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Abstract— This paper considers the problem of non-Gaussian
estimation and observer-based feedback in linear and non-
linear settings. Estimation in nonlinear systems with non-
Gaussian process noise statistics is important for applications
in atmospheric and oceanic sampling. Non-Gaussian filtering
is, however, largely problem specific and mostly sub-optimal.
This manuscript uses a Gaussian Mixture Model (GMM) to
characterize the prior non-Gaussian distribution, and applies
the Kalman filter update to estimate the state with uncertainty.
The boundedness of error in both linear and nonlinear cases
is analytically justified under various assumptions, and the
resulting estimate is used for feedback control. To apply
GMM in nonlinear settings, we utilize a common extension
of the Kalman filter: the Extended Kalman Filter (EKF). The
theoretical results are illustrated by numerical simulations.

I. INTRODUCTION

Knowledge of state variables in dynamical systems is the
key component for designing state-feedback control laws that
can practically stabilize a plant. However in actual systems,
lack of access to state variables motivates observer-based
feedback control systems, where the current state is estimated
from a set of observables. The situation worsens when the
system dynamics and/or the observations are corrupted with
noise, and the initial state estimate may only be given in
terms of an a priori probability density. Hence, the need for
a filter arises for state estimation. For a linear system with
linear observations and Gaussian process and sensor noise,
the optimal estimator is given by the celebrated Kalman
filter [1]. But for a nonlinear system and systems with non-
Gaussian noise, the moment propagation needs an infinite
number of parameters and an optimal filter is difficult to
formulate. As a compromise, several sub-optimal solutions
have been developed, e.g., the Extended Kalman Filter (EKF)
and the Unscented Kalman Filter (UKF), which rely on a
finite number of parameters, thus sacrificing some of the
system’s details. However, these filters still rely on the
Gaussian-process noise model, which may not hold in a
nonlinear system.

The recursive Bayesian filter is the general representation
of an optimal nonlinear filter that converts the prior (forecast)
state probability density function (PDF) into the posterior
(analysis) state PDF using the likelihood of the observation.
However in many cases, the prior PDF is not explicitly
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known and therefore has to be estimated using an ensemble
realization. For such cases, the recursive Bayesian estimation
becomes computationally difficult and, therefore, a semi-
parametric model must be realized.

Alspach and Sorenson [2] have shown that any probability
density function can be approximated arbitrarily closely from
an ensemble realization using a weighted sum of Gaussian
PDFs. The so-called Gaussian Mixture Model (GMM) gives
an approximate way to explicitly calculate the posteriori
density of the states of a stochastic system, even in the
nonlinear non-Gaussian case. There are several approaches
for time and measurement updates using GMM as shown
in the GMM-DO filter of Sondergaard and Lermusiaux [3].
GMM, equipped with Monte-Carlo data-fitting using the
Expectation Maximization (EM) algorithm [4] and Bayesian
Information Criteria (BIC) [5], provides an accurate estimate
of the prior PDF. GMM represents the PDF using a weighted
sum of Gaussian PDFs, each of which can be updated using
individual Kalman filters if the measurement model is linear
and the measurement noise profile is Gaussian.

Data assimilation, such as with atmospheric or oceanic
sampling vehicles, often uses a linear (or linearized) obser-
vation model, and the measurement noise is assumed to be
additive Gaussian [3]. With these assumptions, the GMM
along with Kalman filter updates (i.e., GMM-KF) is sufficient
to estimate the state. For nonlinear system dynamics, the
Kalman update step may be replaced by an Extended Kalman
Filter (EKF), which gives the prediction up to first-order
precision [6]. The state estimate thus obtained may be used
for feedback stabilization. A block diagram of such an
observer-based feedback system is shown in Fig. 1. In this
model, xn and yn are the state and observation, respectively
at the nth time step. The process is inherently noisy with an
additive process-noise Wn and the observation is corrupted
by the measurement-noise Vn. The state-estimate x̂n is

−
un = Ken

xn+1 = f(xn,un) + Wn,
yn = Cxn + Vn

un

x̂n = OGMM (yn)

r en yn

yn

x̂n

Fig. 1: Block-diagram of a discrete time closed-loop
observer-based feedback control system with a Gaussian
Mixture Model observer OGMM .



obtained using GMM-KF observer (denoted as OGMM ) and
this estimate is used to derive the feedback control signal
un = K(r− x̂n).

