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Abstract— This paper studies flow sensing and flow-relative
control for a flexible fish robot actuated by an internal reaction
wheel. Two flow models are presented including a quasi-
steady potential flow model and an unsteady vortex-shedding
model. A recursive Bayesian filter is adopted to assimilate
distributed pressure measurements and a bending-curvature
measurement for flow-field estimation. The dynamic model of
the reaction-wheel-driven fish robot is derived. A flow-relative
control strategy for tracking swimming speed and turning rate
consists of a feedforward controller designed based on the
inverse steady-state turning model and a feedback controller

that utilizes estimated flow information and an angular velocity
measurement. Simulation results are presented to demonstrate
the control design.

I. INTRODUCTION

Fish attract scientific attention for their superior swimming

maneuverability and energy-efficiency. Over the past two

decades, scientists and engineers have made great efforts in

designing and developing bio-inspired fish robots to improve

the performance of existing underwater vehicles [1], [2].

Many fish-robot designs follow a two-segment (or multi-

segment) profile. The frontal segment(s), usually made rigid,

hold electronics components, and the posterior segment,

flaps for propulsion. Although the two-segment robot design

generates fish-like swimming motion, the partitioned body

fundamentally performs articulated robot dynamics involv-

ing hydrodynamic interactions with water, which may limit

agility and increase energy cost.

Recently, actuation using an internal rotor for a rigid

swimming robot has been reported [3]. The rotor is mounted

inside the fish robot and includes a large, spinning disk. Fol-

lowing a periodic angular-velocity profile, the internal rotor

generates torque that flaps the fish robot. Propulsion using

an internal rotor allows the fish robot to be designed and

actuated as a whole body. It also reduces the risk of external

actuator failure due to servo deterioration when operated

in fluid. However, the design in [3] adopts a large inertia

for the rotor, which requires large space inside the robot.

Correspondingly, the spinning speed of the internal rotor is

slow, which leads to strong dynamic coupling between the

rotor and the robot, and thus a complicated moment-control

problem (not described in [3]).
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This paper proposes a novel fish-robot actuation approach

using an internal fast-spinning reaction wheel for a flexible

Joukowski-shaped fish robot. A reaction wheel is a type of

flywheel used primarily by spacecraft for attitude control

[4]. When its rotation speed is changed, the spacecraft will

counter-rotate proportionately through conservation of angu-

lar momentum. A reaction wheel can only rotate a spacecraft;

it is not capable of moving the spacecraft from one place to

another. When using a reaction wheel in a fish robot, the

relative rotation between the robot and the surrounding fluid

generates hydrodynamic forces and moments that propel

the fish robot. A flexible body deforms by bending, which

may help with propulsion. We set the angular speed of the

reaction wheel much greater than the angular speed of the

fish robot so that the motion control of the reaction wheel is

nearly decoupled from the robot. The effect of the reaction

wheel can then be interpreted as an external control moment

acting on the fish robot, which simplifies the robot control

design and potentially benefits higher-level tasks, such as

path planning and multi-agent cooperation.

Fish have a sensory organ called the lateral line to detect

surrounding flow and are capable of navigating in unknown,

murky, and cluttered environments [5]. Many underwater

vehicles detect global flow speed rather than local velocity

using an acoustic Doppler current profiler, which is too large

and expensive for small robots. Some researchers have been

studying the fabrication and usage of an artificial lateral line

for flow sensing of underwater robots [6]–[8]. Our previous

work [7] has demonstrated successful flow sensing using

distributed pressure sensors in constrained one-dimensional

speed control of a servo-actuated fish robot. This paper

extends the previous study to include flow-relative-speed

and turning-rate control in two-dimensional free swimming

with a flexible fish robot actuated by a reaction wheel.

In addition to distributed pressure measurements along the

robot body, we include a measurement of the body curvature

(sensed by commercially available flex-sensors) to enhance

state estimation, and an angular-velocity measurement of the

robot body orientation (sensed by a single-axis gyroscope)

for flow-relative control.

