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Abstract— The problem of pursuit has been studied mostly
in the context of missile guidance and navigation, however, it
is also an essential component in biological systems ranging
from prey capture to mating and in bio-inspired engineering
applications with small, cheap, and agile vehicles. We consider
the pursuit problem with a focus on robustness to noisy sensor
measurements and efficiency in the control effort. We design
a pursuit law based on Lyapunov analysis and establish its
robustness to unknown target acceleration and measurement
errors using the concept of ultimate boundedness. We also
present the results from experiments conducted to study the
practical challenges involved in pursuit by lightweight platforms
with noisy sensors. These experiments highlight the benefit of
using less control effort in the presence of large measurement
errors as compared to existing missile guidance laws.

I. Introduction

Historically, pursuit has been studied mainly for the purpose
of missile guidance and navigation, where it was shown that
a viable approach to target intercept is stabilizing the line of
sight (LOS), i.e., the line extending from the pursuer to the
target [1]. Various approaches have been taken with differ-
ing assumptions [2][3][4][5], including a non-maneuvering
target, lateral acceleration only (constant speed), linearized
dynamics, initially negative range rate, and measurements of
target acceleration.

Pursuit is also an important component in biological
systems, ranging from prey capture to mating [6][7]. Sta-
bilization of the LOS has also been studied in this context
and is called motion camouflage pursuit [8]. Animals like
bats [6] and insects[9] execute pursuit with limited sensor
accuracy using highly agile motion. These characteristics are
especially pertinent to the bio-inspired pursuit problem using
small, cheap robotic vehicles.

This paper presents the design of a robust pursuit law that
is inspired by the pursuit behavior of flying insects. Two
closely related pursuit studies used a sliding-mode controller
[10] and a partial-stability-based controller [11]. Therefore,
we design a bio-inspired pursuit law with a Lyapunov-based
approach fortified by the concept of ultimate boundedness.
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Fig. 1. Autonomous pursuer hovercraft with onboard camera (left), and
target hovercraft with IR light tower (right).

The first criterion of bio-inspired pursuit is the control ef-
fort. In small vehicles—like insects—the available control ef-
fort is restricted because of limited payload capacity, actuator
size, and power/energy storage. Also, unlike missiles whose
task ends at the target intercept, these pursuers may have
to continue other tasks after intercept. Therefore, achieving
target capture with low energy consumption is significant.

Another criterion is robustness to uncertainties like sensor
noise. The measurement errors of pertinent states like range,
range rate, and LOS angular rate are often ignored in the
missile guidance problem. However, measurement error is
an important consideration for low-cost vehicles with rudi-
mentary sensors.

The third performance criterion arises in a near-miss
scenario, i.e., how does the pursuer behave if the pursuit
continues after a near miss? The effect of uncertainties due
to wind, losing sight of the target, or an unexpectedly fast
target maneuver may be sufficiently large that the pursuit
could fail. An important strategy then is to remain close to
the target after each close encounter in order to decrease
the control effort for the next attempt. The same scenario
also applies if the objective of the pursuer vehicle is not to
capture the target but merely to stay close to it. In this case
the pursuer may be required to continue the pursuit for a
longer duration of time.

Existing guidance laws derived with strong assumptions
have proven to be useful for real missile implementation [1],
but we are not aware of any prior experimental validation
of a missile pursuit law with small, cheap, and/or agile
vehicles. Experiments with heterogeneous teams of ground
and aerial vehicles have been conducted for pursuit-evasion
games [12], however our focus is on terminal guidance.
We constructed an experimental testbed using custom-built,
autonomous hovercraft with onboard sensing and control (see
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ŷ

O

I

B

P

ê✓

êr
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Fig. 2. (a) The definition of line-of-sight (LOS) frame B and the
coordinate system (r, θ) where the pursuer P is pursuing the target T .
(b) Decomposition of the acceleration into radial component µ and normal
component σ in LOS frame.

Fig. 1). Hovercraft are suitable to replicate flight conditions
in two dimensions because unlike most wheeled vehicles
they are holonomic and capable of rapid acceleration. These
features make the hovercraft testbed a suitable preliminary
step towards implementation of three-dimensional pursuit in
flight.