The contributions of this work are (1) a theoretical guar-
antee of boundedness of the estimation error while using
GMM-KF in a linear system with non-Gaussian noise; (2)
ultimate boundedness of the norm of the state in a linear
system with observer-based feedback; (3) extension of error
bound analysis to a nonlinear system with non-Gaussian
process noise; and (4) proof of the ultimate boundedness
of the state in a nonlinear system using Lyapunov’s method
for observer-based feedback with GMM-EKF.

The manuscript is organized as follows. Section II pro-
vides a brief overview of Gaussian Mixture Model. Section
III explores the analytical as well as numerical results for
linear settings. Section IV extends the results to nonlin-
ear systems using GMM-EKF. Section V summarizes the
manuscript and discusses possible future work.

II. GAUSSIAN MIXTURE MODEL

The GMM-KF works by representing the probability
density function (PDF) using a Gaussian Mixture Model
(GMM). Let wj , j= 1, . . . ,M , be scalar weights such that∑M

j=1 w
j = 1. Let xj and P j be the mean vector and

covariance matrix respectively for a multivariate Gaussian
N
(
x;xj , P j

)
, j = 1, . . . ,M . The weighted sum of the M

Gaussian densities [3]

pX
(
x; {wj ,xj , P j}Mj=1

)
=

M∑
j=1

wjN
(
x;xj , P j

)
(1)

is a valid probability density function (PDF) that integrates
to unity and has an analytical representation. Through the
selection of the weights, means, covariances, and number
of mixture components, (1) can represent even highly non-
Gaussian distributions.

Traditional ensemble/particle-based methods represent a
PDF using sparse support of ensemble members (i.e., a
Monte Carlo sampling of realizations) [7]. This represen-
tation enables nonlinear propagation of the uncertainty in
the forecast step of the filter. Unfortunately, many particle
filters suffer from degeneracy issues due to the sparsity of
the PDF representation [7]. Kernel-based approaches address
this issue by periodically creating a density estimate from
the ensemble sample to mantain the full support of the
state space and to facilitate resampling [7], [8], [9]. Un-
fortunately, such approaches require the arbitrary choice of
fitting parameters such as kernel bandwidth [3]. For Gaussian
mixtures, given a specific choice for mixture complexity,
an Expectation Maximization algorithm automatically selects
the weights, means, and covariances of the Gaussians to best
fit the ensemble [10]. A key contribution of [3] is the use of
the Bayesian Information Criterion (BIC) for the automatic
selection of the mixture complexity. Let xj be the jth sample
in an ensamble realization. The BIC may be (approximately)

expressed as [3]

BIC = −2

N∑
j=1

log p(xj |ΩML;M) +K logN, (2)

where K is the number of parameters in the model, ΩML is
the maximum likelihood set of parameters (produced by the
EM algorithm), and N is the number of ensemble members.
For a multivariate Gaussian mixture where d is the dimension
of the state vector, K = M (2d+(d(d− 1)) /2+1) is the
number of free parameters [3]. The BIC has two components:
the first component evaluates the goodness-of-fit for the
model of complexity M and the second component is a
penalty on the overall model complexity [3]. By sequentially
evaluating models of increasing complexity, one may identify
a local minimum in the BIC. One seeks the best fit of a
mixture of Gaussians to the data; the model-complexity term
in the BIC ensures that a simpler model is preferred [3].

For many data-assimilation applications, the observation-
operator C linearly extracts the measurement from the state
vector, i.e.,

y=Cx+V with v∼N (0,KV ), (3)

where V is zero-mean measurement noise with covari-
ance KV . For a (single) Gaussian forecast PDF, Gaussian
measurement noise, and a linear observation operator, the
Kalman-analysis equations represent the optimal approach
to Bayesian assimilation of a measurement. In the case of
a mixture of Gaussians, the Kalman-analysis equations may
be augmented with a weight-analysis equation to yield the
proper application of Bayes’ rule for each component in the
mixture [3], as follows.

The Bayesian update of a Gaussian mixture prior with
Gaussian observation model yields a Gaussian mixture pos-
terior [3]. For a prior GMM

pX (x) =

M∑
j=1

wjN
(
x;xj , P j

)
,

and a Gaussian observation model pY|X(y|x) =
N (y;Cx, R), the posterior PDF looks like [3]

pX|Y (x|y) =

M∑
j=1

ŵjN
(
x; x̂j , P̂ j

)
, (4)

where

x̂j = xj +Kj(y − Cxj),
Kj = P jCT (CP jCT +KV )−1,

P̂ j = (I −KjC)P j , and

ŵj =
wjN (y;Cxj , CP jCT +KV )∑M

m=1 w
mN (y;Cxm, CPmCT +KV )

.

