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Abstract— This paper considers the closed-loop navigation
of a hypothetical ocean-sampling vehicle in the presence of an
idealized ocean-eddy pair. This problem embodies many of the
challenges of spatiotemporal ocean sampling using minimally
actuated Lagrangian sensors. We extend our existing guidance
strategy known as the Boundary-Touring Algorithm (BTA) to
steer a self-propelled vehicle to a unique streamline in a two-
vortex flow. The Gaussian Mixture Kalman Filter (GMKF) pro-
vides non-Gaussian state estimation of the vortex parameters
based on linear observations of Lagrangian sensor position.
Taken together, BTA and GMKF constitute a novel guidance
framework for adaptive, Lagrangian data assimilation. Results
from numerical experiments are presented for a drifting vehicle,
a controlled vehicle that has knowledge of the flow field, and
a controlled vehicle that navigates based on its own flow field
estimate using the BTA/GMKF framework.

I. INTRODUCTION
The problem of spatiotemporal sampling for environmen-

tal monitoring contains unique challenges in the oceano-
graphic setting. Ocean-sampling platforms must cover large
distances and endure extended deployments. For exam-
ple, the Argo system, which is a state-of-the-art ocean-
observing network, consists of floats that make vertical-
profile dives, but otherwise drift passively with the flow [1].
The next ocean-observing network may contain platforms
such as gliders, which are vehicles capable of steering and
buoyancy-driven propulsion, or other self-propelled, long-
endurance vehicles [2],[3]. Utilizing such platforms and their
Lagrangian data (i.e., time-series measurements of vehicle
position), autonomous control algorithms may exploit flow-
field forecasts by using underlying currents for transport and
uncertainty reduction.

Previous work [4] identified the importance of coherent
structures in the flow field for understanding spatial transport
and sampling coverage. Works in the field of Lagrangian
data assimilation have optimized the launch site of passively
drifting vehicles (e.g., see [5]). Other works have considered
energy-optimal [6] and time-optimal [7] paths for contin-
uously self-propelled vehicles. However, a comprehensive
framework for adaptive data-driven estimation of a flow field
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by a hypothetical vehicle with intermittent actuation does
not yet exist. Intermittent actuation extends endurance and
permits targeted sampling of desirable regions.

This paper focuses on the development of an autonomous
estimation and control framework to enable a sampling
platform capable of steering and flow-relative propulsion to
estimate a potential flow field with unknown parameters. The
potential-flow model selected for testing the framework is a
two-point-vortex system. The periodic motion of two point
vortices in relative equilibrium (e.g., rotating together at a
constant rate) represents an idealized model of a naturally-
occurring ocean eddy pair. Further, it is a demonstrative
problem for studying autonomous navigation, because when
viewed from a co-rotating frame, this system contains in-
variant sets that can be used to study the role of coherent
structures in navigation and flow-field estimation.

One key component in the control framework is an
observability-based navigation algorithm, which relies on
the prior finding [3] that boundaries of invariant sets in a
divergence-free flow are highly observable due the eventual
distinction of neighboring trajectories by an upstream saddle
point. We review our algorithm, known as the Boundary-
Touring Algorithm (BTA), previously proposed for touring
invariant set boundaries, which yields high observability
of the flow field parameters [3]. We extend the BTA by
modeling the vehicle as a self-propelled particle in a flow
and develop a steering control law that drives it to a unique,
closed streamline. The steering control law represents a novel
application of an existing transformation of the vehicle speed
and heading relative to the flow [8] and an existing flow-
free steering algorithm [9] to a time-invariant flow field that
is well-described by a streamfunction. We ensure that the
vehicle drives to a unique streamline by implementing a
steering control built around a Bertrand family of curves
extended from the streamline. The streamline steering control
also uses a virtual cylinder to smooth boundaries of invariant
sets near saddle points.