The contributions of this paper are (1) a pursuit law
that performs well in the near-miss scenario, is robust to
measurement errors, and has less energy consumption than
existing robust pursuit laws; (2) experimental demonstration
of the performance of the pursuit law with a custom-
built hovercraft testbed; and (3) analytical, numerical, and
experimental comparison with existing pursuit laws. This
paper advocates replacing pursuit laws developed for missile
guidance with a bio-inspired algorithm designed for small,
cheap and agile robotic vehicles.

Section II formulates the problem and introduces the basic
specifications of the experimental testbed. Section III derives
a bio-inspired pursuit law using Lyapunov-based control
and compares it with existing pursuit laws from missile
guidance. Section IV presents experimental results using an
autonomous hovercraft testbed. Section V summarizes the
paper and ongoing and future work.

II. Background

A. Problem Formulation

Consider the following formulation of the pursuit problem
as a planar system of two point particles with unit mass.
Fig. 2 depicts the relevant reference frames and coordinates:
the inertial frame I , (O, êx , êy , êz ), the LOS frame B ,
(P, êr , êθ , êz ), the relative position vector r = rT /O − rP/O ,
the range r , and the LOS angle θ. Let subscripts T and P
denote the target and the pursuer, respectively.

The inertial kinematics of the two-particle system are
[
Id2

dt2 r
]

B

=

[
r̈ − r θ̇2

2ṙ θ̇ + r θ̈

]

B

=

[
µT − µP
σT − σP

]

B

(1)

where µ and σ denote the radial and normal components of
the accelerations in the LOS frame.

The states of the system are defined as x = [x1, x2, x3]T ,
[r, ṙ ,r θ̇]T . The input to the system is the relative acceleration
between T and P, u = [µ, σ]T , uT − uP where uT ,

[µT ,σT ]T and uP , [µP ,σP]T . Noting that x1 > 0, we have
the following state-space system on the domain D = R+×R2:

ẋ = f(x) + g(x)u,

f(x) =



x2
x2

3/x1
−x2x3/x1


, g(x) =



0 0
1 0
0 1


. (2)

Let δ be a small positive constant. The statement

ṙ (t) = x2(t) < −δ < 0, ∀ t > T (3)

is a sufficient condition for target intercept in finite time [10].
Having a fixed LOS angle θ or, equivalently, satisfying the
condition x3 = 0, is known to be an efficient means of target
intercept.

We seek to design a control law uP that ensures solutions
of the system (2) converge to a domain D2 = {x | x2 <
0, x3 = 0}. In doing so, we assume the following conditions
are true:

(A1) each particle can accelerate in an arbitrary direction;
(A2) the pursuer particle measures the states x with random

errors;
(A3) the target acceleration is unknown, but the bound umax ,

max{‖uT ‖} is known; and
(A4) the particles have finite size and collide only when x1

is sufficiently small, so that x1 = 0 does not occur.

B. Experimental Testbed

The bio-inspired pursuit law was implemented using a pair
of small autonomous hovercraft shown in Fig. 1. Two hov-
ercraft participate in each experiment—one as a pursuer and
the other as a target. We considered several objectives in
the design of this platform: good simulation of point-mass
dynamics, i.e., full actuation and low drag; full onboard
target tracking and control; sturdiness to endure possible
collisions during pursuit; and a small diameter to operate
in the available lab space.

Conventional hovercraft are frequently propelled by two
rear-facing fans or one fan and rudders to provide forward
thrust and yaw torque with a small number of fans [14][15].
However, the conventional configuration is underactuated
and rotationally asymmetric, making it ill-suited to our
application and simulation of point-mass dynamics. Other
platforms add side-to-side thrusters to be fully actuated or use
large numbers of thrusters, but these hovercraft are still ro-
tationally asymmetric [16][17]. Stubbs et al. [18] developed
a networked hovercraft platform that is fully actuated and
rotationally symmetric; however, that platform uses offboard
cameras for position measurements and a layout of four
unidirectional thrusters for propulsion.

