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Abstract— We analyze a nonlinear control system consisting
of a single vortex in a freestream near an actuated cylinder. We
use heaving and/or surging of the cylinder as input to stabilize
the vortex position relative to the cylinder. The open-loop system
has two main modes of behavior based on the values of the free
vortex strength and the cylinder circulation. The first mode has
a single saddle point near the cylinder and, for a larger value
of the cylinder circulation, the second mode has two saddle
points and one center. The closed-loop system utilizes a linear
state-feedback control law. We derive conditions on the control
gains to stabilize any of the equilibrium points. Simulations
of the open- and closed-loop systems illustrate the bifurcations
that arise from varying the vortex strength, cylinder circulation
and/or control gains.

I. INTRODUCTION

The creation and shedding of vortices is of importance in
unsteady fluid dynamics and plays a vital role in flapping
wings [1], swimming fish [2], and airfoils at high angles of
attack [3]. These phenomena are very hard to model because
the Navier Stokes equations with viscous effects rarely have
analytical solutions and often require intensive computational
power to solve to a reasonable degree of accuracy [4]. A
common simplification is to use an inviscid point vortex
model [5]. This model assumes that the flow is irrotational
except for the vortex points and thus the flow field may be
fully described using a potential function. In this formulation,
the vortex dynamics are Hamiltonian and easier to work with
analytically [6]. The point-vortex model is also convenient
from a controls perspective since the flow can be completely
described using vortex positions as states [7].

Control of vortex positions may improve lift in situations
with low Reynolds number [8]. For example, the control of
vortex positions is an important mechanism for insect flight
and, possibly, for micro aerial vehicles [9]. The problem of
stabilizing vortex positions near an airfoil has been studied
using various methods such as blowing and suction from
the surface of the body [10], modifying the airfoil shape to
trap the vortex passively [11], and controlling the circulation
around the airfoil [12].

We are interested in the stabilization of a leading edge
vortex (LEV), which forms and sheds off of airfoils at high
angles of attack during dynamic maneuvers. The leading
edge vortex presents itself as a large vortical structure above
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the airfoil that grows, sheds, and grows again [9]. Motion
of the airfoil perpendicular and parallel to the freestream is
called heaving and surging, respectively. We consider heav-
ing and/or surging as control inputs to the LEV stabilization
problem.

This paper presents a first step in developing a feedback
control law that stabilizes a vortex near an airfoil. We model
the vortical structure as a single vortex, an approach that
was considered in [13], and use a cylinder instead of an
airfoil, since the cylinder has a symmetric structure that
eases analytic study. The cylinder and airfoil geometries are
related through a conformal mapping such as the Joukwoski
transform and by restricting the circulation to a specific value
that allows the flow to leave smoothly at the trailing edge
[5].

Linearization around an equilibrium point of the system
enables the design of a linear state-feedback controller that
exponentially stabilizes the equilibrium point. The trace and
determinant of the linearized closed-loop matrix determines
conditions on the feedback gains that yield the desired be-
havior. Varying the feedback gains also induces bifurcations
of the equilibrium points. Analyzing the local bifurcations
helps understand the effect each control gain has in the global
behavior of the closed-loop system.

The contributions of this paper are (1) the design of a
state-feedback control for a surging and/or heaving cylinder
that exponentially stabilizes any of the equilibrium points
of the system; and (2) the corresponding analysis of local
bifurcations that arise under variation of the closed-loop
control gains. Simulations of the open- and closed-loop
system illustrate these bifurcations and the corresponding
vortex trajectory.

This paper is organized as follows. Section II derives the
equations of motion of a single vortex near an actuated
cylinder. Section III presents the various flow topologies of
the open-loop system that result from the choice of system
parameters. Section IV analyzes the stability of the equi-
librium points of the closed-loop system, gives conditions
on the feedback gains to achieve exponential stability, and
presents simulation results. Section V summarizes the paper
and describes ongoing work.