Another key component in the control framework is a
non-Gaussian state estimator—the Gaussian Mixture Kalman
Filter (GMKF)—that accommodates nonlinear dynamics and
non-Gaussian probability densities by approximating them
with a mixture of Gaussians selected to minimize the
Bayesian Information Criterion, thereby yielding the simplest
(based on the number of parameters) fit of a Gaussian
mixture to the data [10]. The BTA and GMKF are combined
in a novel, guided-Lagrangian data-assimilation framework
for estimation of an unknown flow field using feedback of
vehicle position measurements. The BTA drives the vehicle



along a trajectory of high observability using the best esti-
mate of the flow-field parameters. The GMKF assimilates
Lagrangian data (after accounting for the vehicle’s own
control effort) to produce more informed estimates of the
parameters, thus yielding a new flow-field map for the BTA
to tour.

The contributions of this work are as follows: (1) a
steering control for the Boundary-Touring Algorithm that
drives a self-propelled vehicle to a unique, closed stream-
line of the two-vortex flow field; (2) implementation of a
Gaussian Mixture Kalman Filter (GMKF) with direct state
propagation to estimate the parameters of the two-vortex
system using Lagrangian position measurements; and (3) an
output-feedback control framework for estimating the two-
vortex flow parameters using the BTA and the GMKF. These
contributions are significant because the streamline steering
controller may be applicable to other time-invariant flows
with simple, closed, and regular streamlines. The BTA and
GMKF framework for guided-Lagrangian data assimilation
may also be used for estimation of other time-invariant flows.

The following provides an outline of the paper. Section
II reviews the two-vortex system and observability-based
path planning. Section III reviews the Boundary-Touring
Algorithm and presents a steering controller that ensures the
vehicle drives to a unique streamline of the flow. Section
IV describes the nonlinear observer used in the closed-loop
navigation strategy. Section V provides simulation results
of a vehicle estimating the two-vortex flow by navigating
via feedback control. Section VI summarizes the paper and
discusses ongoing work.

II. OBSERVABILITY-BASED PATH PLANNING IN
THE TWO-VORTEX FLOW

Point vortices from potential flow theory advect under
the influence of nearby vortices, but their motion does not
include their own contributions to the flow field. Let zj in
the C plane denote the location of vortex j for j = 1, 2. A
nearby vortex k induces motion on vortex j, yielding [11]

żj =
iΓk
2π

zj − zk
|zj − zk|2

for k 6= j,

where Γk is the circulation strength of vortex k that de-
termines the relative magnitude of the flow induced about
zk. The transformation z = ξei(ωt+φ) + zcv, with angular
rate ω = (Γ1+Γ2) /

(
2πd2

)
, vortex separation d= |z1−z2|,

center of rotation zcv, and initial phase angle φ, changes
the reference frame to a co-rotating frame expressed in ξ
coordinates [3]. In this frame, the flow is time-invariant and
admits a time-invariant streamfunction [3]

ψR(ξ, ξ) = − 1

2π
(Γ1 log|ξ − ξ1|+ Γ2 log|ξ − ξ2|) +

ω

2
|ξ|2.

(1)
Iso-contours of the streamfunction are streamlines, i.e., lines

always tangent to the flow velocity. Therefore, the flow
velocity may be written in terms of the streamfunction as
fR = −2i∂ψR/∂ξ, where the (·)R subscript denotes the co-

Fig. 1: (a) The two-vortex system in a co-rotating frame [3]. Blue lines
are streamlines and black lines are separatrices. Red markers are vortex
locations. Green diamond markers are saddle points. Open circles are center
fixed points. Labels for the invariant sets are shown in orange. (b) A log10
plot of the unobservability index for orbits in the two-equal-vortex system
with a time horizon of 24π [3].

rotating frame1. A drifting vehicle located at ξ and advected
with the flow therefore has kinematics ξ̇ = −2i∂ψR/∂ξ. The
flow field of the two-vortex system in the co-rotating frame
is shown in Fig. 1(a). Separating boundaries or separatrices
(shown in black) are the stable and unstable manifolds of
the saddle points. These boundaries form six invariant sets
from which a vehicle cannot escape without exerting control.
The saddle points in the two-equal vortex system are located
at ξ = {0,±

√
5d/2}. Locating saddle points in the flow is

an important first step in the identification of the invariant-
set boundaries. In Section V, this process is performed
adaptively in a control loop for a vehicle navigating using
the estimated flow.

