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Observability-based Optimization for Flow Sensing and Control of an
Underwater Vehicle in a Uniform Flowfield

Levi DeVries1 and Derek A. Paley2

Abstract— This paper describes how an underwater vehicle
can control its motion by sensing the surrounding flowfield and
using the sensor measurements in a dynamic feedback con-
troller. Limitations in existing sensing modalities for flowfield
estimation are mitigated by using a fish-inspired distributed
sensor array and a nonlinear observer. Estimation performance
is further increased by optimizing sensor placement on the
vehicle body. We optimize sensor placement along a streamlined
body using measures of flowfield observability, namely the
empirical observability gramian. Velocity potentials model the
flow around the vehicle and a recursive Bayesian filter estimates
the flow from noisy velocity measurements. To orient the body
into the oncoming flow (a fish-inspired behavior known as
rheotaxis) we implement a dynamic, linear controller that uses
the estimated angle of attack. Numerical simulations illustrate
the theoretical results.

I. INTRODUCTION

The integration of bio-inspired sensing modalities with
unmanned robotic systems has the potential to advance
autonomous operations by enabling vehicles to better char-
acterize the complex environments in which they operate.
As new sensing technologies are developed and improved,
[1],[2],[3],[4],[5] the performance of a distributed sensor
array can be enhanced by optimizing the placement of the
individual sensing nodes with respect to a desired objective
[6],[7],[8],[9]. This paper presents an observability-based
framework for evaluating fish-inspired sensor placement
strategies for flowfield estimation, and demonstrates the use
of the resulting sensor design in a closed-loop control system
for an underwater vehicle. Specifically, we model the flow
around a fish-shaped streamlined body outfitted with flow
sensors and seek to optimize sensor placement configurations
for estimating the surrounding flowfield. Estimation of the
surrounding flowfield is an essential part of the design of a
control system that stabilizes the upstream orientation of the
body with respect to the flow, a fish-inspired behavior known
as rheotaxis [10].

We model the potential flow around a streamlined body
using conformal mapping [11]. This technique accurately
models the flow at small angles of attack where flow sep-
aration is minimal. In light of related work [1] in which
hair-sensor arrays are being developed to encode flow speed
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and direction, analogous to the fish lateral line system
[3],[10],[12], this paper considers multiple flow sensors that
collect noisy measurements of the local flow velocity a finite
distance from the body [1]. We optimize sensor placement
using measures of flowfield observability as a scoring metric,
assuming sensor hairs protrude sufficiently far from the
vehicle such that boundary layer effects can be ignored. In
the region near the vehicle but outside the boundary layer,
the flow direction is predominantly tangent to the surface,
which implies that a point measurement of flow velocity is
a suitable representation of the hair sensor capability.

Candidate sensor placement configurations are evaluated
using optimality measures based on the empirical observ-
ability gramian, also known as the empirical observability
covariance matrix [6]. We show that for an analytic flowfield
the empirical observability gramian is equal to the Fisher in-
formation matrix [13], scaled by the sensor noise covariance.
By optimizing the configuration of the sensor array with
respect to flowfield observability, estimation of the local flow
around the vehicle is improved. This paper presents a recur-
sive Bayesian filter for estimating the flowfield parameters
from noisy measurements collected by the optimized sensor
array. The estimated flowfield parameters are implemented
in a dynamic feedback control algorithm to steer the body to
the desired angle of attack with respect to the flow (which
is zero for rheotaxis).

The contributions of this paper are (1) the application of
an observability-based metric to the problem of evaluating
and optimizing distributed sensor placement for flowfield es-
timation; (2) a recursive Bayesian estimation framework for
estimating the parameters of a model flowfield using noisy
flow measurements; and (3) a dynamic feedback control
algorithm utilizing the estimated flowfield to steer the vehicle
to a desired orientation with respect to the surrounding flow.
The contributions are illustrated using numerical simulations
in a uniform flowfield with unknown flowspeed and angle of
attack; application of this estimation and control framework
to non-uniform flows is ongoing.