II. VORTEX-CYLINDER SYSTEM IN POTENTIAL FLOW

In potential flow theory, a flow field potential is found by
adding the potentials corresponding to various elementary
fluid flows. Consider a cylinder of radius r0 centered at
z0, a vortex of strength Γv located at z, and a freestream
velocity u∞, where z,z0,u∞ ∈ C and the real and imaginary



components correspond to x and y components, respectively.
The potential for the freestream flow around the cylinder
consists of a uniform flow, a doublet, and a vortex placed
at the center of the cylinder [5]. The strength Γ0 of the
vortex placed at the center of the cylinder (from now on
referred to as the bound vorticity) is a free parameter since
any value obeys the boundary conditions of the flow. Let
∗ denote complex conjugation. The flow felt by the vortex
corresponds to that of the freestream around a cylinder with
a bound vortex plus that of an image vortex of opposite
strength placed at [14]

zim = z0 +
r2

0
(z− z0)∗

. (1)

Fig. 1. The drifting vortex is convected by the influence of the freestream,
the cylinder, the image vortex, and the bound vortex.

The equations of motion are derived using a complex
potential. The potential F(z) for a vortex placed at z, includ-
ing the terms for the freestream and both image and bound
vortices is

F(z)=u∗∞z+
u∞r2

0
z− z0

+
Γ0

2πi
log(z− z0)−

Γv

2πi
log(z− zim) . (2)

The time evolution of the vortex position is given by the
conjugate gradient of the potential [15], i.e.,

ż =
(

dF(z)
dz

)∗
=u∞−u∗∞

r2
0

((zv− z0)2)∗
+

iΓ0

2π

zv− z0

|zv− z0|2

− iΓv

2π

zv− z0

|zv− z0|2− r2
0
.

(3)

To include an input term in the dynamics, assume that u∞

consists of a nominal freestream velocity u0 minus the input
velocity due to heaving and/or surging. For simplicity of
the model, ignore unsteady aerodynamic effects so the only
result of heaving and/or surging is changing the effective
freestream velocity. Without loss of generality, we assume
that the nominal freestream is u0 ∈ R,u0 > 0.

To simplify the algebra, normalize length and time
scales so r0 = 1 and u0 = 1, respectively. Define

x1,x2,u1,u2,σv,σ0 ∈ R such that u∞ = (1−u1− iu2)u0, z =
(x1 + ix2)r0, Γ0/2π = r0u0σ0, and Γv/2π = r0u0σv. x1 and
x2 are the Cartesian coordinates of the drifting vortex,
normalized by the radius of the cylinder. σv and σ0 are
dimensionless quantities proportional to the drifting and,
respectively, bound vortex strengths. u1 and u2 correspond
to the surging and, respectively, heaving velocity of the
cylinder, normalized by the freestream velocity. In this
model, the motion of the motion of the cylinder is equivalent
to a change in the freestream velocity. In non-dimensional
Cartesian coordinates, the equations of motion are
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These equations are only valid in the region x2
1+x2

2 > 1, i.e.,
when the vortex is outside of the cylinder.

III. BIFURCATIONS OF THE OPEN-LOOP DYNAMICS

The location of the equilibrium points of (4) and their
bifurcations are found by varying σ0 and σv; a thorough
description can be found in [16]. To find the zero-input
equilibrium points (x̃1, x̃2), set ẋ1 = ẋ2 = u1 = u2 = 0. The
equilibrium points for this system always occur along the
line x̃1 = 0 [16], which follows from the condition ẋ2 = 0.
Solving for ẋ1 = 0 yields the polynomial

x̃4
2 +(σv−σ0)x̃3

2 +σ0x̃2−1 = 0. (5)

Depending on the value of the parameters σv and σ0, (5)
can have two, three, or four real solutions. One solution
always lies within the unit circle, which is not a valid
equilibrium point for the system, because it is inside the
cylinder. Without loss of generality, we take σv > 0: if σv < 0,
we can flip the signs of σ0,x2, and u2, i.e., reflect across the
horizontal axis, and obtain the same dynamics; if σv = 0, the
system corresponds to a free particle rather than a vortex.