Observability of a linear system describes one’s ability to
infer the initial system state by observing its output. Krener
and Ide [12] presented the empirical observability Gramian
Wo(t0, t1) for nonlinear systems, which is constructed by
considering the sensitivity of the system response to pertur-
bations in the initial state or system parameters. Wo(t0, t1)
is given component-wise by [12],[3]

[Wo]j,k=
1

4ε2

∫ t1

t0

(
Y +j(τ)−Y −j(τ)

)T(
Y +k(τ)−Y −k(τ)

)
dτ,

(2)
for j, k = 1, . . . , n, where Y ±j is the system output in
response to a perturbed initial state X±j(t0) = X(t0)± εej ,
which has been perturbed by ε along the ej unit vector
direction [3]. For the two-vortex problem with equal strength
vortices, the state vector is

X=(Γ,Re(z1), Im(z1),Re(z2), Im(z2),Re(z), Im(z))
T
, (3)

where z denotes the location of a drifting or guided La-
grangian sensor. The reciprocal of the smallest eigenvalue of
Wo(t0, t1) is called the unobservability index and represents
a measure of how unobservable the least observable mode
of the system is [12]. Hence, a small unobservability index
corresponds to high observability.

Prior work [3] analyzed the observability of orbits in the
two-vortex system for path planning for a vehicle that spends
most of its time drifting with the flow, actuating infrequently

1The complex partial derivative operators are ∂/∂z=(∂/∂x−i∂/∂y) /2
and ∂/∂z = (∂/∂x+i∂/∂y) /2.



Fig. 2: (a) Example of a vehicle performing a boundary tour, using tour
(1, 2, 4, 5, 4, 2, 1) [3]. (b) A vehicle navigating to a uniquely specified
streamline is shown in blue. Two streamlines with identical streamfunction
values are shown in magenta. A vehicle using the controller from [3] to
target a non-unique streamfunction value is shown in green.

to switch streamlines. Orbits approaching the invariant-set
boundaries in the two-vortex system were shown to possess
the greatest empirical observability of the flow-field param-
eters given position measurements from candidate drifter
trajectories, as shown in Fig. 1(b). Using knowledge of
the underlying flow, i.e., a flow-field map, the authors con-
structed the Boundary-Touring Algorithm (BTA), in which
the sampling vehicle visits boundaries of the invariant sets
using intermittent actuation.

The two-part BTA consists of a streamline controller that
drives the vehicle to a desired streamfunction value and
a saddle-navigation controller that makes use of a virtual
cylinder to plan vehicle paths that circumvent saddle points,
which are locations where a singularity exists in the stream-
function value controller. Saddle-point avoidance is also
important for a drifting vehicle, because widely diverging
vehicle trajectories may result from approaching it. A vehicle
executing the BTA navigates around the boundaries of a user-
designed tour of invariant sets (i.e., an ordered list of adjacent
regions, usually beginning and ending in the same region)
to observe the flow. Fig. 2(a) shows a vehicle navigating
a known flow field according to the BTA [3]. Actuation is
applied near saddle locations, where multiple regions of the
flow meet. The vehicle navigates around a virtual cylinder
to reach the regions specified in the tour.