Section II reviews the conformal mapping technique for
modeling the flow around a streamlined body; it also re-
views the empirical observability gramian formulation for
measuring flowfield observability, presents a framework for
analysis of sensor placement strategies using several opti-
mality metrics of the observability gramian, and describes a
recursive Bayesian filter framework for estimating flowfield
parameters. Section III presents sensor-placement optimiza-
tion results for a multi-sensor array, motivating the multi-
sensor design by first analyzing the placement of a single



sensor, and describes a feedback control algorithm to steer
the body to a desired angle of attack. Section IV summarizes
the results and ongoing work.

II. BACKGROUND

A. Flow around a streamlined body
This section uses techniques from potential flow theory

and conformal mapping to describe a model of fluid flow
past a streamlined body. The flowfield model is used to derive
optimal sensor placement strategies for flowfield estimation
and closed-loop control in Section III.

Consider a point ξ ∈ C in the complex plane. The coor-
dinate transformation [11]

z = ξ + b2

ξ
∈ C, (1)

maps shapes according to the transformation variable b ∈R.
For example [11], ξ =Reiθ−λ , where θ ∈ [0,2π), defines
a disk with radius R offset along the real axis by λ ∈R.
Choosing b = R−λ maps the disk to a symmetric, stream-
lined body as shown in Figure 1. Note, the body shape is
defined by the parameters (R,λ ) and the transformation (1).

The potential flow around a disk can be approximated
using the sum of a uniform flow, a doublet, and a vortex
[11],[14]. The corresponding velocity potential is [11],[14]

w(ξ ) =Uξ e−iα + R2

ξ+λ
Ueiα − iΓ

2π
ln(ξ +λ ) , (2)

where U > 0 is the freestream speed of the uniform flow,
α ∈ [0,2π] is the angle of attack of the body, and Γ ∈ R
is the circulation of the vortex. (Note the potential flow
approximation is valid only for small angles of attack, so
we take α ∈ [−15◦,15◦] consistent with symmetric foils at
low Reynolds numbers [15].) The conjugate flow f ∗ = u− iv
at ξ is the gradient of the velocity potential (2) [11], i.e.,

f ∗ (ξ ) = ∂w
∂ξ

=Ue−iα − R2

(ξ+λ )2 Ueiα − iΓ
2π(ξ+λ )

. (3)

Using (1) and (3), the conjugate flow around the body in z
coordinates is

f ∗(z) = ∂w
∂ξ

(
∂ z
∂ξ

)−1

=
(

Ue−iα − R2

(ξ+λ )2 Ueiα − iΓ
2π(ξ+λ )

)(
1− b2

ξ 2

)−1
.

(4)
The Kutta condition [11],[14] stipulates that the flow must

be continuous around the body, which implies that the flow
stagnates at the trailing edge of the body. This condition
determines the vortex circulation Γ by evaluating f ∗(z) = 0
in (4) at ξ = Rei0−λ and solving for Γ to obtain [11], [14]

Γ =−4πRU sinα. (5)

Note that (4) provides the flow around the streamlined
body in ξ coordinates. The mapping from z to ξ is dual-
valued with one point inside the disk and one outside. We
concern ourselves with the point outside the disk and solve
(1) for ξ using the quadratic equation to obtain [11]

ξ (z) =


1
2

(
z+
√

z2−4b2
)
, if arg(z) ∈ (−π/2,π/2]

1
2

(
z−
√

z2−4b2
)
, if arg(z) ∈ (π/2,3π/2] .

(6)

Re(ξ) (Body Length)

Im
(ξ

) 
(B

o
d
y
 L

e
n
g
th

)

 

 

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8

F
lo

w
s
p
e
e
d
 (

B
o
d
y
 L

e
n
g
th

/s
)

0

0.5

1

1.5

(a)

Re(z) (Body Length)

Im
(z

) 
(B

o
d
y
 L

e
n
g
th

)

 

 

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8

F
lo

w
s
p
e
e
d
 (

B
o
d
y
 L

e
n
g
th

/s
)

0

0.5

1

1.5

(b)

Fig. 1. (a) Flowfield around (a) a disk and (b) a fish-like streamlined body
with R = 2.9 and λ = 0.5.

For z = x+ iy and ξ = ξx + iξy, we have

ξx = x
2 ±

1
2

[
(x2− y2−4b2)2 +4x2y2

]1/4

cos
(

1
2 tan−1

(
2xy

x2−y2−4b2

)) (7)

and

ξy = y
2 ±

1
2

[
(x2− y2−4b2)2 +4x2y2

]1/4

sin
(

1
2 tan−1

(
2xy

x2−y2−4b2

))
.