(5)

Combining the weighted Gaussians produces the posterior-
mean estimate.

III. GMM-KF FOR LINEAR SYSTEMS

Usually GMM-KF filter works by invoking the Expecta-
tion Maximization algorithm at each step, and calculating



the unknown parameters. But for the sake of theoretical
tractability, and to reduce computational burdens, we are
going to formulate a special case, where the GMM is
calculated using EM and BIC once from the initial prior,
and then updated using Kalman update steps.

First consider a linear Gaussian system

xn+1 = Axn + Wn and yn = Cxn + Vn, n ≥ 1, (6)

where xn ∈ Rd, yn ∈ Rq , Wn,Vn, n ≥ 1 are orthog-
onal and zero mean i.i.d. Gaussian random vectors with
cov(Vn) = KV and cov(Wn) = KW . The best estimate
of the state is obtained by Kalman filter: i.e.,

xn = Ax̂n−1,
x̂n = xn +Kn(yn − Cxn),
Kn = SnC

T (CSnC
T +KV )−1,

Sn = AΣn−1A
T +KW ,

Σn = (I −KnC)Sn,

(7)

where Sn = cov(xn − xn) and Σn = cov(xn − x̂n).
The error x̃n for the Kalman filter is given by x̃n =
(I −KnC) (Ax̃n−1 + Wn−1)−KnVn.

A. Error Propagation in Linear GMM-KF

Theorem 1 [11]: Let KW = QQT . Suppose that (A,Q) is
reachable and (A,C) is observable. If S1 = 0, then Σn →
Σ,Kn → K,Sn → S as n→∞. The limiting matrices are
the only solutions of the equations

Σ = (I −KC)S, K = SCT (CSCT +KV )−1,

and S = AΣAT +KW .

Now we investigate the error dynamics of GMM-KF in
the linear non-Gaussian case. In this scenario, the system
remains same as Eq. (6), except Wn is non-Gaussian (may
be assumed as zero mean, without loss of generality). The
GMM-KF is, for j = 1,· · ·,M ,

xj
n = Ax̂j

n−1,
x̂j
n = xj

n +Kj
n(yn − Cxj

n),
Kj

n = Sj
nC

T (CSj
nC

T +KV )−1,

Sj
n = AΣj

n−1A
T +KW ,

Σj
n = (I −KnC)Sj

n,

wj
n =

wj
n−1N (yn;Cxj

n, CS
j
nC

T +KV )∑M
m=1 w

m
n−1N (yn;Cxm

n , CS
m
n C

T +KV )
,

x̂n =
M∑
j=1

wj
nx̂

j
n,

(8)

where
M∑
j=1

wj
n = 1 ∀n, Sj

n = cov(xn − xj
n) and Σj

n =

cov(xn − x̂j
n). Assume that the initial values of the param-

eters have been set by the EM algorithm and BIC.
To show that ‖xn − x̂n‖ is bounded, we proceed to the

error analysis of this estimator, where the error x̃n , xn−x̂n

can be written as

x̃n =

M∑
j=1

wj
nx̃

j
n =

M∑
j=1

wj
n(xn − x̂j

n) . (9)

Theorem 2: Consider the linear system (6) with possibly
non-Gaussian noise Wn. If the conditions of Theorem 1
are satisfied, the matrix C has full column-rank and the
norm of the measurement noise ‖Vn‖ is bounded with
probability P , then the norm of the error ‖x̃n‖ is bounded
with probability P for all n.

Proof: From Theorem 1, Σj = (I − KC)Sj ,Kj =
SjCT (CSjCT + KV )−1, Sj = AΣjAT + KW ,∀j =
1, · · · ,M are the bounded limits of Σj

n,K
j
n and Sj

n as
n→∞. Let Rj

n = CSj
nC

T +KV , d be the dimensionality
of xn and βn =

∑M
m=1 w

m
n−1N (yn;Cxm

n , CS
m
n C

T +KV )
be the finite normalization factor. From the Kalman update
equation (8), x̃j

n =
(
I −Kj

nC
)
r̃jn − Kj

nVn, where r̃jn ,
Ax̃j

n−1 + Wn−1. Using this result along with Eq. (8), Eq.
(9) can be expanded as

x̃n =
M∑
j=1

wj
nx̃

j
n

=
1

βn

M∑
j=1

wj
n−1N (yn;Cxj

n, CS
j
nC

T +KV )x̃j
n

=
1

βn

M∑
j=1

wj
n−1

×N (C(Axn−1 + Wn−1) + Vn;CAx̂j
n−1, R

j
n)x̃j

n

=
1

βn

M∑
j=1

wj
n−1

(
√

2π)−d√
det(Rj

n)