This paper briefly reviews two flow models for a

cambered-Joukowski foil: a quasi-steady potential flow

model and an unsteady vortex-shedding model. Based on

its tractability and accuracy, the quasi-steady potential flow

model is used in a recursive Bayesian filter that assimilates

distributed pressure and curvature measurements to estimate

the flow, whereas the unsteady vortex-shedding model is

used for simulating the ground-truth flow field. We derive



a dynamic model of the fish robot driven by an internal

reaction-wheel whose control torque profile follows a biased

sinusoidal waveform. The deformation of the flexible body

is modeled using a time-varying parameter (the camber

ratio). For flow-relative path-following, we propose a control

strategy to track flow-relative swimming speed and flow-

relative turning rate, which combines a feedforward con-

troller designed based on the inverse steady-state turning

model and a feedback controller that utilizes estimated flow

and measured angular velocity. Simulations are conducted in

a uniform flow to demonstrate the control strategy.

II. FLOW MODEL FOR A CAMBERED

JOUKOWSKI-SHAPED FISH ROBOT

This paper adopts the shape of a Joukowski foil for the

design of the fish robot in order to utilize potential-flow the-

ory. In fluid dynamics, potential-flow theory [9] describes the

velocity field as the gradient of a scalar function, the velocity

potential, which is applicable to incompressible, irrotational

flow. This section briefly reviews two models of flow past

a cambered Joukowski foil: the quasi-steady potential-flow

method and the unsteady vortex-shedding method [7].

A. Quasi-steady Potential-Flow Model

The fish robot modeled as a Joukowski foil takes the

shape of the output of the Joukowski transformation of a

circle. The Joukowski transformation, a conformal mapping,

is expressed as [7], [9]

z = ξ +
a2

ξ
+ zC , (1)

where the set of points ξ represents a circle with radius

R centered at ξ0 in the complex ξ-plane. The Joukowski

transformation parameter a is approximately one quarter of

the chord length of the foil l. The image of the mapping in

the z-plane defines the boundary of the fish robot z = x+ iy
(Fig. 1). The origin O of the z-plane is the center of rotation

for the flapping motion, chosen to be the one-quarter point

along the camber line, as measured from the leading edge.

The x-axis runs parallel to the chord line from the leading

edge to the trailing edge. zC is the z-plane coordinate of the

center point of the chord line C. We define the z-plane as

the body-fixed frame.

A two-dimensional fluid with relative velocity U flows

past the foil-shaped fish robot. The angle between the x-axis

and the direction of the relative velocity U is the angle-of-

attack α, with the nose pitching up chosen to be the positive

direction (Fig. 1).

According to potential-flow theory, the flow in the complex

circle plane (ξ-plane) prescribes the flow in the correspond-

ing foil plane (z-plane) via a conformal map. In an inviscid,

incompressible, and irrotational fluid, the quasi-steady com-

plex potential of the flow in the ξ-plane is a function of the

relative flow speed U , the angle-of-attack α, the radius R,

and the center ξ0. The complex potential [9]

W (ξ) = U(ξ − ξ0)e
−iα + U

R2

ξ − ξ0
eiα + i

Γ

2π
ln(ξ − ξ0), (2)

LE

TE

Fig. 1: Illustration of Joukowski-shaped fish robot and the

body-fixed reference frames O. TE is the trailing edge and

LE is the leading edge.

represents the sum of three elementary flow fields: a uniform

flow, a doublet, and a point vortex located at the center of

the circle. The vortex circulation Γ is evaluated by enforcing

the Kutta condition [9], which requires the trailing edge to

be a stagnation point. The vortex circulation is [9]

Γ = 4πRU sin(α+ β). (3)

Here β = arcsin(xξ0/R) is the phase angle of the center

point ξ0. Under the assumption that |ξ0| ≪ a, β is approx-

imated by 2H . Here H = yξ0/(2a) is the camber ratio of

the Joukowski foil, which intuitively describes how much the

foil bends.

With the quasi-steady potential-flow model , we calculate

the flow field around the fish robot, given any parameter set

(U, α,H) [7].