Each hovercraft measures 16 cm in diameter and weighs
between 110 and 125 grams, depending on its configuration.
Two lift fans carry the hovercraft and four unidirectional
thrust fans arranged as in [18] accelerate and rotate the
hovercraft. Each hovercraft carries an ATmega32u4 proces-
sor capable of running fully autonomous target tracking
and pursuit. The pursuer tracks the target using an onboard
infrared (IR) camera from a Wii-mote game controller and an



MPU6050 digital 6DOF IMU. The target hovercraft carries
an infrared beacon consisting of two IR LED rings placed
vertically three inches apart. This arrangement allows the
pursuer to autonomously track the target without the use of
any offboard measurements. The camera field of view is also
limited to approximately 50 degrees in azimuth angle. A PID
controller on the pursuer rotation centers the target in the
camera field of view to ensure that it does not go out of
sight.

Target range x1 is calculated from the spacing of the
IR points in the image. Range-rate x2 is calculated by
differentiating the measured range with respect to time. The
angle to the target from the camera axis is differentiated to
find the LOS rotation rate in the body frame with respect to
time. This rate is added to the body frame rotation rate in
the inertial frame as measured by the IMU to determine the
LOS angular rate θ̇ in the inertial frame. Discrete low-pass
filters are applied to all measured values in order to smooth
out the discretized digital image measurements and to reject
erroneous single-measurement deviations.

Both hovercraft are equipped with an Xbee wireless
transceiver with which the pursuer transmits telemetry and
the evader receives wireless steering commands from a
ground station. The ground station uses an OptiTrack motion
capture system to track the trajectories of the pursuer and
evader and to control the trajectory of the evader. In addition,
the ground station logs telemetry from the pursuer and
matches it to motion capture data to record the performance
(e.g., sensor measurements, controller output) of the pursuer.
Motion capture was not used for guidance of the pursuer.

III. Theoretical Results
This section presents a pursuit law designed using a
Lyapunov-based approach and derives conditions on the con-
trol gains that guarantee robust target intercept. We modify
the pursuit law to accommodate noisy measurements. Finally,
we analytically and numerically compare the modified pur-
suit law to existing ones. The performance of the pursuit law
is demonstrated by experiments described in Section IV.

A. Pursuit Law

One way to satisfy the target intercept condition (3) is to
decrease x2 as much as possible, as in [11]. Although this
strategy may result in a short capture time, it requires a
large control effort (see III-D). In addition, a high closing
speed may be problematic in a near-miss scenario. Another
approach is to drive x2 to a negative constant vcl < 0
representing the desired closing speed [10]. This strategy will
keep x2 at a reasonable value and eliminate the issues raised
above.

Consider the positive semi-definite Lyapunov function
candidate

V = V3(x3) + V2(x2)

=
κ

2
x2

3 +
1
2

(x2 − vcl )2, κ > 0. (4)

We first find the desired relative acceleration udes and then
consider the actual control law uP of the pursuer.

One possible desired relative acceleration udes for the
control Lyapunov function (4) was found previously using
the knowledge of target acceleration and Sontag’s formula
[19], which is proved to have optimality in minimizing the
integral of control effort and states. In contrast we make
the pursuit law robust to uncertainties like unknown target
acceleration by choosing

udes =



−
x2

3
x1
− Nr (x2 − vcl )( x2
x1
− Nθ

)
x3


, Nr > 0, Nθ > 0. (5)

The feedback control (5) makes the derivative of the Lya-
punov function V in (4) negative semi-definite, i.e.,

V̇ = −κNθ x2
3 − Nr (x2 − vcl )2 ≤ 0. (6)

The quadratic terms in (6) are convenient for analyzing the
robustness of the pursuit law in the sequel. Note that udes is
the desired relative acceleration, whereas u = uT −uP is the
actual relative acceleration.

If the pursuit law is chosen to be uP = uT − udes, then
u = udes and the closed-loop system will be stabilized to its
equilibrium point x∗ = [x∗2, x

∗
3]T = [vcl ,0]T , which ensures

target capture in finite time. However, this pursuit law
requires knowledge of the target acceleration uT . Therefore,
we treat uT as an external disturbance ∆ and consider the
pursuit law

uP = −udes. (7)

The relative acceleration achieved by (7) is u = uT − uP =

udes +∆, where ∆ satisfies the condition ∆ ≡ uT . We consider
the robustness of the controller to the disturbance ∆ in the
next section.

