July 1994, pp. 340–352.

[14] M. Blanke, K.-P. Lindegaard, and T. I. Fossen, “Dynamic model for
thrust generation of marine propellers,” IFAC Proceedings Volumes,
vol. 33, no. 21, pp. 353 – 358, 2000.

[15] T. I. Fossen and M. Blanke, “Nonlinear output feedback control of
underwater vehicle propellers using feedback form estimated axial
flow velocity,” IEEE Journal of Oceanic Engineering, vol. 25, no. 2,
pp. 241–255, April 2000.

[16] R. Bachmayer, L. L. Whitcomb, and M. A. Grosenbaugh, “An accurate
four-quadrant nonlinear dynamical model for marine thrusters: theory
and experimental validation,” IEEE Journal of Oceanic Engineering,
vol. 25, no. 1, pp. 146–159, Jan 2000.

[17] J. Kim, “Thruster modeling and controller design for unmanned
underwater vehicles (UUVs),” in Underwater Vehicles, A. V. Inzartsev,
Ed. Rijeka: IntechOpen, 2009, ch. 13.

[18] X. Wu, X. Wu, and X. Luo, “Adaptive control of nonlinearly parame-
terized system with unknown dead-zone input,” in 8th World Congress
on Intelligent Control and Automation, July 2010, pp. 3811–3815.

[19] N. F. Jasim and I. F. Jasim, “Robust control design for spacecraft
attitude systems with unknown dead zone,” in IEEE International
Conference on Control System, Computing and Engineering, Nov
2011, pp. 375–380.

[20] J. Boehm, E. Berkenpas, B. Henning, M. Rodriguez, C. Shepard, and
A. Turchik, “Characterization, modeling, and simulation of an ROV
thruster using a six degree-of-freedom load cell,” in OCEANS 2018
MTS/IEEE Charleston, Oct 2018, pp. 1–7.

[21] T. Fossen, Guidance and control of ocean vehicles. Wiley, 1994.