(8)

Combining equations (4), (5), and (6) gives the conjugate
flow f ∗ in z coordinates [11] (omitted for brevity). Figure 1
shows the streamlines and flowspeeds along the circular and
streamlined bodies calculated from (3) and (4), respectively.
Note, due to the constraint imposed by the Kutta condition
the flow around the cylinder in Figure 1(a) is asymmetric.

For a known body shape (R,λ ), the (uniform) flowfield (4)
is parameterized by the freestream velocity U and the angle
of attack α . We define the M-dimensional parameter vector1

ΩΩΩ = (U,α), where M = 2. Let N be the number of sensor
nodes in the array. By assimilating measurements collected at
sensor locations zi, i= 1, . . . ,N, one can reconstruct the flow-
field by estimating ΩΩΩ. Performance of an estimation scheme
is improved by optimizing the sensor locations for observing
the flow. The following subsection describes a framework for
evaluating candidate sensor-placement strategies using the
empirical observability gramian.

B. Observability Measures

In linear systems theory, the singular values of the ob-
servability gramian determine the relative difficulty of deter-
mining the initial states of a linear system from the outputs
generated over a time interval [16, p. 125-126]. Large singu-
lar values imply that it is not difficult to invert the mapping
from outputs to initial states [6]. The unobservability index
ν , 1/σmin (the reciprocal of the smallest singular value of
the observability gramian) provides a (scalar) measure of the
relative ease in which an estimation scheme can determine
the initial state of a system [6]. In stochastic estimation,
a large value of ν implies that measurement noise will
significantly impact the estimate error. Conversely, a small
value of ν implies that the estimation error is less susceptible
to measurement noise [6]. This measure of the observability

1We use bold fonts to represent a column matrix, e.g., of sensor positions
z = [z1 z2 ... zN ]

T , or a set of parameters, e.g., ΩΩΩ = (Ω1,Ω2, . . . ,ΩM).



gramian is thus a suitable metric for comparing candidate
sensor placements.

Several other measures of the observability gramian have
been proposed as a metric for the sensor-placement problem
[7],[13], including the trace, the determinant, and the trace of
the inverse. Maximizing the trace corresponds to maximizing
the L2 norm of the outputs [13], whereas maximizing the
determinant corresponds to a maximization of independence
between outputs [13]. Minimizing the trace of the inverse
is comparable to minimizing the error covariance [13]. We
compare these strategies by optimizing the diagonal elements
of the observability gramian, which represent the observabil-
ity of individual flowfield parameters.

Using the classical observability gramian on a nonlinear
system requires linearization about an equilibrium solution.
However, linearization may not adequately capture the input-
output behavior of the nonlinear system over a desired
operating region. Moreover, nonlinear observability analysis
[17] can be complicated to perform. One alternative for
determining the observability of a nonlinear system is to
use the empirical observability gramian [6], also known as
the observability covariance matrix [18],[19]. The empirical
observability gramian maps the input-to-state and state-to-
output behavior of a nonlinear system more accurately than
the observability gramian found by linearization [19] and,
for systems depending on time-invariant parameters, the
empirical observability gramian is closely related to the
Fisher information matrix, [13] as shown below.

Let the vector z = [z1,z1, . . . ,zN ]
T denote the positions of

all N sensors. We assume that sensor k collects independent
measurements of the flowfield such that the output is

βk = fk = uk + ivk ∈ C, (9)

where uk and vk are given by (4) evaluated at zk = xk + iyk.
The output from all N sensors is

βββ = [β1,β2, . . . ,βN ]
T ∈ CN . (10)

Let εi be a small perturbation of the ith parameter along
the unit vector ei ∈ RM and let ΩΩΩ0 ∈ RM be the nominal
parameter values (i.e., the current best estimate). For a set
of time-invariant parameters, the (i, j)th component of the
M×M empirical observability gramian WO is2 [6]

WO(i, j;z) = 1
4εiε j
〈βββ+i−βββ

−i,βββ+ j−βββ
− j〉,

i = 1, . . . ,M, j = 1, . . . ,M,
(11)

where ΩΩΩ
±i = ΩΩΩ0±εiei produces the output βββ

±i = βββ (z;ΩΩΩ
±i).