III. STREAMLINE CONTROL AND THE
BOUNDARY-TOURING ALGORITHM

This work utilizes a modified version of the BTA [3] to
navigate known and estimated flow fields (see Section V).
The steering controller detailed below drives the sampling
vehicle to a unique streamline in the flow, as shown in Fig.
2(b), and thus represents an improvement over the previous
streamfunction-value controller [3]. The steering controller
is based on a self-propelled particle model with second-
order dynamics. Since the vehicle travels along streamlines,
it may shut off its propulsion and drift after converging to
the desired path. The controller combines an existing flow-
relative transformation [8] with an existing flow-free control
using a Bertrand family of curves around a closed streamline
of the flow.

A self-propelled particle model for a vehicle, located
at z in the C plane, and for which control is applied

Fig. 3: Notation for steering control law.

gyroscopically to the steering rate, is [8], [13]

ż = seiθ + f with θ̇ = u, (4)

where f represents the flow velocity at z. For a time-invariant
flow field described by stream function ψ(z, z), we have f =
−2i∂ψ/∂z [3].

Paley and Peterson [8] transform the model (4) to

ż = αeiβ with β̇ = ν, (5)

using the flow-relative vehicle speed α= |seiθ+f |, the flow-
relative velocity orientation β=arg(seiθ+f), and the flow-
relative control input ν [8]. The control inputs between the
two models are related by [8]

u =
ν −

〈
ḟ, ieiβ

〉
1− α−1 〈f, eiβ〉

, (6)

where ḟ = (∂f/∂z) ż + (∂f/∂z) ż. Note that (6) has a
singularity if the vehicle is unable to make forward progress,
that is if

〈
f, eiβ

〉
= α, or equivalently if

〈
f, eiθ

〉
= −s [8].

In strong flows for which the vehicle may not always be
able to make forward progress, a saturation function may be
applied to u to handle large control excursions [13].

Zhang and Leonard [9] use a self-propelled particle model
without flow, such as (5), to derive a curve-tracking controller
to follow a simple, regular,2 closed curve γ0 parameterized
by arc-length s. Converging to γ0 is accomplished by con-
struction of a scalar orbit function Φ(z) for which γ0 is a
level curve (i.e., Φ(γ0(s)) is constant along the arc-length)
and for which certain technical requirements are satisfied
[9]. The vehicle utilizes the relative angle η between its own
path frame and the path frame of a particle located at z and
traveling along a level-curve of Φ to steer asymptotically to
a desired level curve of Φ [9]. Let {b1, b2} represent the
path frame of the vehicle located at z, where b1 = eiβ and
b2 = ib1. Let {c1, c2} represent the path frame of a virtual
vehicle collocated at z and traveling on a level-curve of Φ
[9]. We have the following relation between frames3 [9]

cos η = 〈b1, c1〉 = 〈b2, c2〉 .

See Fig. 3 for an illustration of these quantities.
If curve γ0 is a member of a parameterized family of

curves γλ(·;λ), such as a family of concentric ellipses, then
the orbit function Φ may be constructed using the scalar

2We note that the separating boundaries in the two-vortex flow do
not meet the regularity condition at saddle points. However, inserting of
virtual cylinder into the flow field (using Eqn. (15) in [3]) allows for the
construction of boundaries avoiding saddles and numerically meeting these
conditions.

3The inner product of complex numbers a and b is given by 〈a, b〉 =
Re (ab), where (·) denotes complex conjugation.



parameter λ [9]. If γ0 is a more general (simple, regular,
and closed) curve, then an orbit function may be constructed
using a Bertrand family of curves [9], i.e.,

γλ(s) = γ0(s) + λc2(s), (7)

in which additional family members are formed by offsetting
from γ0 by a distance of |λ| perpendicular to the curve (in
either the positive or negative c2 direction, depending on
the sign of λ) [9]. The orbit function may be defined to be
Φ(z) = λ if z lies on the curve γλ [9]. The arc-length s is
measured along the reference orbit [9]. The resulting control
law ν that drives to γ0 is given in the Appendix.

