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Distributed Optimization for Radar Mission Coordination

Tracie A. Severson and Derek A. Paley

Abstract— This paper presents optimization algorithms that
enable multiple ship-based radar systems to maximize their col-
lective target search area while concurrently solving an optimal
sensor-to-target assignment problem. We present theoretically
justified strategies that determine the optimal ship location and
search-area radius for each radar in a given threat environment
satisfying a pre-defined resource reserve constraint. We then
solve the optimal target-assignment problem by balancing the
radar tasking among all participating sensors and show the
resulting increase in the number of trackable targets in the
combined search area. We provide analytical and numerical
simulations to illustrate the algorithm performance.

I. INTRODUCTION

Modern radar systems perform a variety of tasks, includ-
ing surveillance, tracking, identification, discrimination, and
engagement support. For Integrated Air and Missile Defense
missions [1], multi-function radar systems primarily perform
surveillance and tracking functions in order to simultane-
ously protect and defend against multiple long and short-
range threats, most often in a communication-constrained
and resource-limited environment. While pre-mission plan-
ning can anticipate and allocate initial surveillance respon-
sibilities based on the most recent intelligence data, dy-
namic sensor tasking and autonomous resource coordination
increases the number of threats that are detected, tracked,
and engaged. Radar resource coordination also reduces the
likelihood of multiple radars tracking the same object, thus
freeing up resources for additional targets [2],[1].

Radar resource allocation for multi-functions radars has
been considered in previous research. In [3], the authors
present an approach to resource allocation that optimizes
a single radar’s quality of service while searching for and
tracking targets subject to resource constraints. For multiple
radars, Kang and Lee demonstrated an increase in the number
of targets detected when they statically partitioned the com-
bined search coverage area of multiple phased-array radars
into angular search regions based on relative load-balancing
and expected target arrival [4].

Multi-agent coordination algorithms that consider sensor
resource constraints have also been studied for search and
track applications [5],[6],[7]. Algorithms that utilize cen-
tralized planning nodes or centralized network optimization
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models for multi-vehicle coordination demonstrate quicker
search-area coverage and target neutralization than when
agents are not coordinated [8].

Since many radar systems employed for search and track
of ballistic missile and air threats are deployed on mobile,
maritime platforms that communicate via constrained net-
works, available bandwidth limits the amount of informa-
tion exchanged between units. Additionally, sensors may
dynamically join and/or leave a network due to adverse
conditions, such as jamming or environmental constraints.
In [9], the authors present a distributed protocol that demon-
strates consensus for a connected network by exchanging a
single bit of information at each time step. [10] shows that
consensus can be reached even in the presence of inconsistent
situational awareness, which can occur as a result of network
latencies and varying sensor accuracy. Since target locations
may not be known a priori, optimization algorithms such as
those described in [6],[11], demonstrate detection of a group
of distinct target locations within a prescribed environment
without assuming exact target coordinates.

Our objective is to apply tools from optimization and
control to design theoretically justified methods for dynamic,
autonomous radar coordination that maximize the collective
radar search area and concurrently optimize the radar-to-
target assignment. The technical approach is to optimize each
radar’s search radius and spacing from other radars in order
to maximize the collective search area and ensure a closed
search boundary around all ships. We view this approach as
distributed because in contrast to a connected network, where
all information is shared among each platform and identical
calculations are performed to reach an optimal solution,
the ship network considered in this paper may be directed
and unconnected. Not every coordinating radar receives all
available information when solving for the optimal search
sector radius and position that maximizes the collective
search area. We assign the target tracking responsibilities
so that the radar tasking among all ships is as balanced as
possible.

The contributions of this paper are (1) we develop a math-
ematical model of radar systems that concurrently search for
and track targets within a specified area subject to a radar
resource constraint; (2) we provide an analytical method to
maximize the collective search area of multiple coordinated
radars while concurrently tracking a prescribed number of
targets within that area; and (3) we provide an optimal target-
to-sensor assignment for multiple coordinated radars.

The outline for this paper is as follows. Section II de-
scribes an idealized model of a multi-function radar system.
Section III presents the theoretical results for maximizing the



Fig. 1: Radar resources for ship k are consumed based on
the range σk,m to target m and the dimensions (ρk,Ωk) of
the search sector.

collective search area and numerical simulations that validate
and extend the results to an arbitrary number of participating
radars. Section IV describes the target-assignment algorithm
using simulations to illustrate various operational scenarios.
Section V summarizes the paper and our ongoing research.