With these conventions, polynomial (5) evaluated at x̃2 =
−1 is equal to −σv < 0, whereas in the limit x̃2 −→−∞, it is
positive. Therefore, the polynomial must always have a root
in the interval (−∞,−1). This equilibrium point exists for
all values of σ0 and σv and, in Section IV, we show that
this point is always a saddle. In general, varying the σv and
σ0 will change the number of equilibrium points and their
positions. Figure 2 shows the regions in parameter space
for which the system has three equilibrium points: a saddle
on the negative x2 axis (the lower saddle), a saddle on the
positive x2 axis (the upper saddle), and a center on the x2
axis between the upper saddle and the cylinder. The boundary
between the regions with one and three equilibrium points
corresponds to parameter values for which the system has



two equilibrium points: a saddle under the cylinder and an
undefined equilibrium point above the cylinder. However, this
region has zero area, is not of physical interest [16], and we
ignore it in the subsequent analysis.

Figure 3 shows a bifurcation diagram varying σ0 with
fixed σv = 2. Fig. 4 shows trajectories in the phase plane
of vortex position for σ0 = 0: there is a single saddle below
the cylinder. As σ0 increases, the saddle point moves closer
to the surface of the cylinder. At the critical value, the system
exhibits a saddle-node bifurcation: a new equilibrium point
appears on the opposite side of the cylinder and splits into a
center and a saddle. Below the bifurcation point, the phase
portrait is split into three regions: the upper region, the
lower region, and periodic orbits surrounding the cylinder.
Above the bifurcation point, the upper region splits into
three regions, as shown in Figure 5. More phase diagram
topologies for the open-loop system are described in [16].

Fig. 2. The black regions show the area in parameter space where the
system has three equilibrium points. The dashed line corresponds to the
slice shown in Figure 3.

IV. CLOSED-LOOP CONTROL DESIGN AND ANALYSIS

In order to design a feedback controller, we linearize (4)
at any one of the equilibrium points. Let (x̃xx, ũuu) refer to
evaluating the derivative at the equilibrium point x1 = u1 =
u2 = 0, x2 = x̃2. We derive the linear system[

ẋ1
ẋ2

]
= A

[
x1

x2− x̃2

]
+B

[
u1
u2

]
, (6)

where

Ai j =
∂ ẋi

∂x j

∣∣∣
(x̃xx,ũuu)

and Bi j =
∂ ẋi

∂u j

∣∣∣
(x̃xx,ũuu)

, i, j = 1,2. (7)

We have

A =

 0 σ0
x̃2

2
− σv(x̃2

2+1)
(x̃2

2−1)2 − 2
x̃3

2
σ0
x̃2

2
− σv

(x̃2
2−1)
− 2

x̃3
2

0

 (8)

Fig. 3. Bifurcation diagram fixing σv = 2 and varying σ0. Equilibrium
points far from the cylinder approach the line σ0−σv, shown as a dotted
line.
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Fig. 4. Phase portrait with σ0 = 0,σv = 2. There is a single saddle point
below the cylinder. Orbits near the cylinder are periodic. Far from the
cylinder, trajectories resemble the freestream.
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Fig. 5. Phase portrait with σ0 = 5.5,σv = 2. There is a saddle point below
the cylinder. The separatrix comes arbitrarily close to the saddle, then wraps
clockwise around the cylinder getting near the saddle again, before going
off to infinity.



and

B =

[
−1− 1

x̃2
2

0

0 −1+ 1
x̃2

2

]
. (9)

Consider the linear state-feedback control

uuu =

[
u1
u2

]
=−

[
k11 k12
k21 k22

][
x1

x2− x̃2

]
=−K(xxx− x̃xx). (10)