B. Robustness

Robustness of the pursuit law to unknown target accelera-
tion was studied in [10] using sliding-mode control and in
[11] using partial-stability-based control. In those studies,
signum functions were employed to address the possibility
of unknown target acceleration, which was treated as a
matching disturbance. However, the effect of measurement
error was not considered in [10] or [11]. We show here that
the proposed pursuit law (7) where udes is given by (5) is
robust to both unknown target acceleration and measurement
error under a proper choice of the control gains Nr and Nθ .

As we have observed in our experimental testbed, the
states x1, x2 and x3 can only be measured with some amount
of noise. Let the measured (or estimated) states available
to the pursuer be defined as xmeas , x + e, where e =

[e1, e2, e3]T denotes the measurement (or estimation) error.
We make the following assumptions about the measurement
error on the states, inspired by our experimental testbed:

(A5) The error on the range measurement e1 is ignored since
it is sufficiently small compared to e2 and e3;

(A6) |ei | � |xi | for i=1,2,3, so the error terms that are higher
than first order are ignored; and

(A7) the magnitudes |e2 | and |e3 | are bounded by constants
e∗2 < |vcl | and e∗3 < |vcl |/

√
κ, respectively.



The validity of these assumptions for the experimental
testbed is discussed in Section IV. Since the upper bound
on the vehicle speed (which limits x3) and the lower bound
on the range (x1) both exist in the physical implementation,
we can also assume the following:

(A8) The absolute value of the LOS rate |θ̇ | = |x3/x1 | is
bounded by a constant ω > 0.

The desired acceleration term, udes in (7) is implemented
with the measured states xmeas, i.e.,

udes = udes(xmeas)

=



−
(x3 + e3)2

(x1 + e1)2 − Nr (x2 + e2 − vcl )( x2 + e2
x1 + e1

− Nθ
)

(x3 + e3)


.

Let x̃2 , x2 − vcl . This changes the derivative of the
Lyapunov function from (6) to

V̇ = V̇3 + V̇2, where
V̇3 = κ

(
−Nθ x2

3 − Nθ x3e3 +
x3
x1

(x3e2 + x2e3) + x3∆θ
)

and V̇2 = −Nr x̃2
2 − Nr x̃2e2 − 2 x3

x1
x̃2e3 + x̃2∆r .

Proposition 1: The pursuit law (7) is robust to distur-
bance ∆ and state measurement error e if the control gains
are chosen as

Nr >
umax + ωe∗3
|vcl | − e∗2

, and (8)

Nθ >

√
κ(2umax + 2ωe∗2 + ωe∗3 + 4κωe∗3)

2|vcl | − 2
√
κe∗3

. (9)

Moreover, if e is ignored, the conditions simplify to

Nr >
umax

|vcl |
, and Nθ >

√
κumax

|vcl |
. (10)

Proof: The detailed proof is omitted for length con-
straints. The outline is as follows: V̇2 can be decoupled
from the x3 dynamics by Assumption (A8). By bounding
the cross terms (e.g., x̃2∆r ≤

1
2 (c2 x̃2

2 + ∆2
2/c2), ∀c2 > 0),

V̇2 can be bounded as V̇2 ≤ −ρ2(x2 − vcl )2 + D2, where ρ2
and D2 are functions of Nr ,vcl ,e∗2,e

∗
3, and ω. By ultimate

boundedness [13], the solutions of the system converge to a
regionA2 = {x | x2 ∈ (2vcl ,0)} if (8) is satisfied. This bound
on x2 can be used to decouple V̇3 from the x2 dynamics.
With a similar argument, the bound on x3 at steady state is
established.

C. Modification of the pursuit law

Although convergence to a rectangular region in x2x3-
space provides a relaxed condition on the control gains,
the required control may be large if the terms |x2 − vcl |

or |x3 | are initially large. This problem is not restricted to
the initial phase in the case of actual implementation. If the
measurement error is large, it may cause erroneously large
control input even when the actual states |x2 − vcl | and |x3 |

are small.