II. RADAR SYSTEM MODEL

In a multi-function radar system, the radar performs two
primary tasks—search and track [12]. During search, the
radar sends out a focused beam covering a subset of the
search sector and looks for a target. If no target is detected,
then the search beam moves to the next location until the
entire sector is searched. If a target is detected, the radar
tracks it by periodically sampling the projected target loca-
tion. If resources are fully consumed by tracking targets, the
radar will suspend searching for new targets until resources
are freed from tracking requirements, since tracking current
targets takes priority over searching for new ones.

We study the radar tasking of N ships with identical radars
in which some or all of the ships are able to coordinate their
search and track tasks over a communication network. The
operating environment is the set of all possible ship positions
(x,y) ∈ R2 and target locations. The distance between ship
k and target m is denoted σk,m =

√
(xk− xm)2 +(yk− ym)2.

Likewise, the distance between ship k and ship j is denoted
σk, j =

√
(xk− x j)2 +(yk− y j)2, where j,k ∈ {1, ..,N}.

We assume that surveillance tasks consume radar resources
as a linear function of both the angular search sector Ω and
radius ρ of the search sector, whereas tracking tasks consume
resources as a linear function of the range σ to the target
(see Fig. 1). In ongoing research we are extending the model
to incorporate a three-dimensional nonlinear radar [13],[12].
We also specify a resource reserve, ε ≥ 0, which represents
the fraction of the total (unit) resource that cannot be used
for search or track. Coordinated ships can track targets in
another ship’s search area; an uncoordinated ship can only
track targets within its own search area.

The models for resource consumption for search, Sk =
S(ρk,Ωk), and track, Tk,m = T (σk,m), by ship k are

Sk = aρk +bΩk, (1)

Tk,m = cσk,m (2)

where a, b, c ∈ R+ are radar parameters and m ∈ {1, ..M}
is the target index. Every ship consumes resources to meet
its search requirements, but when ships coordinate on target
assignment, only the ship assigned to track the target of
interest consumes resources for tracking. The total resource
consumed by ship k is

Pk = Sk +
M

∑
j=1

Tk,m, (3)

where M is the numbers of targets tracked by ship k. The
resource reserve constraint is

Pk ≤ 1− ε. (4)

where ε is the prescribed resource reserve. Equations (1)-(4)
represent an idealized two-dimensional model of the full set
of radar range equations that represent the resource usage
for a ship searching and tracking targets.

III. SEARCH AREA MAXIMIZATION

An optimal solution to the search-area problem maximizes
the combined search area of N ships that can be maintained
even after initialization of one or more target tracks. In this
section we assume targets are located at the search area
boundary since this will consume the greatest amount of
resources. We formulate the optimization problem as follows:

max
x

f (x) s.t. g(x)≤ 0, (5)

where x is the set of variables to be optimized, f (x) is
the objection function, and g(x) ≤ 0 is the constraint. We
illustrate the procedure for one, two and three-ship scenarios
and use numerical simulations to illustrate the results.

A. Single Ship

For N = 1, x = ρ is the radius of a circular search sector
and f (ρ) = πρ2 is the area. The constraint g(ρ) represents
the resource reserve constraint (4):

g(ρ) = MT (ρ)+S(ρ,2π)+ ε−1
= αρ +β ≤ 0, (6)

where

α = a+Mc, and β = 2πb−1+ ε ≤ 0. (7)

We have the following result.
Lemma 1: Let ρ be the search-sector radius of a single

ship capable of tracking up to M targets. If Ω = 2π , the
largest radius ρ∗ that can be maintained for the resource
reserve ε is ρ∗ =−β/α , where α and β are given by (7).

Proof: Since f (ρ) monotonically increases with ρ and
α > 0, then ρ∗ satisfies g(ρ∗) = 0.