B. Vortex-shedding Flow Model

The quasi-steady potential-flow model does not describe

the unsteady or transient effects caused by the flapping

motion of a flexible fish robot. This subsection presents a

second flow model, used for simulating the flow field, that

features discrete-time vortex shedding [10]. In this model, a

new vortex is shed into the flow from the trailing edge of

the foil at every discrete time step.

Let Ω be the angular velocity of the fish robot with

counter-clockwise rotation about the pivot point O chosen to

be the positive direction (α̇ = −Ω). In the vortex-shedding

model, the complex flow potential with respect to the ξ-plane

is [7]

W = U(ξ − ξ0)e
−iα + U

R2

ξ − ξ0
eiα +ΩWΩ + i

Γ0

2π
ln

ξ − ξ0
R

+

n
∑

k=1

i
Γk

2π

(

ln(ξ − ξk)− ln(ξ − ξ0 −
R2

ξk − ξ0
)

)

. (4)

The corresponding unit complex potential is denoted by WΩ.

Γ0 represents the vortex circulation at the center of the circle

and Γk represents the circulation of the kth vortex located at

position ξk.

To speed up simulation, we discard all vortices shed prior

to last three flapping time periods. The effects of deleted

vortices on the fish robot are reflected in the new shed vortex

by applying the Kutta condition [9].



III. DYNAMIC MODEL OF A FLEXIBLE FISH ROBOT

WITH REACTION-WHEEL ACTUATION

This section studies the dynamics of a flexible fish robot

actuated by an internal reaction wheel that spins at high RPM

in the same direction of the rotational motion of the fish robot

through the origin O. First, we define the inertial reference

frame A such that the xI-axis is along the opposite direction

of the initial velocity of the fish robot at t = 0. Define θ as

the rotation angle from the inertial frame to the body-fixed

frame. Let Π = Jω + Jr(ω + ωr) and P = Mv denote the

total angular and linear momenta of the robot-fluid-reaction-

wheel system, respectively, where ω is the angular velocity

of the body-fixed frame with respect to the inertial frame

expressed in the body-fixed frame, v is the corresponding

translational velocity with an amplitude of V , ωr is the

angular velocity of the reaction wheel with respect to the

body-fixed frame, Jr is the inertia matrix of the reaction

wheel, J is the inertia matrix of the fish robot, and M is the

mass matrix. Both J and M include the added mass, which

describes the additional effect (force) resulting from water

acting on the fish robot during acceleration or deceleration.

Assume the off-diagonal terms in the inertia matrix are

negligible and the added mass and added inertia do not vary

significantly during the flapping motion. The dynamics of

the fish robot are governed by Kirchhoff’s equations [11],

i.e.,

Π̇ = Π× ω +P× v +T (5)

Ṗ = P× ω + F, (6)

where T is the external moment vector and F is the external

force vector.

For the planar motion of the fish robot, which is the focus

of this paper, we have

ω = [0, 0,Ω]T , ωr = [0, 0,Ωr]
T , M = diag(m1,m2,m3),

v = [v1, v2, 0]
T , , T = [0, 0, Tp]

T , P = [m1v1,m2v2, 0]
T ,

F = [−(Ft − Fd cosα+ Fl sinα), Fl cosα+ Fd sinα, 0]
T ,

and Π = [0, 0, JΩ+ Jr(Ω + Ωr)]
T .

Here J is the sum of the inertia of the robot and the added

inertia in the pitching direction, Jr is the pitching component

of the locked inertia of the reaction wheel, and m1 and m2

are the sum of the mass of the robot and the added mass in

the directions of surge and sway, respectively.

Figure 2 illustrates the hydrodynamic pitching torque Tp,

the thrust force Ft, generated by the flapping motion of the

foil with the −x-axis direction as positive, the drag force Fd,

in the opposite direction of the motion of the robot relative to

the fluid, and the lift force Fl, perpendicular to the relative-

flow direction. The flow speed with respect to the inertia

frame is denoted by Uf . The relative velocity of the flow

with respect to the robot is U = Uf + v with an amplitude

U .