In order to avoid this issue and to keep the acceleration
command small even in the presence of measurement error,
we saturate the linear terms in (5) as follows:

udes =



−
x2

3
x1
− N ′r sat

(
x2
|vcl |

+ 1
)

x2x3
x1
− N ′θsat

( √
κ

|vcl |
x3

) 

, (11)

where N ′r=Nr |vcl |, N ′θ=Nθ |vcl |/
√
κ. Note that the saturation

function terms are identical to the original linear terms when
| x̃2 | ≤ |vcl | and |x3 | ≤ |vcl |/

√
κ. One can show that the

ultimate boundedness property still holds (omitted due to
space constraints).

D. Comparison with other pursuit laws

In order to distinguish from other pursuit laws, let uA denote
pursuit law (7), where udes is given by (11). We compare
uA to the partial-stability-based controller uB [11] and the
sliding-mode controller uC [10], which are also robust to
unknown target acceleration and are given by

uB =

[
µB
σB

]
=



x2
3

x1
− νx2 + η1(

−
x2
x1

+ NB

)
x3 + η2sat

(
x3
ε

) 
(12)

and

uC =

[
µC
σC

]
=



x2
3

x1
+ η1sat

(
x2−vcl
ε

)
−(NC + 1) x2x3

x1
+ η2sat

(
x3
ε

) 
, (13)

where ν,NB ,NC , ε > 0 and η1, η2 > umax. Also consider a
naive controller uD whose radial acceleration is µD = µ∗ =

constant and whose normal acceleration is σD = σA.
Remark 1: The pursuit law uB requires x2 < 0 for initial

condition [11], whereas law uA and sliding-mode control
uC are robust to x2 > 0. This robustness is also beneficial in
the near-miss scenario where x2 can change instantaneously
from negative to positive.

Metrics often used in comparing pursuit strategies include
the capture time, the required σP , and the required µP . There
is no significant difference in the performance and control
effort in the normal component between the considered
pursuit laws, as can be seen in [11] and also in the numerical
simulation shown below. Once θ̇≈0 is achieved, short capture
times are achieved by using a large µP , as can be seen
from the dynamics (2), i.e., ẋ2=µT−µP if x3=0. Therefore,
to achieve a pursuit law with a short capture time one
needs simply to command the maximum available radial
acceleration. Based on these observations, we focus on the
radial component and compare the minimal control effort that
guarantees robust target intercept.

All of the pursuit laws except uD have the term x2
3/x1,

which cancels the centrifugal acceleration in B. Let

G , µ −
x2

3

x1
(14)

denote the additional term on the radial component in
order to compare G among the three pursuit laws. For a
fair comparison, we choose the smallest control gains that
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Fig. 3. Comparison of the controller specific terms G (see (14)) in the
radial control as a function of range rate x2. For simplicity, x3=0 is assumed
for the naive controller GD . The pursuit law GA has the smallest absolute
value that results in the smallest energy expenditure.

guarantee robustness (strictly speaking, the limiting value,
i.e., if N > a is required, then we choose N = a). Only the
no-measurement-error case is considered since measurement
error was not studied in [10][11].

From condition (10) and (11), N ′r = umax. The additional
term G of the control laws with minimal gains are

GA = umaxsat
(

x2

|vcl |
+ 1

)
GB = −νx2 + umax

GC = umaxsat
( x2 − vcl

ε

)
GD = µ∗ − x2

3/x1.

Fig. 3 shows G as a function of x2. Noting that uA ensures
x̃2 < |vcl | ⇔ 2vcl < x2 < 0 at steady state, GA has the
smallest absolute value for the same states x.

Remark 2: The sliding-mode controller µC becomes iden-
tical to µA if ε = |vcl |. Although ε is usually a small
value introduced in order to avoid the chattering from the
signum function, it can be as large as |vcl | and still guarantee
robustness.