Fig. 2: Combined search area for two ships

B. Two Ships

For N = 2, x= (ρ1,ρ2,σ) represents the search-area radius
ρ1 of ship k = 1, the search-area radius ρ2 of ship k = 2, and
the distance σ = σ1,2 between the ships. First we consider
the case ρ1 = ρ2 = ρ for which f (ρ1,ρ2,σ12) = f (ρ,σ) is
the combined search area shown inside the solid lines of
Fig. 2. (If the search sectors do not overlap, then ρ1 = ρ2 =
ρ∗ given by Lemma 1.) To calculate the total area, we add
the individual search areas and subtract the area of overlap.
The area of overlap is found by calculating the area of each
sector described by θ1,2 = θ2,1 = θ and subtracting from this
the area of the triangles 1AB and 2AB. Using the identity
cosusinv = (sin(u+ v)+ sin(u− v))/2, we find

f (ρ,σ) = 2πρ
2−2

(
θ

2π
πρ

2
)
+4
(

1
2

ρ cos
θ

2
ρ sin

θ

2

)
= (2π−θ + sinθ)ρ2. (8)

We express θ in terms of σ and ρ by solving cos(θ/2) =
σ/(2ρ) for θ . Since 1−σ/(2ρ)> 0 in order for the sensor
areas to overlap, this implies that σ/(2ρ)< 1 and therefore
0 < cos(θ/2) < 1. Note that sinθ − θ ≤ 0 decreases as θ

increases. Thus the total search area is maximized when
sinθ−θ is maximized, which corresponds to smaller values
of θ . We perform a Taylor series expansion of cos(θ/2)
about θ/2 = 0 to obtain

σ

2ρ
= cos

(
θ

2

)
= 1− θ 2

8
+H.O.T. (9)

Dropping the higher order terms and solving for θ yields

θ ≈ 2
√

2− σ

ρ
. (10)

The resource-reserve constraint (4) reflects the observation
that when two ships are coordinating, the area of overlap
need not be searched in order to maintain a closed search
boundary. The constraint equation is

g(ρ,σ) = αρ +b(2π−θ)−1+ ε

= αρ +β −bθ ≤ 0, (11)

where α and β are as in (7). We have the following result.
Lemma 2: Let ρ be the search sector radius of two

identical ships separated by σ < 2ρ and each capable of
tracking up to M targets. The maximum search radius ρ∗ that
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Fig. 3: Search volume maximization: The search volume is
a function of the reserve limit and the network topology.

can be maintained for the resource reserve ε is the largest
root of

a4ρ
3 +a3ρ

2 +a2ρ +a1 = 0, (12)

where a4 = −5α3/(6b3), a3 = −2α2β/(b3), a2 =
(−3αβ 2)/(2b3), and a1 = 4π − β 3/(3b3); the optimal
ship separation is

σ
∗ ≈ ρ

∗

(
2−
(

αρ∗+β

2b

)2
)
. (13)

Fig. 3a illustrates the results of the N = 2, M = 1 search-
area maximization for ε = 0,0.3,and 0.6.

Next we consider a scenario in which the search radii
ρ1 and ρ2 are not equal. Specifically, we consider the case
when ρ1 = ρ∗ (the N = 1 optimal radius), and optimize ρ2
and σ to maximize the combined search area. This scenario
demonstrates the interoperability of the proposed algorithm
with pre-existing uncoordinated radar tasking. The objective
function f (ρ1,ρ2,σ) is the combined search area and x =
(ρ1,ρ2,σ) = (ρ∗,ρ2,σ). We have

f (ρ∗,ρ2,σ)=
ρ∗2

2
(2π−θ1,2+sinθ1,2)+

ρ2
2

2
(2π−θ2,1+sinθ2,1)

(14)
where

θ1,2 = 2arccos

(
σ2 +ρ∗2−ρ2

2
2σρ∗

)
(15)

θ2,1 = 2arccos

(
σ2−ρ∗2 +ρ2

2
2σρ2

)
. (16)

Our objective function is maximized when both θ1,2 and
θ2,1 are small and we express θ1,2 and θ2,1 in terms of σ

and ρ2 using Taylor series expansions:

σ2 +ρ∗2−ρ2
2

2σρ∗
≈ cos

(
θ1,2

2

)
= 1−

θ 2
1,2

8
(17)

σ2−ρ∗2 +ρ2
2

2σρ2
≈ cos

(
θ2,1

2

)
= 1−

θ 2
2,1

8
(18)

Solving for θ1,2 and θ2,1 yields

θ1,2 ≈ 2

√
2
(

1−
σ2 +ρ∗2−ρ2

2
2σρ∗

)
(19)