Define the control torque of the reaction wheel as Tr, so

the calculation reads

Tr =
d

dt
(Jr(Ω + Ωr)). (7)

Fig. 2: Schematic of hydrodynamic forces and moments.

Assuming the change rate of the angular velocity of the

reaction wheel is much greater than that of the fish robot,

the control torque is approximately

Tr =
d

dt
(JrΩr). (8)

The dynamics (5) and (6) for planar motion in first-order

form are

JΩ̇ = (m1 −m2)v1v2 + Tp − Tr (9)

m1v̇1 = m2v2Ω− (Ft − Fd cosα+ Fl sinα) (10)

m2v̇2 = −m1v1Ω + Fl cosα+ Fd sinα. (11)

The kinematics equations are

θ̇ = Ω (12)

ẋ = v1 cos θ − v2 sin θ (13)

ẏ = v1 sin θ + v2 cos θ, (14)

where x and y are the coordinates of the body-fixed-frame

origin O in the inertial frame.

The hydrodynamic forces and moment are modeled fol-

lowing aerospace engineering conventions [12], i.e.,

Tp = Cp(α+ 2H)U2 −KpΩ (15)

Fd = (C0
d + Cd(α+ 2H)2)U2 (16)

Fl = Cl(α + 2H)U2, (17)

where Cp, C0
d , Cd, and Cl are hydrodynamic coefficients

that can be identified using flow tunnel experiments, and Kp

is the pitch-damping coefficient.

Select the sum of a sinusoidal waveform and a linear

function for the control profile of the reaction-wheel spinning

speed to achieve the periodic flapping motion, i.e.,

Ωr = A sinφ+Bt = A sin(2πft) +Bt, (18)

where φ is the phase angle of the periodic sinusoidal com-

ponent of the angular velocity Ωr of the reaction wheel, f
is the oscillating frequency, A is the oscillating amplitude,

and B is the bias rate. The control torque is then

Tr = 2πfA sinφ+B = 2πfA sin(2πft) +B. (19)

From the conservation law of angular momentum, the fish

robot will flap following the same driving frequency with an

amplitude proportional to the oscillation amplitude A.



The thrust force generated by the periodic actuation (19)

is approximated as [2]

Ft = F̄t + (F̂t − F̄t) sin(2φ), (20)

where F̄t and F̂t are the mean and maximum thrust force in

one flapping period, respectively. The mean and maximum

thrust force depend on the product of the amplitude and

frequency of the flapping motion [2], i.e.,

F̄t = k1(Af)
k2 (21)

F̂t = k3(Af)
k4 . (22)

The parameters k1, k2, k3, and k4 are identified by force-

sensing experiments (k2 and k4 are approximately equal to

2 [2]).

Modeling camber dynamics is a challenging fluid-

structure-interaction problem that may involve continuum

mechanics and boundary-value partial differential equations.

However, we use a tractable model to capture the camber mo-

tion for the purpose of real-time control. Suppose the camber

kinematics are a linear function of the second derivative of

the pitch angle with respect to time, i.e.,

Ḣ = −Khθ̈ = −KhΩ̇, (23)

where Kh is the camber-dynamics coefficient.

IV. FLOW SENSING USING DISTRIBUTED PRESSURE AND

BENDING SENSORS

Flow estimation for underwater robots is a challenging

problem, especially for low-speed operations. This sec-

tion describes a distributed flow-sensing algorithm using a

Bayesian filter. The algorithm assimilates distributed pres-

sure measurements and a bending curvature measurement to

estimate the relative flow speed U , the angle-of-attack α, and

the camber ratio H for the purpose of closed-loop control.

Consider a flexible fish robot equipped with Np pressure

sensors located at positions zpi
, i = 1, ..., Np, and a bending

sensor along the camber line of the Joukowski-shaped fish.