×e
−

1

2
(Cr̃jn+Vn)

T
(Rj

n)
−1(Cr̃jn+Vn)

×
((
I −Kj

nC
)
r̃jn −Kj

nVn

)
.

=

[
1

βn

M∑
j=1

wj
n−1

(
√

2π)−d√
det(Rj

n)

×e
−

1

2
(Cr̃jn+Vn)

T
(Rj

n)
−1(Cr̃jn+Vn)

r̃jn

]

−

[
1

βn

M∑
j=1

wj
n−1

(
√

2π)−d√
det(Rj

n)

×e
−

1

2
(Cr̃jn+Vn)

T
(Rj

n)
−1(Cr̃jn+Vn)

×Kj
n

(
Cr̃jn + Vn

) ]
.

(10)
From Theorem 1, Kj

n → Kj and Rj
n → Rj as n→∞ with

finite-norm limit and (Rj
n)−1 is positive definite. Because

the norm of e
−

1

2
xTQx

x is bounded for any positive definite
Q (see Appendix I), then the second term of the Eq. (10) is
bounded. For the first term, let qjn = Cr̃jn + Vn. Since C
has full column-rank, r̃jn = (CTC)−1CT (qjn−Vn). Putting
this in the first term of Eq. (10) we get

1

βn

M∑
j=1

wj
n−1

(
√

2π)−d√
det(Rj

n)
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Fig. 2: L2 error of GMM-KF estimate with and without
feedback.

×e
−

1

2
(qjn)

T (Rj
n)

−1qjn
(CTC)−1CT (qjn −Vn)

which is bounded (see Appendix 1) with probability P if
Vn is bounded with the same probability. �

B. Observer-Based Feedback Control

To make use of the GMM-KF estimate in feedback control,
consider a system

xn+1 = Axn +Bun + Wn.

where Wn is a zero mean possibly non-Gaussian process.
With GMM-KF estimation and feedback, un = −Kx̂n, K is
such chosen that |λ(A−BK)|max < 1, where |λ|max stands
for maximum magnitude of the eigenvalues and, using the
desired state xdes = 0, we get

xn+1 = Axn −BKx̂n + Wn

= (A−BK)xn +BK(xn − x̂n) + Wn

...
= (A−BK)nx0

+(A−BK)n−1(BK(x1 − x̂1) + W0)
+ · · ·+BK(xn − x̂n) + Wn

(11)
Taking the expectation E of ‖xn − xdes‖ = ‖xn‖ and

using the triangle inequality yields

‖xn+1‖ ≤ |λ|nmax ‖x0‖
+|λ|n−1max ‖BK‖ (‖x1 − x̂1‖+ ‖W0‖)
+ · · ·+ ‖BK‖ ‖xn − x̂n‖+ ‖Wn‖

⇒ E ‖xn+1‖ ≤ |λ|nmax ‖x0‖+ |λ|n−1max ‖BK‖E ‖x1 − x̂1‖
+ · · ·+ ‖BK‖E(‖xn − x̂n‖).

(12)
Since |λ(A − BK)|max < 1 , E ‖xn+1‖ remains bounded

as n → ∞ if E ‖xn − x̂n‖ is bounded, which is indeed
true by Theorem 2 with probability P depending on the
measurement noise.

The validity of the boundedness of error and the practical
stability [12] of observer-based feedback is illustrated by
numerical simulation. The L2 norm of the error for a linear
system is given in Fig. 2. The effectiveness of the observer-
based feedback is shown in Fig. 3.
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Fig. 3: Observer-based feedback effectively stabilizes the
system.

Here we have used the system

xn+1 =

[
1.0 0.9
−0.5 1.2

]
xn +

[
1.0 0
0 1.0

]
un + Wn,

where Wn is a non-Gaussian zero mean i.i.d. random vector.
This system is unstable and ‖xn‖ increases exponentially
with un = 0 for all n. For feedback control, we use un =

−
[
0.5 0
0 0.7

]
x̂n, so that the eigenvalues of A − BK lie

within the unit circle. The observer-based control effectively
stabilizes the system as shown in Fig. 3.