A unique orbit of the flow (using the Fundamental Theo-
rem of Calculus) is

γ0(t) = z0 +

∫ t

0

−2i
∂ψ

∂z
dτ, for 0 ≤ t ≤ T, (8)

where z0 is a point lying on the orbit and T is the period of
the orbit. To steer to a unique orbit of the flow, we construct
a Bertrand family of curves γλ around the reference orbit
and define the orbit function Φ(z) as described previously.
By the construction of a Bertrand family, the direction c2 is
always perpendicular to the curve, so it also lies along or in
the direction opposite to the gradient of the orbit function.
Following [14], we choose the convention 2∂Φ/∂z = c2.
The necessary derivatives to implement ν given in (14) may
be found in terms of the streamfunction as

∂2Φ

∂z∂z
=

1

2|∂ψ∂z |

〈
∂2ψ

∂z∂z
, c1

〉
c1 (9)

∂2Φ

∂z2
=

1

2|∂ψ∂z |

〈
∂2ψ

∂z2
, c1

〉
c1. (10)

The right-hand sides of these equations are evaluated at the
point on the reference orbit nearest to the vehicle location z.

IV. GAUSSIAN MIXTURE KALMAN FILTER

We use a Gaussian Mixture Kalman Filter (GMKF) for
non-Gaussian estimation because it performs nonlinear fore-
casts of state uncertainty and is capable of handling the
nonlinear dynamics present in Lagrangian data assimilation.
Gaussian mixture-based filters have previously appeared in
literature in a variety of forms (see, e.g., [15],[16],[17],[10],
and [18]); This section is based primarily on the filter of
Sondergaard and Lermusiaux [10], known as the GMM-
DO filter because it combines Gaussian mixture models
and dynamically orthogonal field equations. The GMM-DO
filter differs from other mixture filters because it contains
automated selection of the number of Gaussians used. The
GMKF algorithm we present differs from GMM-DO because
we directly forecast state realizations and do not use the DO
framework.

Let wj , j = 1, . . . ,M , be scalar weights such that∑M
j=1 wj = 1. Let Xj and Pj be the mean vector and

covariance matrix respectively for a multivariate Gaussian

N
(
X;Xj , Pj

)
, j=1, . . . ,M . The weighted sum of the M

Gaussian densities [10]

p
(
X; {(wj , Xj , Pj)}Mj=1

)
=

M∑
j=1

wjN
(
X;Xj , Pj

)
(11)

is a valid probability density function (pdf) known as a Gaus-
sian mixture that integrates to unity and has an analytical
representation. Through the selection of the weights, means,
covariances, and number of mixture components, (11) can
represent highly non-Gaussian distributions.

Traditional ensemble/particle-based methods represent a
pdf using a sparse support of ensemble members (i.e., a
Monte Carlo sampling of realizations) [19]. This represen-
tation enables nonlinear propagation of the uncertainty in
the forecast step of the filter. Unfortunately, many particle
filters suffer from degeneracy issues due to the sparsity of
the pdf representation [19]. Kernel-based approaches address
this issue by periodically creating a full density estimate from
the ensemble sample so that the state space is fully supported
and resampling may be performed [19]. Unfortunately, such
approaches invariably require the arbitrary choice of fitting
parameters such as the kernel bandwidth [10]. For Gaussian
mixtures, given a specific choice for mixture complexity, an
Expectation-Maximization algorithm may be applied to se-
lect automatically the weights, means, and covariances of the
Gaussians to best fit the ensemble [20]. A key contribution of
[10] is the use of the Bayesian Information Criterion (BIC)
for the automatic selection of the mixture complexity as well.
The BIC may be (approximately) expressed as [10]

BIC = −2

N∑
j=1

log p(Xj |ΩML;M) +K logN, (12)

where K is the number of parameters in the model, ΩML
is the maximum likelihood set of parameters (produced
by the EM algorithm), and N is the number of ensem-
ble members. For a multivariate Gaussian mixture, K =
M (2n+(n(n− 1)) /2+1) is the number of free parameters,
where n is the dimension of the state vector. Note that
the BIC has two components: the first component evaluates
the goodness-of-fit for the model of complexity M and the
second component is a penalty on the overall model com-
plexity [10]. By sequentially evaluating models of increasing
complexity, one may identify a local minimum in the BIC.
One seeks the best fit of a mixture of Gaussians to the data;
the model-complexity term in the BIC ensures that a simpler
model is preferred [10].