The first subscript in each k indicates which control input
the gain corresponds to (1 for surging and 2 for heaving) and
the second subscript corresponds to which state it multiplies
(x1 or x2). We analyze the stability of the feedback system
by looking at the eigenvalues of the matrix A− BK, as
indicated by the trace and determinant. For a 2× 2 matrix,
the determinant is the product of eigenvalues and the trace
is the sum of eigenvalues, so the sign of the determinant and
trace can be used to infer the sign of the real part of the
eigenvalues and, thus, the stability properties of the system.
In particular, a negative determinant implies the equilibrium
point is a saddle, i.e., it has one unstable and one stable
eigenvalue. If the determinant is positive, then a positive trace
indicates the system is unstable and a negative trace indicates
the system is exponentially stable, i.e., it is stable and will
converge to the equilibrium point [17]. If the determinant is
positive and the trace is 0, or if the determinant is 0, then
no conclusion can be reached.

Theorem 1: For an equilibrium point x̃2 of (4) to be
exponentially stable, the following two conditions need to
hold:

k11k22−
(

k12 +
1
x̃2
− 2σvx̃2

2

(x̃2
2−1)3

)(
k21 +

1
x̃2

)
> 0 (11)

k11 + k22 +
k11− k22

x̃2
2

> 0. (12)

Proof: Since (12) is the trace of A−BK it must be
negative for exponential stability. Condition (11) follows
from requiring the determinant of A− BK to be positive,
i.e.,

det(A−BK) =

k11k22
x̃4

2−1
x̃4

2
−
(

A12 +
x̃2

2 +1
x̃2

2
k12

)(
A21 +

x̃2
2−1
x̃2

2
k21

)
> 0

(13)

=

[
k11k22−

(
A12x̃2

2

x̃2
2 +1

+ k12

)(
A21x̃2

2

x̃2
2−1

+ k21

)]
x̃4

2−1
x̃4

2
> 0

(14)

k11k22−
(

A12x̃2
2

x̃2
2 +1

+ k12

)(
A21x̃2

2

x̃2
2−1

+ k21

)
> 0. (15)

Recall from (8),

A21 =
σ0

x̃2
2
− σv

x̃2
2−1

− 2
x̃3

2

=
σ0(x̃3

2− x̃2)−σvx̃3
2−2(x̃2

2−1)
x̃3

2(x̃
2
2−1)

.

(16)

Replace the term σvx̃3
2 from rearranging (5) as

σvx̃3
2 = 1+σv(x̃3

2− x̃2)− x̃4
2. (17)

The terms with σ0 cancel, leaving

A21 =
x̃4

2−2x̃2
2 +1

x̃3
2(x̃

2
2−1)

=
x̃2

2−1
x̃3

2
. (18)

Notice

A12 = A21−
2σv

(x̃2
2−1)2 . (19)

Finally substitute (18) and (19) into (15) to obtain (11).
Theorem 1 applies to any of the possible equilibrium

points described in Section III. Note that with gains set
to 0 and x̃2 < 0, the corresponding equilibrium point is a
saddle, as stated in Section III. When feedback is applied,
any combination of gains satisfying (11) and (12) will
exponentially stabilize the desired equilibrium point. Note
that the conditions (11) and (12) can be achieved using
either k11 or k22 (diagonal gains) and either k12 or k21
(cross gains) while setting the other gains to zero. This
corresponds to using only surging (i.e., k21 = k22 = 0), only
heaving (k11 = k12 = 0), only x1 feedback (k12 = k22 = 0),
or only x2 feedback (k11 = k21 = 0). These designs may be
advantageous if there are limitations with the actuators or
with the observers. Additionally, since for each design we
have two gains instead of four, it is easier to analyze the
effect of each gain.