The bending sensor measures the average bending curvature

κ of the body, which is linearly dependent on the camber

ratio H ,

κ = CκH ; (24)

the coefficient Cκ is identified in sensor calibration. Each

pressure sensor measures the local static pressure modeled by

Bernoulli’s equation for inviscid, incompressible flow along

a streamline [9]:

pi = C − ρ
∂φ(zpi

)

∂t
− 1

2
ρ|f(zpi

)|2, (25)

where pi is the predicted static pressure at location zpi
,

f(zpi
) is the local flow velocity, ρ is the water density, and

C is a constant; φ = (W + W )/2 is the time-dependent

velocity potential.

Similar to the lateral-line system in fish [5], the pressure

differences between each sensor pair form the individual flow

measurement of the fish robot. We assume a quasi-steady

flow for estimation purposes, meaning there is no unsteady

effect. The flow measurement equation is [8], [13]

∆pij = pi − pj =
1

2
ρ
(

|f(zpj
)|2 − |f(zpi

)|2
)

. (26)

There are Nm = (Np)!/2!/(Np − 2)! possible

measurements in total, i.e., the combinatorial

number of sensor pairs. Define zp = [z1, ..., zNp
]T ,

∆p = [∆p12, ...,∆p1Np
,∆p23, ...,∆p2Np

, ...,∆pNp−1Np
]T

and ms = [∆p, κ]T to be the vectors representing

sensor locations, pressure difference pairs, and total

sensor measurements respectively. Assuming the sensor

measurements of the fish robot ms are corrupted with

Gaussian noise, then the actual ith element of the

measurement vector is

m̃s(i) = ms(i) + ηi, (27)

where ηi ∼ N(0, σ2
i ) is drawn from a zero-mean Gaussian

distribution with variance σi.

Given the sensor measurements, a flow model for the

flapping fish robot is used to reconstruct the flow field.

Although the vortex-shedding model is a reliable model for

describing the flow field, the discrete-time vortex addition is

not suitable for real-time feedback control. A more tractable

model is the quasi-steady potential-flow model. Let Λ =
[U, α,H ]T represent the flow parameter vector. The Bayesian

estimate of Λ is based on distributed flow measurements and

bending curvature measurement.

The Bayesian filter, also known as a recursive Bayesian

estimator [14], is a general probabilistic approach for es-

timating an unknown probability density function (pdf)

recursively over time using incoming measurements and

a mathematical process model. The sensor measurements

m̃s are assimilated recursively at each step to infer the

most likely parameter vector Λ̂. The Bayesian formula for

calculating the posterior probability of the flow parameters

from the acquired measurements is [14]

p(Λ(t)|D(t)) = γp(m̃s|Λ)p(Λ(t)|D(t −∆t)), (28)

where p(m̃s|Λ) is the likelihood function of the new mea-

surements m̃s given the parameters Λ, p(Λ(t)|D(t)) and

p(Λ(t)|D(t −∆t)) are the posterior and prior pdf for time

t, respectively, D(t) = {m̃s(t), m̃s(t − ∆t), . . . , m̃s(0)}
represents all sensor measurements up to time t, and γ is the

coefficient that ensures the total probability of the posterior

over the parameter space is equal to 1. This paper uses a grid-

based Bayesian filter rather than a particle filter to discretize

the parameter space.

The assumption of Gaussian noise in the flow measure-

ments leads to a Gaussian likelihood function,

p(m̃s(i)|Λ) =
1√
2πσi

exp

(

− 1

2σi
2
(ms(i)− m̃s(i))

2

)

, (29)

where i = 1, ..., Nm + 1 is the index for the ith element of

the sensor measurement vector m̃s.



V. FLOW-RELATIVE CONTROL USING INTERNAL

REACTION WHEEL

This section presents the closed-loop controller design for

flow-relative path-following. The objective is to control the

flow-relative speed U and flow-relative turning rate ωU of a

flexible fish robot by tuning the amplitude A and bias rate B
of the periodic oscillation of a fast-spinning, internal reaction

wheel. Flow-relative control is important for the navigation

of fish robots in unknown and cluttered environments; it also

facilitates higher-level control tasks such as path planning

and multi-agent cooperation.