For Lagrangian data-assimilation applications, the
observation-operator H linearly extracts the vehicle position
from the state vector, i.e.,

Y =HX+µ with µ∼N (0, R), (13)

where µ is zero-mean measurement noise with covariance R.
(The state vector is given by (3).) In the case of a (single)
Gaussian forecast pdf, Gaussian measurement noise, and a
linear observation operator, the Kalman-analysis equations
represent the optimal approach to Bayesian assimilation of



TABLE I: Gaussian Mixture Kalman Filter [10]

Input: GMM of prior pdf
Parameters: N , maxComplexity, and covariance matrices C, R
Output: GMM of analysis pdf

1 Sample N particles from the prior pdf.
2 Integrate the particles forward in time with process noise

sampled from N (0, C)
Fit a minimal GMM to the forecast ensemble

3 EM algorithm to fit GMM with 1 Gaussian.
4 Evaluate BIC.
5 for m← 2 to maxComplexity do
6 EM algorithm to fit GMM with m Gaussians.
7 Evaluate BIC.
8 If BIC increases, select previous GMM, set M=m−1,

and break loop.
Assimilate measurements

9 Calculate the analysis weight for each Gaussian in GMM

wa
j =

wf
jN (Y ;HX

f
j , HP f

j HT +R)
∑M

q=1N (Y ;HX
f
q , HP f

q HT +R)
.

10 Calculate the Kalman gain, analysis mean, and analysis
covariance for each Gaussian in the GMM

Kj = P f
j HT

(
HP f

j HT +R
)−1

X
a
j = X

f
j +Kj(Y −HX

f
j )

Pa
j = (I −KjH)P f

j .

11 Calculate the mean estimate X̂ =
∑M

j=1 wjX
a
j and

return to step 1.

a measurement. In the case of a mixture of Gaussians, the
Kalman-analysis equations may be augmented with a weight-
analysis equation to yield the proper application of Bayes’
rule for each component in the mixture [10]. Table I presents
these equations and the GMKF algorithm.

For M=1, the GMKF reduces to an Ensemble Kalman
Filter in which only a single Gaussian is used to represent the
prior (forecast) and posterior (analysis) densities. For M>
1, the GMKF may be viewed as a collection of Ensemble
Kalman Filters operating in parallel [10].

V. CLOSED-LOOP CONTROL USING THE FLOW
FIELD ESTIMATE

This section combines the BTA and GMKF to construct
a novel, guided-Lagrangian data-assimilation framework. A
vehicle in this framework executes the BTA to traverse tra-
jectories expected to yield high observability of the flow-field
parameters. The vehicle applies the GMKF to estimate the
flow-field parameters using position measurements. When
the flow-field parameters are not known a priori, the vehicle
implements output feedback control to adapt the flow map
according to the measurements.

We present three numerical experiments of guided-
Lagrangian sampling of the two-vortex flow. One vehicle
uses a prescribed navigation controller (i.e., the controller
knows the true flow, but the estimator does not) and another
uses an output feedback controller based on the vehicle’s
estimate of the flow field (i.e., neither the controller nor the
estimator know the true flow). Both vehicles are deployed
from the same inertial location. The third vehicle is a drifter
launched from the same location as the first two. Fig. 4 shows
trajectories of the three vehicles; the path of the drifting

Fig. 4: Autonomous navigation (a)–(b) in a known flow, and (c)–(d) in an
estimated flow. Plots (a) and (c) show the co-rotating frame. The drifting
vehicle’s path is shown in magenta. Plots (b) and (d) show the inertial
frame. Green markers are position measurements. Red circles indicate vortex
locations and hollow black circles show their estimates.