Measures of the observability of a nonlinear system can be
obtained by applying metrics such as the unobservability
index to WO. Note, to compute WO(i, j) for time-varying
parameters ΩΩΩ = ΩΩΩ(t) or for measurements collected over
time, (11) is integrated over the duration of the sampling

2Let 〈x,y〉 , Re(x∗y), where x∗ is the complex conjugate of x, denote
the inner product of complex numbers x and y. For complex vectors and
matrices, the notation X∗ represents the conjugate transpose of X. The
notation G(i, j;ααα) represents the (i, j)th element of the matrix G, which
is a function of the state ααα . The notation g(ααα;ΩΩΩ) represents a function g(·)
that depends on the state variables ααα and the parameters ΩΩΩ.

trajectories. In this setting, although angle of attack α is
ultimately controlled and therefore time-varying, we assume
that it is static for the purposes of calculating observability
and sensor placement.

For systems in which the output βββ (z;ΩΩΩ) is a continuous
function of the parameters ΩΩΩ, the observability gramian and
the Fisher information matrix are closely related [13]. In the
limit that εi→ 0, we have

lim
εi→0

βββ
+i−βββ

−i

2εi
=

∂βββ

∂Ωi
. (12)

For infinitesimally small perturbations, the empirical observ-
ability gramian WO in (11) is approximated by

WO ≈


〈 ∂βββ

∂Ω1
, ∂βββ

∂Ω1
〉 . . . 〈 ∂βββ

∂Ω1
, ∂βββ

∂ΩM
〉

...
. . .

...
〈 ∂βββ

∂ΩM
, ∂βββ

∂Ω1
〉 . . . 〈 ∂βββ

∂ΩM
, ∂βββ

∂ΩM
〉

 ∈ RM×M. (13)

Let
X ,

[
∂βββ

∂Ω1
, . . . , ∂βββ

∂ΩM

]T
∈ CM×N . (14)

Assuming the sensors are identical and independent, the
sensor noise covariance matrix R is diagonal and given by
R = R0IN×N , where R0 is the sensor noise variance. Under
this assumption, the observability gramian (13) becomes

WO ≈ XX∗ = R0XR−1X∗ , R0F, (15)

where F is the Fisher information matrix [13]. F provides a
measure of the information content within a set of noisy
measurements and is associated with the inverse of the
covariance matrix [20].

C. Bayesian Estimation of a Parameterized Flowfield

This section presents a nonlinear estimation scheme to
enable a sensor array to estimate unknown parameters of a
model flowfield, such as the flowfield presented in Section II-
A. Estimation of a spatiotemporal flowfield f of the form (4)
using noisy measurements of the flow can be accomplished
by assimilating the measurements using a recursive Bayesian
filter. For linear systems with Gaussian noise the optimal
Bayesian filter is the Kalman filter, whereas for nonlinear
systems with nonlinear noise models a common Bayesian
filter is a particle filter [21]. In either case, the flow estimate
is encapsulated in a state vector, which for example may
contain the flow velocity f = u+ iv at each one of P grid
points. An alternative we pursue here is a state vector ΩΩΩ

that contains only a set of M� P parameters, from which
the flowfield f can be reconstructed. For example, the model
(4) is defined by the parameters ΩΩΩ = (U,α), such that the
flowfield at zk is fk = u(zk;ΩΩΩ)+ iv(zk;ΩΩΩ). For flowfields with
a low-dimensional parameter space, the recursive Bayesian
filter is advantageous because of its simplicity and ability
to account for nonlinearities in both the flowfield model and
measurement noise. This representation provides a significant
reduction in computations, making it attractive for use in
a dynamic feedback controller. (Note this representation is
only possible for a parameterized flowfield.)