Corollary 1.1: For the two-gain designs, i.e., either k11 =
0 or k22 = 0 and either k12 = 0 or k21 = 0, (11) reduces to

k12 > k1c > 0 for the lower saddle (x̃2 < 0) (20)
k12 < k1c > 0 for the center (x̃2 > 0) (21)
k12 < k1c < 0 for the upper saddle (x̃2 > 0) (22)

or

k21 > k2c > 0 for the lower saddle (x̃2 < 0) (23)
k12 > k2c < 0 for the center (x̃2 > 0) (24)
k21 < k2c < 0 for the upper saddle (x̃2 > 0) (25)

where

k1c =
2σvx̃2

2

(x̃2
2−1)3 −

1
x̃2
, k2c =−

1
x̃2
, (26)

and (12) reduces to

k11 < 0 or k22 < 0. (27)
Proof: In closed loop with a two-gain design and using

the k1c and k2c as defined in (26), the stability condition (11)
can be written as

(k1c− k12)k2c < 0 or k1c(k2c− k21)< 0. (28)

Conditions (20) to (25) are derived from (28) by isolating the
corresponding gain and flipping the inequality based on the
sign of k1c or k2c for the corresponding equilibrium point.
The signs of k1c or k2c are determined from the position and



open-loop properties of the equilibrium points. In open-loop,
the determinant condition (11) is

k1ck2c < 0. (29)

Recall this condition holds for the center and the opposite
equality holds for the saddles. For the lower saddle, k1c > 0
and k2c > 0, since x̃2 < 0. For the center and the upper saddle,
k2c < 0 since x̃2 > 0. For the center, the product k1ck2c <
0, because the equilibrium point is stable and thus k1c > 0.
Similarly, k1c < 0 for the upper saddle, because the product
k1ck2c > 0. Condition (27) follows from (12), setting either
k11 = 0 or k22 = 0, and using the fact that x̃2

2 < 1.
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Fig. 6. Phase planes for the closed-loop system with σv = 2,σ0 = 0,
and non-zero cross gains k12 (a–b) or k21 (c–d). The red X indicates the
original equilibrium point, the red dots indicate the new equilibrium points
that appear due to feedback. (a) and (c) have gains below conditions (20)
and (23), respectively. (b) and (d) have gains above condition (20) and (23),
respectively.

Several representative cases help to visualize the behavior
of the closed-loop system. Fig. 6 shows the result of using
the cross gains, k12 or k21, either 50% below or above
their corresponding critical values, with all other gains set
to zero. These gains need to satisfy either (20) or (23),
respectively, to convert the lower saddle to a stable node
or focus. In Fig. 6a, k12 (surging) does not satisfy (20);
the original equilibrium point remains a saddle and a new
stable equilibrium point appears below. This new equilibrium
point requires a constant surging input, so it is equivalent
to stabilizing an equilibrium point at a different nominal
freestream velocity. In Fig. 6c, the heaving case, no new
equilibrium points appear for low values of k21. In Figs. 6b
and 6d, the gains satisfy their critical conditions and, in both
cases, the original equilibrium point becomes a center. In the
surging case (Fig. 6b), a saddle appears between the original

equilibrium point and the cylinder, and trajectories near the
original equilibrium point form clockwise periodic orbits. In
the heaving case (Fig. 6b), two saddles appear and orbits near
the original equilibrium point are counter-clockwise. From a
physical perspective, the two new saddles that appear when
choosing k21 to satisfy (23) can be interpreted as equilibrium
points for a different angle of the nominal freestream. Note
that even with a gain that satisfies the critical condition, (20)
or (23), trajectories don’t converge to the desired equilibrium
point because the trace is zero.
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Fig. 7. Phase planes for the closed-loop with σv = 2,σ0 = 0, and multiple
two-gain designs that exponentially stabilize the equilibrium point. The red
X indicates the original equilibrium point, the red dots indicate the saddles
that appear due to feedback. The trajectories shown approximate the stable
and unstable manifolds of the saddles.