We propose a feedforward-feedback control scheme

(Fig. 3) for the path-following problem. The feedforward

term aims to speed up tracking by providing open-loop

control based on the inverse steady-state turning model.

The feedback term aims to guarantee stability and reduce

tracking error based on the flow Bayesian estimate and

angular velocity measurement.
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Fig. 3: Block diagram for the closed-loop control system,

combining feedforward and feedback control.

For steady-state turning motion of a fish robot, the control

variables (the amplitude A and bias rate B) in the reaction-

wheel angular-velocity equation (18) satisfy the balance

equations of force and moment [15]

F̄t = Fd (30)

Tp = Tr, (31)

where the mean thrust force F̄t is equal to the drag force Fd

and the control torque Tr of the reaction wheel is equal to

the hydrodynamic pitching moment Tp. We further assume

the mean angle-of-attack over a flapping period is zero

because the angle-of-attack, usually less than 0.25, has minor

influence on the drag force and pitch moment in steady

turning. Although this steady-state turning model ignores

transient dynamics during the flapping period, the prediction

for turning motion based on this simplified model is rela-

tively accurate [15]. Given desired flow-relative speed Ud

and turning rate ωU
d , the feedforward controls are analytical

and easy to implement, i.e.,

Af =
1

f

(

C0
dU

2
d

k1

)

1

k2

, (32)

Bf =
Kpω

U
d

Jr
, (33)

where Af and Bf are the feedforward components of control

variables A and B, respectively.
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Fig. 4: Flow-relative control trajectory of the fish robot using

the vortex-shedding method in a uniform flow with a speed

of 1 cm/s.

Feedback control utilizes estimated flow information (Ũ
and α̃) obtained from the recursive Bayesian filter and the

estimated angular velocity ω̃ measured from a single-axis

gyroscope. In order to demonstrate the proposed control

strategy, this paper adopts two proportional-integral con-

trollers: one for regulating flow-relative speed and the other

for turning rate. We have

Ab = KA
P (Ud − Ũ) +KA

I

∫

Ud − Ũdt, (34)

Bb = KB
P (ωU

d − ω̃U ) +KB
I

∫

ωU
d − ω̃Udt, (35)

where Ab and Bb are the feedback components of control

variable A and B, respectively, ω̃U = ω̃− ˙̃α is the estimated

flow-relative turning rate, and KA
P , KA

I , KB
P and KB

I are

the controller parameters. ˙̃α is computed by differentiation

of the angle-of-attack Bayesian estimate.

VI. SIMULATION RESULTS

Simulations were conducted to test the proposed flow-

relative-control scheme. The fish robot tunes the sinusoidal

oscillation amplitude A and bias rate B in the internal-

reaction-wheel spinning profile to track reference signals of

swimming speed Ud and turning rate ωU
d based on flow esti-

mates and angular velocity measurements. We simulate flow-

relative path following in a uniform flow. The control calcu-

lation occurs at the beginning of each oscillation period. The

oscillation/flapping frequency is 0.75 Hz. The parameters of

the fish robot is selected based on our previously-reported,

lab-developed, servo-actuated prototype [7] (Table I).

Parameter Value Parameter Value

m1 1.0 kg m2 1.5 kg

CD0 20 kg·m−1 CD 500 kg·m−1

CL 100 kg·m−1 KH 0.2

k1 0.356 g·m·s2 k2 2

k3 5.33 g·m·s2 k4 2

J 0.01 kg·m2 Jr 0.002 kg·m2

Cp 1 kg Kp 1 kg·m2·s−1

TABLE I: Model parameters used in simulation [7].