θ2,1 ≈ 2

√
2
(

1−
σ2−ρ∗2 +ρ2

2
2σρ2

)
. (20)



Fig. 4: Three possible scenarios for N = 3 sensors

We find the distance σ between the two ships as a function
of the search radius ρ2 and search angle θ2,1 by solving (20)
for σ :

σ
2 +σ

(
ρ2θ 2

2,1

4
−2ρ2

)
+ρ

2
2 −ρ

∗2 ≈ 0 (21)

Equation (21) yields two positive real roots with one root
less than one and the other greater than one. We choose the
larger root in order to maximize (14) and solve (11) with ρ

replaced by ρ2 and θ replaced by θ2,1 to obtain

θ2,1 =
αρ2 +β

b
. (22)

Substituting (22) into (21) yields

σ =
4

8b2

√
a5ρ6

2 +a4ρ5
2 +a3ρ4

2 +a2ρ3
2 +a1ρ2

2 +4b4ρ∗2

− 1
8b2

(
α

2
ρ

3
2 +2αβρ

2
2 +(β 2−8b2)ρ2

)
(23)

where a5 = α4/16, a4 = βα3/4, a3 = (3β 2α2 −
8α2b2)/8, a2 = (β 3α − 2βαb2)/4,and a1 = (β 4 −
16β 2b2)/16.

Using sinθ1,2 ≈ θ1,2 and sinθ2,1 ≈ θ2,1 in (14) yields

f (ρ∗,ρ2,σ)≈ πρ
∗2−

θ 3
1,2ρ∗2

12
+πρ

2
2 −

θ 3
2,1ρ2

2

12
. (24)

Taking the derivative of (24) with respect to ρ2 we have

∂ f
∂ρ2

=−1
4

ρ
∗2

θ
2
1,2

∂θ1,2

∂ρ2
+2πρ2−

1
6

θ
3
2,1ρ2−

1
4

ρ
2
2 θ

2
2,1

∂θ2,1

∂ρ2
,

(25)
where θ2,1 is given by (22) with ∂θ2,1/∂ρ2 = α/b; and θ1,2
is given in (19). We evaluate ∂ f/∂ρ2 = 0 to yield the optimal
search radius ρ∗2 , and use our results in (24) to solve for the
optimal spacing, σ∗. (Results omitted for brevity.)

C. Three or More Ships

Here we consider three or more ships with multi-function
radars that are tasked to protect a prioritized list of defended
assets and/or search specific launch areas for targets. It
is unlikely for N > 3 ships to have overlapping search
areas due to the large spacing between the target launch
locations as compared to the sensor search area. By solving
the N = 1, 2, and 3 search-area maximization problems, we
have effectively solved it for an arbitrary number of ships,
assuming that no more than three ships have overlapping
search areas.

The N = 3 analysis seeks to maximize the combined

TABLE I: Search-Area Maximization Algorithm, N = 3

Input: Initial estimate of x0 = (ρ1,ρ2,ρ3,σ1,2,σ1,3,σ2,3).
For each reserve value:
1: Determine if all three sensors have a common overlap area according

to [14] and if yes, calculate V, the area of overlap.
2: For each intersection of the search sectors of ship k and j, calculate

θ j,k using (20) and (21).
3: If g(x)≤ 0, compute the combined search area given by (31).
4. Update x according to simulated annealing algorithm [15] and

go to Step 1.

search area f (x), subject to the reserve constraint g(x), where
x = (ρ1,ρ2,ρ3,σ1,2,σ1,3,σ2,3). Note f (x) is the total area
searched by all three sensors less any overlap area.

We consider three possible scenarios for N = 3 ships, de-
pending on the desired search mission (see Fig. 4). Scenario
1 occurs when the centers of the individual search areas are
collinear, e.g., the ships form a search fence to detect targets
arriving from the same direction or for searching along a
border or coastline; Scenario 2 occurs when the objective is
to provide a screen against targets that can originate from any
direction and can be detected, tracked, and engaged before
they reach the center of the search area. Scenario 3 is a
special case of Scenario 2 and occurs when all three search
areas have a common overlap area, e.g., if the search area
is protecting a high value asset located in the search area
center and the sensors require the ability to detect and track
throughout the entire search area. In this scenario, the area
of common overlap is called a circular triangle. [14].