The Bayesian formalism proceeds as follows [21]. Let Ω̂ΩΩ

denote the parameter estimates and β̃k = uk +ηu,k + i(vk +
ηv,k) ∈ C denote a noisy observation collected from the kth

sensor at position zk, where the noise ηi,k ∼ N (0,σ2
i ) is

normally distributed with zero mean and variance σ2
i for i =

u,v. Denote A = {β̃1, . . . , β̃N} as the set of observations from
all sensors. The posterior probability of the state ΩΩΩ given
A is p(ΩΩΩ|A) = κ p(AAA|ΩΩΩ)p(ΩΩΩ|A0), where κ ensures that
p(ΩΩΩ|A) has unit integral over the state space. The likelihood
function p(A|ΩΩΩ) represents the conditional probability of the
observations A given the state ΩΩΩ and p(ΩΩΩ|A0) represents
the prior probability distribution. Note that, in the absence of
observations or any information other than parameter bounds,
the prior probability p(ΩΩΩ|A0) is uniform.

For each point ΩΩΩ in the M-dimensional state space, we
choose a multivariate gaussian likelihood function, i.e.,

p(β̃k|ΩΩΩ) = 1
2π|Σ|1/2 exp

[
− 1

2

(
fk(zk;ΩΩΩ)− β̃k

)∗
Σ−1

(
fk(zk;ΩΩΩ)− β̃k

)]
,

(16)

where Σ = diag(σ2
u ,σ

2
v ). Assuming measurements are taken

from N sensors, the posterior probability density of the
state estimate ΩΩΩ is obtained using the joint measurement
likelihood as follows:

p(ΩΩΩ|A) = κ

(
N

∏
k=1

p(β̃k|ΩΩΩ)

)
p(ΩΩΩ|A0), (17)

where p(β̃k|ΩΩΩ) is given by (16). The point Ω̂ΩΩ in parame-
ter space corresponding to the maximum of the posterior
probability p(ΩΩΩ|A) (i.e., the mode) provides the maximum
likelihood estimate of the flowfield parameters.

Equation (17) represents spatial integration over the sensor
array. Temporal integration is accomplished in the Bayesian
framework by using the posterior at time step t−∆t to
generate the prior at time t, i.e.

p(ΩΩΩ(t)|A(t))=κ

(
N

∏
k=1

p(β̃k(t)|ΩΩΩ(t))

)∫
p(ΩΩΩ(t)|ΩΩΩ(t−∆t))

p(ΩΩΩ(t−∆t)|A(t−∆t))dΩΩΩ(t−∆t),
(18)

where A(t) = {A(t),A(t−∆t), . . . ,A(0)} and the motion
model p(ΩΩΩ(t)|ΩΩΩ(t−∆t)) updates the probability density func-
tion from t−∆t to t [22, p.372-375]. We define the motion
matrix Ψ and let p(ΩΩΩ(t)|ΩΩΩ(t−∆t)) = N (ΨΩΩΩ(t−∆t);Σp),
where N (ΨΩΩΩ(t−∆t);Σp) is normally distributed white noise
with mean ΨΩΩΩ(t−∆t) and variance Σp.

III. DYNAMIC FEEDBACK CONTROL WITH OPTIMAL
SENSOR PLACEMENTS

This section presents results on sensor placement opti-
mization, flowfield estimation, and control of the vehicle
orientation relative to the flow. Section III-A calculates the
optimal placement of a single sensor based on the optimality
metrics presented in Section II-B. Section III-B suggests
a sensor-placement strategy for an N-sensor configuration
based on the observation that the multi-sensor empirical

observability gramian is the sum of the observability grami-
ans produced by each sensor and Section III-C incorporates
estimates from the recursive Bayesian filter in a dynamic
feedback control that regulates the vehicle’s angle of attack.

A. Placement Optimization for a Single Sensor

A first step in solving the sensor placement problem for a
uniform and steady flowfield parameterized by ΩΩΩ= (U,α) is
to consider a single flow sensor placed a fixed distance from
the body. Optimization of the placement of a single sensor is
motivated by noting that the inner product used to calculate
WO(i, j) is a linear operator. Due to linearity, the empirical
observability gramian for an N-sensor configuration is the
sum of the empirical observability gramians produced by
each sensor, i.e.,

WO(i, j;z) =
N

∑
k=1

WO(i, j;zk), (19)

where WO is found from (11). Consequently, the results
of single sensor optimization are directly applicable to the
design of a multi-sensor configuration in Section III-B.