Fig. 7 shows the effect of adding a small negative diagonal
gain to the systems in Figs. 6b and 6d to make them
exponentially stable. Figs. 7a and 7c have k11 = −0.2, and
Figs. 7b and 7d have k22 =−0.2. The band of closed orbits
surrounding the equilibrium point in Figs. 6b and 6d becomes
a stable spiral that converges to the desired equilibrium point.
Since the control design is based on linearization, conver-
gence to the desired equilibrium point is only guaranteed
close to the equilibrium point. We estimate the region of
attraction by looking at the stable and unstable manifolds of
the saddles shown in Fig. 7. These orbits separate regions
in the phase plane so we can determine whether an orbit
will converge by checking if it is in the same region as
the stabilized equilibrium point. For the cases shown, using
surging and full-state feedback results in the largest region
of attraction.



V. CONCLUSION

This paper represents a first step in developing a feedback-
control framework that stabilizes a vortex near an airfoil
using surging and heaving as control input. Conditions on the
control gains quantify the requirements to stabilize a vortex
near a cylinder and guide the design of more sophisticated
nonlinear controllers. The four possible gains in the linear
controller are divided into two types, cross and diagonal
gains, which correspond to actuation perpendicular and,
respectively, parallel to the relative position of the vortex.
The original saddle can be exponentially stabilized with
a choice of one cross gain and one diagonal gain, while
setting others to zero. The cross gains induce a saddle-center
bifurcation when above a critical value. After using a cross
gain to make the original equilibrium point a center, the
diagonal gains exponentially stabilize the desired equilibrium
point.

In ongoing work, we seek to extend these results to the
case when the body is an airfoil instead of a cylinder, and is
subject to physical constraints such as the Kutta condition.
Preliminary analysis shows that the physical conditions that
generate the open-loop bifurcations may not occur for an
airfoil in quasi-steady conditions.

ACKNOWLEDGMENT

The authors thank Francis Lagor and Jonathan Lefebvre
for discussions related to this project, and Travis Burch and
Jordan Boehm for their feedback in preparing this paper.

REFERENCES

[1] F. O. Minotti, “Unsteady two-dimensional theory of a flapping wing,”
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics, vol. 66, no. 5, p. 10, 2002.

[2] P. Tallapragada and S. D. Kelly, “Self-propulsion of free solid bodies
with internal rotors via localized singular vortex shedding in planar
ideal fluids,” European Physical Journal: Special Topics, vol. 224, no.
17-18, pp. 3185–3197, 2015.

[3] S. Ahuja, C. Rowley, I. Kevrekidis, M. Wei, T. Colonius, and G. Tad-
mor, “Low-dimensional models for control of leading-edge vortices:
equilibria and linearized models,” 45th AIAA Aerospace Sciences
Meeting and Exhibit, pp. 1–12, 2007.

[4] G. L. Vasconcelos, M. N. Moura, and A. M. J. Schakel, “Vortex motion
around a circular cylinder,” Physics of Fluids, vol. 23, no. 12, 2011.

[5] J. Katz and A. Plotkin, Low-Speed Aerodynamics. Cambridge:
Cambridge University Press, 2001.

[6] B. N. Shashikanth, “Symmetry reduction and control of the dynamics
of a 2D rigid circular cylinder and a point vortex: Vortex capture and
scattering,” European Journal of Control, vol. 13, no. 6, pp. 641–655,
2007.

[7] B. Protas, “Vortex dynamics models in flow control problems,” Non-
linearity, vol. 21, no. 9, pp. 202–250, 2008.

[8] C. W. Pitt Ford and H. Babinsky, “Lift and the leading-edge vortex,”
Journal of Fluid Mechanics, vol. 720, p. 280313, 2013.

[9] F. Manar, “Measurements and modeling of the unsteady flow around
a thin wing,” Ph.D. dissertation, University of Mayland, 2018.

[10] S. I. Chernyshenko, “Stabilization of trapped vortices by alternating
blowing suction,” Physics of Fluids, vol. 7, no. 4, pp. 802–807, 1995.

[11] V. J. Rossow, “Two-fence concept for efficient trapping of vortices on
airfoils,” Journal of Aircraft, vol. 29, no. 5, pp. 847–855, sep 1992.
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