IV. EXTENSION TO NONLINEAR SYSTEMS

To extend the GMM-KF setting to nonlinear systems, we
investigate the widely used filtering framework, the Extended
Kalman Filter (EKF) [6]. We apply GMM to a nonlinear
system with linear measurement model, i.e.,

xn+1 = f(xn) + Wn and yn = Cxn + Vn, n ≥ 1, (13)

where Wn is possibly non-Gaussian additive noise and
Vn ∼ N (0,KV ). The GMM framework in this case is,
for j = 1,· · ·,M,

xj
n = f(x̂j

n−1),
x̂j
n = xj

n +Kj
n(yn − Cxj

n),
Kj

n = Sj
nC

T (CSj
nC

T +KV )−1,

Sj
n = A(x̂n−1)Σj

n−1A(x̂n−1)T +KW ,
Σj

n = (I −KnC)Sj
n,

wj
n =

wj
n−1N (yn;Cxj

n, CS
j
nC

T +KV )∑M
m=1 w

m
n−1N (yn;Cxm

n , CS
m
n C

T +KV )
,

x̂n =
M∑
j=1

wj
nx̂

j
n,

(14)



where
M∑
j=1

wj
n = 1 ∀n, Sj

n = cov(xn−xj
n), Σj

n = cov(xn−

x̂j
n) and A(x) = Jf (x) is the Jacobian of f evaluated at

x. The initial values of the parameters have been set by the
Expectation Maximization algorithm and BIC as in the linear
case.

A. Error Propagation

The error dynamics are

x̃n =
M∑
j=1

wj
nx̃

j
n

=
1

βn

M∑
j=1

wj
n−1

(
√

2π)−d√
det(Rj

n)

×e
−

1

2
(C f̃jn+Vn)

T (Rj
n)

−1(C f̃jn+Vn)

×
(

(I −Kj
nC)f̃ jn −Kj

nVn

)
,

(15)

where f̃ jn = f(xn−1) − f(x̂j
n−1) + Wn−1 and

Rj
n = CSj

nC
T + KV . To have ‖x̃n‖ bounded in the

nonlinear case, we need stricter assumptions than before
because Rj

n and Sj
n no longer converge to finite-norm

matrices when n→∞.

Assumption 1:
αjI ≤ Σj

n < βjI , αj , βj ≥ 0 for all n ≥ 0 and
j = 1, · · ·,M .

Under Assumption 1, Sj
n and Rj

n, being the positive-
definiteness-preserving bilinear transformations of Σj

n−1 and
Sj
n (from Eq. 14), respectively, are always bounded above

and below by positive definite matrices. Hence Kj
nC =

Sj
nC

T (Rj
n)−1C is also positive definite and bounded above

and below. Now proceeding in the exact same way as the
proof of the Theorem 2, x̃n will also be bounded with
probability P if C has full column rank and Vn is bounded
with probability P . Let the bound on x̃n be bx̃(P ).

B. Observer-Based Feedback Control

To control the nonlinear system (13), suppose we design a
state-feedback controller u(x), and drive it with the estimated
state derived by the filter. The closed loop system looks like

xn+1 = f(xn) + u(x̂n)
= F (xn) + u(x̂n)− u(xn) + Wn

yn = Cxn + Vn,
(16)

where Wn is the non-Gaussian additive noise and
F (xn) = f(xn) + u(xn).

Assumption 2:
2.1: The nominal system xn+1 = F (xn) is uniformly

asymptotically stable on a open ball Br of radius r centered
at 0 and ∃ a C1 (i.e., differentiable) Lyapunov function V :
Z+ × Br → R that satisfies

α1(‖xn‖) ≤ V (n,xn) ≤ α2(‖xn‖), (17)

∆VN (n,xn) ≤ −α3(‖xn‖), (18)

where αi, i = 1, 2, 3 are class K functions and
∆VN (n,xn) = V (n + 1,xn+1) − V (n,xn) under the
nominal system [12], [13].

2.2: ∃ p ∈ R+ and M > 0 such that
∥∥∥∥∂u∂x

∥∥∥∥ ≤M ‖x‖p−1.