Envisioning hair sensors that protrude outside the bound-
ary layer, we calculate the observability gramian from a
single measurement at z1 using (11), where βββ = β1. Due
to the linear dependence of the flowfield model (4) on the
parameter U and the definition of the empirical observability
gramian (11), the perturbation value εU does not appear
in the analytic form of (11) (omitted for brevity). The
element WO(1,1) corresponds to the squared ratio of the flow
magnitude and the freestream parameter U , which represents
a perturbation in U and is maximized at the location of
maximum flowspeed. Likewise, WO(2,2) corresponds to a
perturbation in the angle of attack. Maximizing these ele-
ments individually gives insight into sensor configurations
that maximize the observability of each flowfield parameter.

We calculate the observability gramian (11) as a function
of the sensor location and evaluate the observability metrics
described in Section II-B for a given parameter set ΩΩΩ,
assuming the sensor protrudes out from the body by 0.02
body lengths (BL). Figure 2 (left) shows the log of each
dimensionless scoring metric plotted versus the polar angle
arg(zk) of the sensor placement for ΩΩΩ = (0.6 BL/s,10 deg).
Figure 2 (top right) shows streamlines of the flow around a
body parameterized by R = 2.9 and λ = 0.5. The possible
sensor placement positions are shown by the black line
around the body, whereas the optimal sensor placements are
color coded with respect to the metrics in Figure 2 (left).
Optimization of WO(1,1) (blue) places the sensor at the
location of the maximum flowspeed. The extrema of the
remaining optimality metrics including the angle of attack
element WO(2,2), unobservability index, trace, determinant,
and the trace of the inverse (red) lie on or near the tip of
the body (arg(zk) = 180◦), indicating that sensors placed in
this region of the body maximize the independence between
the angle of attack α and flowspeed U in the measurement
model (9) while minimizing the error covariance [13].
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Fig. 2. Optimization results for one flow sensor: (left) log of optimality
metrics versus the polar angle of the sensor placement near the fish body for
ΩΩΩ= (0.6 BL/s,10 deg); (top right) sensor placements of optimality metrics;
(bottom right) optimal polar angle of free-stream observability sensor U
versus angle of attack.

Performing the observability analysis for flowspeeds U ∈
[0.01,1] BL/s (not shown) and angle of attack α ∈
[−15◦,15◦] indicates how sensor placement varies with ΩΩΩ.
Since the flow (4)-(5) is linearly dependent on U , the
observability of the freestream parameter U increases with
U at any zk or α . Figure 2 (bottom right) shows the optimal
polar angle of the sensor for varying angles of attack and
fixed velocity parameter U = 0.6 BL/s when optimizing
over the freestream velocity element of the observability
gramian WO(1,1). Recall that WO(1,1) corresponds to the
observability of the free stream velocity parameter U and
note that the optimal sensor placement varies with α to
follow the point of maximum flowspeed near the body. The
optimal placement with respect to the remaining metrics lies
within ±3◦ of the tip of the body.

B. Placement Optimization for Multiple Sensors

This section considers the optimization of a multi-sensor
configuration. We assume the flowfield parameters ΩΩΩ lie
within a predefined range and each of the N sensors are
placed a fixed distance 0.02 BL from the body. Under these
assumptions the observability gramian from measurements
at z = [z1, . . . ,zN ]

T is given by (11), where βββ is given by
(10), (9), and (4).

A desirable configuration optimizes observability over a
range of the parameter space ΩΩΩ, assuming the flowfield
model used in this paper is valid for angles of attack α ∈
[−15◦,15◦]. At any given α we desire a configuration in
which at least one sensor is optimally placed. For this reason
we choose a configuration (assuming N is odd) in which
N−1 sensors are placed symmetrically about the body with
the polar angle of each sensor optimizing at angles of attack
in 15◦/N intervals. A single sensor is placed at the tip of
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Fig. 3. Optimized sensor configurations for three fish-like body shapes
parameterized by R = 2.9 and λ = 0.5, 0.85, and 1.5, respectively.

the body to optimize the remaining metrics. This sensor
configuration therefore satisfies all of the optimality criterion
along equal intervals of the flowfield parameter space ΩΩΩ.
Figure 3 shows the optimized sensor configuration scheme
for N = 9 sensors and three streamined bodies parameterized
by R = 2.9 and λ = 0.5, 0.85, and 1.5, respectively.