Fig. 4 shows the results of numerical simulation up to the
first close encounter. The open-loop control of the target is
specified by uT (t)=[0.5 sin(0.4πt+0.3π), 0.5 sin(πt+0.4π)]
and the initial conditions are rP/O (0)=[0,0], vP/O (0)=[0,0],
rP/O (0)=[2,0], and vP/O (0)=[−.5, .7]. Parameters and con-
trol gains were chosen as vcl=−2.0, κ=400, ν=0.1,
NB=0.5, NC=1, ε=0.1, and umax=0.5, which gives
N ′r=N ′θ=η1=η2=0.5. The naive control law uD is simulated
with µ∗1 = 0.4 and µ∗2 = 0.7 denoted Naive 1 and Naive 2,
respectively. We define the energy consumption as Etot =∫ t

t0
‖u(τ)‖2 dτ [20]. {Since the motor voltage on the hovercraft is

proportional to the magnitude of the acceleration command and voltage-
current relationship is close to linear in the range in which the hovercraft
operates, the quadratic form of the energy estimate is valid for the hovercraft
testbed.} Eµ and Eσ are the radial and normal component
of the energy consumption. The normal components are
all similar except at the end, when x1 becomes small. In
the radial component, the bio-inspired control law (blue)
is the smallest in both maximum acceleration and energy
consumption.

Fig. 5 shows the case when the pursuit is continued after
the first close encounter. This corresponds to the near-miss
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Fig. 4. Numerical simulation until the first close encounter. (a) Trajectories
from different pursuit laws against the same target (black). (b, c) States.
(d)(e) Absolute value of acceleration commands. (f, g) Energy expenditure
calculated from the time integral of squared acceleration commands. The
left column (b, d, f) and the right column (c, e, g) describe the radial and
normal components in LOS frame, respectively.

or the target tracking scenarios. To quantify the tracking per-
formance, we look at the energetic cost J =

∫ t

0 (x1(τ))2 dτ,
as shown in Fig. 5b. The bio-inspired pursuit law has the
smallest J and the smallest energy consumption Etot .

IV. Experimental Results

The various pursuit laws described above were implemented
using the autonomous hovercraft testbed. We also used a
motion-capture camera system to set the vehicles to the
desired initial conditions in the inertial frame, to command a
repeatable trajectory for the target, and to analyze the perfor-
mance of the pursuit by measuring the ground truth. Initial
conditions and target trajectory identical to the numerical
simulation were used.

A. Measurement Noise

Vision-based tracking like that used on the pursuer hov-
ercraft is a low-power, light-weight tracking solution for
small, payload-limited platforms. Measurements of the range
and body-frame angle to the target from the pursuer are
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corrupted by limited camera resolution, occasional extra-
neous IR sources and reflections, and other random noise.
Differentiation of this noisy signal to calculate radial and
angular velocity further exacerbates the high frequency noise.
Table I shows the measurement errors across eighteen pursuit
experiments.

Due to the generally large errors e2 and e3 and infrequent
extreme deviations in e3, ei often approaches xi and even
occasionally exceeds it, though the error-to-signal ratio is
usually less than 0.5 as shown in Fig. 6. Hence, Assumption
(A6) is marginally true for e2 and e3. With the controller
parameters vcl=−2 and κ=10, the magnitudes of e2 and e3
agree with Assumption (A7) most of the time; |e2 |> |vcl |
and |e3 |> |vcl |/

√
κ occurs only 0.42% and 0.73% of the time

steps respectively. We estimate the bounds as e∗2=0.56 m/s
and e∗3=0.30 m/s using two standard deviations, which ac-
commodates 97.6% and 95.4% of all errors. For Assumption
(A8), we estimate the maximum LOS angular rate as ω = 1
rad/s.

The control gains calculated from (8), (9) and (11) are
N ′r=1.1 and N ′θ=12.4; N ′r=N ′θ=0.5 from (10) when mea-
surement error is ignored. Although the mean capture time
from 10 experimental runs increased from 2.7 sec with the

TABLE I
Characteristics of the StateMeasurement Errors

Units Mean S.D. Max.
e1 m 0.023 0.031 0.14
e2 m/s 0.112 0.289 2.26
e3 m/s -0.002 0.151 3.15
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Fig. 7. Experimental run with hovercraft until the first close encounter.
Subfigures f and g correspond to those in Fig. 4.

former control gains to 3.2 sec with the latter control gains,
robust target capture was still achieved with the smaller gain
setting, which implies that the gain condition that is robust
to measurement error may be conservative for this testbed.