The combined search area for any of the three N = 3
scenarios is

f (ρ1,ρ2,ρ3,σ1,2,σ1,3,σ2,3) =

3

∑
i=1

ρ
2
i

(
π +

3

∑
j=1, j 6=i

sinθi, j−θi, j

2

)
+2V, (26)

where θi, j is defined as shown in Fig. 3. For Scenario 3, V
is the area of the circular triangle [14]; V = 0 for Scenarios
1 and 2. For the case ρ1 = ρ2 = ρ3 = ρ and σ1,2 = σ1,3 =
σ2,3 = σ , (31) becomes

f (ρ,σ) = 3πρ
2−2θρ

2 +2sinθρ
2 +2V, (27)

for Scenario 1 and

f (ρ,σ) = 3πρ
2−3θρ

2 +3sinθρ
2 +2V, (28)

for Scenarios 2 and 3 since in Scenario 1, ships 1 and 3 do
not overlap in sensor coverage, thus θ1,3 = θ3,1 = 0. We
implemented a simulated annealing probabilistic search algo-
rithm to find the optimal radii and spacing. [15]. The search-
area maximization algorithm for N = 3 ships is described in
Table I. Fig. 3b illustrates the optimal solution to Scenario 3
for N = 3 when ρ1 = ρ2 = ρ3 = ρ and σ1,2 =σ2,3 =σ1,3 =σ .

IV. OPTIMAL TARGET ASSIGNMENT

In this section we pose and solve an optimal target
assignment problem that seeks to balance the search and
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Fig. 5: Coordinated target assignment for N = 3 ships: Optimization increases the trackable area and balances radar tasking.

track tasking of multi-function radar systems. We show that
the solution has a hyperbolic boundary determined by the
search-area radii and distance to the target.

We consider four possible cases of radar perfor-
mance to evaluate the target-assignment algorithm. Case
(i)—Unoptimized/Uncoordinated—occurs when the radars
do not optimize their combined search area and do
not coordinate on the target assignment. Case (ii)—
Unoptimized/Coordinated—occurs when the radars do not
optimize their combined search area but coordinate on the
target assignment. This case could arise when the radar
locations are fixed or when the radar ship platforms must
remain in a particular location for other operational mis-
sion requirements. Case (iii)—Optimized/Uncoordinated—
occurs when the combined search area is optimized but
the radars do not coordinate on the target assignment. This
case could arise if the ship positions and radar search radii
were remotely optimized prior to arriving on station. Case
(iv)—Optimized/Uncoordinated—occurs when the combined
search area is optimized and the radars coordinate on the
target assignment.

A. Single Target

Recall the resource loading Pk of ship k defined in (3).
To balance the radar tasking between all pairs of commu-
nicating ships, we seek to minimize |Pk −Pl | for all pairs
k, l, consistent with the resource reserve ε . We show that a
balanced approach increases the trackable area and allows
more targets to be tracked within a given search area.

Consider a fleet of N identical ships that communicate
via the undirected ship network Gs = (N,Es), where N =
{1, ...,N} is the set of ship indices and Es ∈N2 is the set of
unordered pairs of bidirectional communication links (k, l).
If (k, l) ∈ Es, then ship k may track targets within ship l’s
search area (as long as Pk ≤ 1− ε).

Let M = 1 and j be the index of the tracking ship. The
measure of resource balancing among all ships is

C j(Gs) = ∑
(k,l)∈Es

(Pk−Pl)
2 . (29)

TABLE II: Single Target Assignment Algorithm

Input: The ship communication network Gs, resource reserve ε ,
and the position, search radii, and search sector of each ship

At each timestep and for m = M = 1 target:
1: Calculate Sk,Tk,m and Pk according to (1), (2), and (3) for each

ship k.
2: Compute C j , according to (33) where j ∈ {1,2,3} denotes the

tracking ship, and chose j∗ according to (34).

The optimal target assignment for Gs that balances the radar
tasking between all pairs of ships is

j∗ = argmin
j∈{1,...,N}

C j(Gs). (30)

We compute the optimal target assignment for N = 3 ships
and M = 1 target using the target-assignment optimization
algorithm in Table II. Note the set of possible target positions
assigned to a ship is called the track zone.