Figure 4 shows the robot trajectory in tracking a constant

swimming speed and a stepped turning rate in a uniform flow
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Fig. 5: The moving average of flow-relative speed U and

turning rate ωU with a time window size equal to one

control period. (a) Flow-relative speed U ; and (b) flow-

relative turning rate ωU .
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Fig. 6: The commanded control variables in the reaction-

wheel angular velocity. (a) Sinusoidal oscillation amplitude

A; and (b) bias speed changing rate B.

of 1 cm/s in the xI direction. The red dots on the boundary of

the fish robot represents the pressure sensors. The vortices in

red rotate in the clockwise direction and the blue ones rotate

in the counter-clockwise direction. The green dash-dot line

indicates the swimming trajectory of the fish robot. Before

6 s, the desired flow-relative turning rate ωU is zero, which

means that fish robot travels straight in the same direction

of the initial velocity, i.e., along the -xI-axis. After 6 s, the

reference turning rate changes to -0.25 rad/s, which results in

a circular trajectory relative to the flow. The controlled swim-

ming speed converges to the desired reference value with less

than 5% tracking error within two flapping periods (Fig. 5a).

Although the turning-rate estimation is noisy, which comes

from the derivative operation on the estimated angle-of-

attack, the mean turning-rate estimate tracks the reference

(Fig. 5b). The discrepancy in the estimated and ground-truth

values may come from the quasi-steady potential flow model

used in the estimation algorithm, which ignores the unsteady

effects in the swimming motion. The control variables, the

amplitude and the changing rate of reaction-wheel angular

velocity are presented in Fig. 6.

VII. CONCLUSION AND FUTURE WORK

This paper presents the flow-relative control design of a

flexible fish robot actuated by an internal reaction wheel.

We study the dynamics of the fish robot and approximate

the effects of the reaction wheel as an external torque acting

on the fish robot. The reaction-wheel angular-velocity profile

is designed to be a biased oscillating function for generating

fish-like swimming motion. A Bayesian filter assimilates dis-

tributed pressure measurements and bending curvature mea-

surement for state estimation. A control scheme combining

feedforward and feedback is proposed for flow-relative path-

following, i.e., tracking flow-relative swimming-speed and

turning-rate references. Simulation results of flow-relative

path following in a uniform flow are presented to further

demonstrate the proposed strategy.

In ongoing work, we are testing this flow-relative control

strategy with a flexible fish robot using a two-dimensional

testbed that is under development. In addition, it is of interest

to apply the controller design to achieve vortex tracking and

Karman-gaiting behaviors of a flexible fish robot.
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[6] T. Salumäe and M. Kruusmaa, “Flow-relative control of an underwater
robot,” in Proceedings of the Royal Society of London A: Mathemat-

ical, Physical and Engineering Sciences, vol. 469, no. 2153. The
Royal Society, 2013, p. 20120671.

[7] F. Zhang, F. D. Lagor, D. Yeo, P. Washington, and D. A. Paley,
“Distributed flow sensing for closed-loop control speed control of a
flexible fish robot,” Bioinspiration & Biomimetics, Special Issue on

Bio-inspired Soft Robotics, vol. 10, no. 6, p. 065001, 2015.
[8] L. DeVries, F. D. Lagor, H. Lei, X. Tan, and D. A. Paley, “Distributed

flow estimation and closed-loop control of an underwater vehicle with
a multi-modal artificial lateral line,” Bioinspiration & Biomimetics,
accepted for publication.

[9] R. L. Panton, Incompressible flow. John Wiley & Sons, 2006.
[10] X. Xia and K. Mohseni, “Lift evaluation of a two-dimensional pitching

flat plate,” Physics of Fluids (1994-present), vol. 25, no. 9, p. 091901,
2013.

[11] P. Holmes, J. Jenkins, and N. E. Leonard, “Dynamics of the Kirchhoff
equations I: Coincident centers of gravity and buoyancy,” Physica D:

Nonlinear Phenomena, vol. 118, no. 3, pp. 311–342, 1998.
[12] J. D. Anderson, Aircraft performance and design. McGraw-Hill New

York, 1999, vol. 1.
[13] F. D. Lagor, L. D. DeVries, K. M. Waychoff, and D. A. Paley,

“Bio-inspired flow sensing and control: Autonomous rheotaxis using
distributed pressure measurements,” Journal of Unmanned System

Technology, vol. 1, no. 3, pp. 78–88, 2013.
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