B. Comparison between Pursuit Laws

As in the numerical simulations, we ran each controller
against a pre-programmed target trajectory and recorded the
pursuer’s trajectory, onboard state measurements, and control
effort. The parameters and control gains were identical to
those in the numerical simulations. Fig. 7 shows the results
from conducting identical experimental trials for each law.
We characterize controller performances by capture time,
maximum control effort, and energy expenditure. As in Sec-
tion III, we are most interested in the maximum control effort
and energy expenditure since both the control authority and
energy stores are particularly limited on small autonomous
vehicles. Each controller was run three times and the average
of each of the above metrics is listed in Table II. The symbols
µmax, Umax, Eµ , Etot and Tcap denote maximum radial accel-
eration command, maximum acceleration command, radial
energy expenditure, total energy expenditure, and capture
time, respectively. Note that µmax and Umax are the values
before the saturation at 1 m/s2. The bio-inspired controller
has the smallest acceleration and energy expenditures and the
longest capture time. The naive pursuit law has the shortest
capture time and the largest energy expenditure.

C. Comparison with Theory

Our experimental pursuit implementation revealed several
insights when compared to analytical and numerical results.

First, the experiments provide a realistic baseline for noise
in small, low-cost, vision-based sensors used in pursuit. As

TABLE II
Performances of Different Pursuit Laws

µmax Umax Eµ Etot Tcap
(m/s2) (m/s2) (m2/s3) (m2/s3) (s)

Proposed 0.81 3.70 0.25 1.82 3.16
Partial stab. 1.18 5.46 0.52 2.48 2.90
Sliding mode 1.13 6.63 0.68 2.03 2.88
Naive 0.80 6.70 0.79 2.37 2.75



expected, differentiated rate measurements like x2 and x3 are
significantly noisier than direct range or angle measurements
like x1, when using vision sensors such as the camera on
the pursuer. Though the magnitude of the noise, specifically
in x2 and x3, violated the theoretical assumptions, the con-
trollers’ success demonstrate that a well-designed controller
can reliably achieve target capture outside of the guaranteed
operating regime.

Second, actuator saturation due to limited actuator au-
thority changed controller performance as compared to sim-
ulation, emphasizing the importance of a low maximum
commanded acceleration. Since no bound is assumed on pur-
suer acceleration in the controller derivations, unachievable
acceleration magnitudes can be commanded. This problem is
exacerbated by sensor noise, which can produce erroneously
large state measurements and corresponding large fluctua-
tions in acceleration commands. In the experimental imple-
mentation, overly large acceleration commands are saturated
by scaling down to the maximum achievable acceleration
magnitude while maintaining the original direction. In partic-
ular, this modified the achieved acceleration when either µ or
σ command exceeded the maximum acceleration magnitude.
The effects of actuator limits could be avoided or mitigated
by limiting the maximum commanded acceleration or by
different scaling and saturating strategies when unachievable
accelerations are commanded.

V. Conclusion

Inspired by the pursuit behavior of flying insects, we con-
sidered low-energy consumption, robustness to uncertainly,
and performance in the near-miss scenario to design a bio-
inspired pursuit law for small, cheap, and agile robotic vehi-
cles using Lyapunov-based control. We performed analytical,
numerical, and experimental comparison of various pursuit
laws and showed that the bio-inspired pursuit law has the
least energy consumption among considered pursuit laws
while staying close to the target in the near-miss scenario.

The experiments showed that the magnitude of measure-
ment error is not negligible. We used Lyapunov analysis
together with an ultimate boundedness condition to estab-
lish the robustness of the new pursuit law to unknown
target acceleration and measurement error. However, the
experiments also showed that the gain condition for the
robustness is conservative, which may have been caused by
the deterministic analysis of the error bounds. In ongoing
work, we are considering three-dimensional pursuit and a
stochastic approach to model the effect of measurement error.
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