Fig. 5a shows the solution to the target-assignment
problem for Case (ii); note that ship k = 1 and ship k = 3 are
assigned tracking responsibilities inside ship k = 2’s search
area. Fig. 5b shows the solution to the target-assignment
program for Case (iv) for three ships whose combined search
area is optimized using Lemma 1 and Lemma 2. Fig. 5c
compares the radar usage of all four cases and verifies
that the optimal target assignment balances radar tasking.
In the cases where the search area and ship positions are
optimized, the optimal solution also also yields an increase
in the trackable area.

For Case (ii) and (iv) which coordinate their target as-
signment, we have the following observation for the solution
of the target assignment problem described in the following
Lemma: the boundaries between the set of targets positions
assigned to each ship are hyperbolas.

Lemma 3: Let σ j,m and σk,m be the distance from target
m to ship j and ship k respectively. The solution to the target
assignment problem is a pair of track zones separated by a
hyperbolic boundary given by the solution to

σ j,m−σk,m =
Sk−S j

c
. (31)

where Sk and S j are given in (2).



TABLE III: Multi-Target Assignment Algorithm

Input: The same as the Target Assignment Algorithm in Table 2.
At each timestep and for each target assignment network

Gt = (M,Et):
1: Calculate Pk(Gt) according to (1), (2), and (3)
2: Calculate C(Gt ;Gs) according to (32)
3: Find the target assignment network G∗t that minimizes C(Gt ;Gs)

using simulated annealing [15].

Proof: Let Pk, Pj be the resources consumed by ships
k and j to track target m = M = 1 as in (3). The optimal
solution to the target-assignment problem switches from k
to j as the target passes through the boundary Pj = Pk, i.e.,
when Sk +Tk = S j +Tj, which is equivalent to (31).

Fig. 6a plots the hyperbolic boundaries for N = 3 unopti-
mized and coordinated ships and M = 1 target.

B. Multiple Targets

For M ≥ 2 targets, we consider a second network, Gt =
({M,N} ,Et), called the target-assignment network, where
Et ∈M×N is the set of all possible target-to-ship pairings.
The measure of the resource balancing among all ships and
all targets for a particular target-assignment network Gt and
ship communication network Gs is

C(Gt ;Gs) = ∑
(k,l)∈Es

(Pk(Gt)−Pl(Gt))
2. (32)

Let G∗t = argminGt C(Gt ;Gs) be the optimal target-
assignment network that balances the radar tasking across
ship network Gs. We compute G∗t using the multi-target
assignment algorithm in Table III. For ships that coordinate
on their target assignment, we have the following result:

Lemma 4 (Multi-Target Assignment): For each pair of
ships j,k that coordinate on their target assignment, let
m = {1, ...,M j} be the indices of targets tracked by ship j
and l = {1, ...,Mk} be the indices of targets tracked by ship
k, where M j +Mk = M−1. The target assignment boundary
for target M is the solution to√

(x j−xM)2+(y j−yM)2 −
√
(xk−xM)2+(yk− yM)2=

Mk

∑
l=1

√
(xk− xl)2 +(yk− yl)2 −

M j

∑
m=1

√
(x j−xm)2+(y j−ym)2

+
Sk−S j

c
(33)

Proof: Let Tj,m and Tk,l be the resources consumed by
ships j and k to track targets m and l. The optimal solution
to the target assignment problem for the target M switches
from j to k as the target passes through the boundary Pj,M =

Pk,M−
M j

∑
m=1

Tj,m +
Mk
∑

l=1
Tk,l or equivalently

σ j,M−σk,M =
Sk−S j

c
−

M j

∑
m=1

σ j,m +
Mk

∑
l=1

σk,l , (34)

which yields (33) and completes the proof.
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Fig. 6: Target assignment boundaries for unoptimized and
coordinated ships. (Target shown as black dot.)

Fig 6b plots the boundaries for the second of two targets
when the ships are unoptimized and coordinated.

V. CONCLUSION

This paper provides optimization algorithms to maximize
the combined search area of multiple ship-based radars that
are concurrently tracking targets within the search area. It
also proposes an optimal target-assignment algorithm that
balances the radar tasking in both optimized and unoptimized
scenarios. An area of ongoing research is to optimize the
target-assignment solution for varying target characteristics
and radar capabilities.
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