With the application of the mean value inequality, we get
‖u(x̂n)− u(xn)‖ ≤Mbx̃(P ) from Assumption 1.

2.3: ‖Wn‖ < bW (P ) with probability P .
Assumption 2.3 characterizes the process noise, and bW (P )
can be readily obtained from the PDF or cumulative
disctribution of the process noise (only the latter if Wn is
not absolutely continuous).

Theorem 3:
Consider the non-linear system (16) with non-Gaussian

process noise and GMM-EKF state estimate x̂n. If
Assumptions 1–2 are satisfied, then ‖xn‖ is bounded with
an ultimate bound bx with probability P , where bx is a
function of M , bx̃(P ), and bW (P ).

Proof : We use V (n,xn) from Assumption 2 for the
perturbed system. Thus,

∆VP (n,xn) = ∆VN (n,xn) + δVP (n,xn),

where

δVP (n,xn) = V (n+ 1, F (xn) + u(x̂n)− u(xn) + Wn)

−V (n+ 1, F (xn)),

and subscript P stands for the perturbed system. Since V ∈
C1, ∃ l > 0 such that

|δVP (n,xn)| ≤ l ‖u(x̂n)− u(xn) + Wn‖
≤ l(‖u(x̂n)− u(xn)‖+ ‖Wn‖).

Now, from Assumptions 1–2,

∆VP (n,xn) = ∆VN (n,xn) + δVP (n,xn)

≤ −α3(‖xn‖) + lM(bx̃(P ) + bW (P )), wp P
= −(1− θ)α3(‖xn‖)− θα3(‖xn‖)

+lM(bx̃(P ) + bW (P )),

wp P and θ ∈ (0, 1)

≤ −(1− θ)α3(‖xn‖),

∀ ‖xn‖ ≥ α−13

(
lM(bx̃(P ) + bW (P ))

θ

)
,

wp P.

Hence the ‖xn‖ for the system (16) is u.u.b, with ultimate
bound

bx(P ) = α−11 ◦α2◦α−13

(
lM(bx̃(P ) + bW (P ))

θ

)
, wp P. �

(19)

C. Simulation Results
We tested the GMM-EKF on a 2D nonlinear chaotic

map attributed to the discrete-time version of the Duffing



Oscillator [14]. The map is

x1n+1 = x2n
x2n+1 = −bx1n + ax2n − (x2n)3 + wn.

(20)

The map depends on the two constants a and b, usually set
to a = 2.75 and b = 0.2 to produce chaotic behaviour [14].
We added zero-mean non-Gaussian i.i.d. random variable wn

as the process noise. The resultant estimated map and the
error is shown in Fig. 4. The effectiveness of GMM-EKF in
feedback control is illustrated in the Fig. 5 with the system

x1n+1 = x2n
x2n+1 = −1.1x1nx

2
n + wn + un,

(21)

where wn is non-Gaussian i.i.d. random variable. To sta-
bilize the system, the feedback control is given by un =
−0.3x̂1nx̂

2
n. The observer-based feedback effectively stabi-

lizes the system as shown in Fig. 5.
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Fig. 4: GMM-EKF estimate of Duffing map: (a) L2 norm of
the state, (b) L2 error.
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Fig. 5: Observer-based feedback (with GMM-EKF) effec-
tively stabilizes the system.

V. CONCLUSIONS

This paper presents the Gaussian Mixture Model Kalman
Filter (GMM-KF) as an effective tool to deal with non-
Gaussian process noise for observer based feedback. The
boundedness of estimation error is proven analytically and
supported by simulation results. The framework is extended

to nonlinear settings using the Extended Kalman Filter (EKF)
in conjunction with GMM. GMM-KF is a dynamic Bayesian
filtering technique that can be modified to less computational
complexity, but works well with data-driven systems. The
theoretical justification of the performance of GMM-KF
is shown here. In ongoing work, we seek to extend this
framework to nonlinear observations, as well as to a general
Bayesian filtering technique.

APPENDIX I
Proposition:

∥∥x exp(−xTQx)
∥∥ with Q > 0 is bounded.

Proof :∥∥x exp(−xTQx)
∥∥ ≤ ‖x‖ |exp(−xTQx)|
≤ ‖x‖ |exp(−λmin(Q) ‖x‖2)|,

since Q > 0, λmax ≥ λmin(Q) > 0,

≤ 1√
2λmin(Q)

√
e,

(22)
from single-variable calculus.
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