vehicle (confined to Region 2) is shown in magenta. The
co-rotating frame in Figs. 4(a) and 4(c) is based on the true
vortex-pair rotation rate ω=Γ/

(
πd2
)

[11]. The separatrices
and saddle points are also based on the true parameter values.
The vehicles are launched in Region 2 and guided along the
boundary tour (4, 5, 4, 6, 4). The tour (4, 5, 4, 6, 4) contains
many close approaches to saddle points, and minimizes the
time spent at the outer edges of Regions 2 and 3, where
the flow speed is reduced. Although the vehicle with the
estimated map meanders from its intended path initially, it
eventually converges to the desired tour. Further, the inertial
trajectories in Figs. 4(c) and 4(d) yield similar coverage
patterns. Note that the vehicle with the estimated map
violates the cylinder stay-out zones for the true saddle-point
locations since it does not precisely know the true saddle-
point locations. Avoidance of saddle points is not required for
the steering control law presented in this paper, in contrast
to [3]; the virtual cylinders only smooth the target curves for
steering.

Fig. 5 compares the estimation performance of the three
vehicles. Fig. 5(a) shows the L2 norm of the state error
versus time. Fig. 5(c) shows the percent error in circulation
strength. Figs. 5(b) and 5(d) show errors in the center
of vorticity zcv and the separation distance d, which are
quantities conserved by the vortex dynamics. The drifting
vehicle correctly estimates Γ, but its overall performance
is poor. The periodic estimate excursions visible in Fig.
5(d) correspond to times when the drifter is far from the
center of the vorticity. The guided vehicles yield comparable
estimation performance, which is expected since the vehicle
with the estimated map converges to the same route as the
vehicle with the known map. The vehicle with the estimated
map performs better in estimation of Γ; this may be attributed
to additional exploration during the initial transient phase.



Fig. 5: Estimation error for a drifting vehicle, a controlled vehicle with
known flow map, and a controlled vehicle using an estimated map. (a)
L2 norm of error in X; (b) L2 norm of error in the center of vorticity;
(c) percent error in circulation strength Γ; (d) percent error in separation
distance d.

VI. CONCLUSION

This paper presents a principled approach to estimate
the parameters of a two-vortex flow that models a double-
eddy system in the ocean. The estimation and control
framework guides a self-propelled Lagrangian sensor along
highly observable trajectories, which are the boundaries of
invariant sets. The two main components of the framework
are the Boundary-Touring Algorithm (BTA) and the Gaussian
Mixture Kalman Filter (GMKF). We extend the BTA by
presenting a steering controller that combines a flow-relative
transformation and steering control built around a Bertrand
family of curves to steer to a specified, closed streamline
of the two-vortex flow. The GMKF is a dynamic nonlinear
observer that produces estimates of the flow field parameters
used to adapt the uncertain map of the flow environment. In
ongoing work, we are extending this method to other time-
invariant and time-varying flows.

VII. APPENDIX

This Appendix summarizes the applicable work of [9] and
[14], which has been adapted for complex variables.

Proposition 1 (Bertrand curve following [9]): For
simple, regular, closed curve γ0 and an associated family
of Bertrand curves γλ, define the orbit function Φ(z) = λ
when z lies on the curve γλ. Given a scalar function h
meeting the technical requirements listed in [9] and the
self-propelled vehicle model (5), the steering control law

ν = κa cos η + κb sin η − 2
dh(Φ;λdes)

dΦ
cos2

η

2
+K1 sin

η

2
,

(14)

with

κa = −s
〈
c1, 2

∂2Φ

∂z∂z
c1 + 2

∂2Φ

∂z2
c1

〉
,

κb = −s
〈
c1, 2

∂2Φ

∂z∂z
c2 + 2

∂2Φ

∂z2
c2

〉
,

drives the vehicle asymptotically to the Bertrand curve γλdes .
Proof: See [14] for the details of the proof.
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