C. Dynamic Feedback Control of Angle of Attack

By employing recursive Bayesian filtering with an opti-
mized sensor placement configuration the flowfield can be
estimated even in the presence of measurement noise. This
section uses the estimated flowfield parameters from the
recursive Bayesian filter in a dynamic feedback control that
stabilizes the vehicle about zero angle of attack. Assuming
the body has a control surface or motor (e.g., rudder, fin, or
gantry system) that regulates the body’s turn rate, the angle of
attack α(t) is modeled kinematically by the equation α̇ = γ ,
where the control γ = γ(Ω̂ΩΩ) is designed using feedback of
the parameter estimates Ω̂ΩΩ = (Û , α̂). Suppose the estimated
angle of attack can be modeled as α̂ = α +w, where the
perturbation w≤ δ is bounded. Using a proportional control

γ(t) =−Kα̂, K > 0, (20)

gives the closed-loop equation

α̇ =−K(α +w). (21)

Use of the Lyapunov function V =α2/2 reveals that if w= 0
then α = 0 is exponentially stable (see, e.g. [23, p. 114]). For
w 6= 0, α(t) is uniformly, ultimately bounded for |w| ≤ δ with
ultimate bound |α(t)| ≤ δ/K [23, p. 347].

Figure 4 shows a first-order, discrete-time simulation of
the closed-loop control (20) using N = 9 sensors at the
optimal locations for α ∈ [−15◦,15◦] and time step dt =
0.1 seconds. The estimated α̂ is provided by the recursive
Bayesian filter (18) and the control gain is K = 1. We assume
the sensors collect noisy measurements of the flow with
noise σu = σv = 0.25 BL/s and that the Bayesian filter is
implemented with the motion matrix Ψ = ∆tdiag([0 γ]T ) and
process noise Σp = diag([0.25 (BL/s)2,0.03 (rad/s)2]). Fig-
ures 4(a) and 4(b) show the initial and final orientation of the
streamlined body, respectively; Figures 4(c) and 4(d) show
the marginal probability densities3 of the angle of attack α

and freestream velocity parameter U . The actual flowspeed

3The marginal probability density is achieved by summing a multi-
dimensional probability density over a subset of dimensions.
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Fig. 4. Simulation of the dynamic control (20). (a,b) The initial and final
orientation of the streamlined body; (c,d) marginal probability densities of
the recursive Bayesian filter.

U = 0.6 BL/s and angle of attack are depicted by the dashed
white lines; the parameter estimates are represented by a
solid white line. Sensor positions are denoted by magenta
circles in Figures 4(a) and 4(b). Note that the control (20)
orients the body toward α = 0 with estimation errors causing
small deviations from zero angle of attack, consistent with
the boundedness analysis above.

IV. CONCLUSION

This paper derives observability-based sensor placement
strategies for flowfield estimation and control of a stream-
lined vehicle in a uniform flowfield. Velocity potentials and
conformal mapping model the flow around a streamlined
body and measures of the empirical observability gramian
optimize sensor configuration strategies for flowfield observ-
ability. A Bayesian filter framework estimates the param-
eterized flow assuming sensors collect noisy flow velocity
measurements and the estimated flowfield parameters are
used in a dynamic feedback controller to steer the vehicle to
zero angle of attack.

Results suggest that the optimal location of a single sensor
is the front of the vehicle. Of the six optimality metrics
evaluated, five suggest placement within ±3◦ of the tip
for α ∈ [−15◦,15◦] and the final metric, which measures
flowfield sensitivity to perturbations in the freestream ve-
locity parameter, is maximized at the point of highest flow
magnitude. To optimize a multi-sensor configuration, we
incorporate the single sensor results and exploit the linearity
of the empirical observability gramian to present a placement
strategy in which one sensor is located at the nose of the
body and the remaining sensors are distributed around the
body optimally for varying angles of attack.

Potential flow models provide a first step for analytical
derivation of sensor placement strategies, but represent a
highly idealized model of real underwater flow environ-

ments. Ongoing works seeks to validate the sensor placement
strategies of this paper experimentally and with high fidelity
computational fluid models. In addition, we seek to derive
additional bio-inspired control algorithms to emulate fish
behaviors such as station holding.
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