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Observer-based Feedback Control for Stabilization of Collective Motion

Seth Napora and Derek A. Paley

Abstract— Collective motion of a multi-vehicle testbed has
applications in weather monitoring and ocean sampling. Pre-
vious work in this field has produced theoretically justified
algorithms for stabilization of parallel and circular motions of
self-propelled particles using measurements of relative position
and relative velocity. This paper describes an observer-based
feedback algorithm for stabilization of parallel and circular
motions using measurements of relative position only. This
algorithm utilizes information about the particle dynamics and
turning rates to estimate the relative velocities. We describe
a laboratory-scale underwater vehicle testbed on which the
algorithm is being implemented.

I. INTRODUCTION

Motivation for pursuing coordinated, collective motion of
autonomous vehicles comes partly from biology. From ants
that collectively build their colonies to fish that school as
one unit for defensive and other purposes, it is apparent
that collective behavior is a beneficial component to many
groups. Although animals may utilize collective behavior to
achieve various results, multiple members help to reduce the
workload on each individual member.

Current study in the field of collective motion has pro-
duced various results. Researchers have extended the self-
propelled particle model used in [7] to handle more situa-
tions. In [6], control laws for self-propelled particles were
proven to stabilize synchronized, balanced, circular, and
symmetric circular formations in the presence of a time-
invariant flowfield. Taking another direction, [5] provided a
rotational acceleration controller for a self-propelled particle
using backstepping and proportional control. Another method
for creating collective motion utilized pursuit dynamics. In
[3], this concept was examined whereby a leader particle
performed a behavior and the others pursued the leader.

Another area of interest in the field of collective motion
concerns the stabilization of particle formations with limited
information. [9] discussed a flocking behavior of agents
whereby only a certain number of agents were informed of
the desired behavior. Flocking motion was achieved under
this restriction, as in [8], which discussed a self-propelled
particle system with limited communication between agents.
Another form of limited information can be a result of
limited sensing capabilities. One way to solve this problem is
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by estimating the unknown variable. [2] used this approach
for formation tracking utilizing sliding-mode estimators.

An additional field of research discusses real world ap-
plication of collective motion in order to demonstrate the
performance of a control algorithm. In order to study collec-
tive behaviors of particles, an effective testbed for analyzing
control algorithms consists of identical vehicles capable of
performing the control law. [1] described a testbed of LEGO
MINDSTORMS that produced parallel and circular motion
of vehicles around virtual beacons. The work described
below focuses on a laboratory scale testbed of underwater
vehicles for which inter-vehicle sensing is limited.

Parallel and circular motion has been achieved in self-
propelled particles with either first- or second-order rota-
tional dynamics. These models have assumed that every
particle is aware of the relative velocity of every other
particle in the group. Here, we do not assume that each
particle can sense relative velocities, only relative positions.
The contribution of this paper is to present theoretically
justified methods for (1) estimating the velocity of one
particle relative to another particle and (2) utilizing that
estimate in an observer-based feedback control to stabilize
parallel and circular formations. We provide simulations
to illustrate the performance of the estimation and control
algorithms.

The outline for the paper is as follows. In Section II,
kinematic and dynamic models of self-propelled particle
motion are described, including control laws that stabilize
parallel and circular formations using relative position and
relative velocity. In Section III, an observer-based feedback
control is derived using knowledge of relative position and
turning rate. Section IV describes an underwater vehicle
testbed that is being developed to demonstrate how this
control and estimation will function on a physical system.
Lastly, Section V summarizes the results and ongoing work.

II. BACKGROUND

In our study of collective motion, we consider parallel and
circular formations to be building blocks for more complex
motion. These cooperative motions have been achieved in
[7] using a particle model to represent each vehicle in a
group. We describe that model here, along with a dynamic
model that includes second-order rotational dynamics. For
each model, we include a description of parallel and circular
control algorithms.

A. First-Order Particle Model

A dynamic model that can be used to design collective
motion is a first-order particle model. This model assumes



that each particle moves at a constant speed equal to one. The
position of particle k is rk = (xk, yk), and the orientation
of its (planar unit) velocity is θk. The steering control, uk,
is applied to the heading rate allowing the vehicle to change
course as indicated below:

ẋk = cos(θk)
ẏk = sin(θk)

θ̇k = uk,
(1)

where k represents the kth particle in a group of size N .
Collective control laws have been designed for this model
resulting in parallel and circular formations.

A parallel formation is achieved when each particle has
the same velocity orientation. The following control achieves
this motion with all-to-all communication [7]:

uk = −K
N

N∑
j=1

sin(θj − θk) , φk(θ), (2)

where θ = [θ1 − θk, ..., θN − θk]. Note that the absolute
orientations of the particle’s velocities are not required for
control, but only the relative orientation.

Choosing K < 0 in (2) will produce straight-line motion
where all the particle trajectories are parallel [7]. Choosing
K > 0 yields balanced motion; this behavior occurs when the
sum of all particle velocities is equal to zero. Both motions
are illustrated in Fig. 1.

Fig. 1. Parallel motion (left) and balanced motion (right), where the particle
centroid is fixed.

A circular formation is achieved when each particle’s
turning rate and center of rotation are identical to the rest of
the group. The center of rotation can be defined in complex
notation as [7]

ck = rk + iω−10 eiθk . (3)

where rk is the complex position and ω−10 is the circle’s
radius. Using the center of rotation, the following control
produces a circular formation with all-to-all communication
[7]

uk = ω0(1 +K〈Pkc, eiθk〉) , ψk(r,θ), (4)

where c = [c1, ..., cN ]T , r = [r1 − rk, ..., rN − rk], and
K > 0. Pk is the kth row of the projector matrix P =
IN×N− 1

N 11T , where 1 = [1, ..., 1]T ∈ RN . This formation
is illustrated in Fig. 2.

The circular control law can be expressed in terms of the
particle’s relative velocity orientations, θ, and the particle’s
relative positions, r.

Fig. 2. A simulation of five particles performing the circular control law
with random initial conditions.

B. Second-Order Particle Model

The first-order model is useful for studying various group
behaviors, but may not adequately represent the rotational
dynamics of an actual vehicle. Instead of controlling the
heading rate to change direction, a vehicle applies a moment
to control the rotational acceleration. Under this assumption,
each particle has the following dynamics:

ẋk = cos(θk)
ẏk = sin(θk)

θ̇k = ωk
ω̇k = uk.

(5)

The control laws created for the first-order model can be
extended to the second-order model using a proportional
controller that drives the desired heading to the first-order
control laws. The parallel formation for this model becomes
[5],

uk = Kp(φk(θ)− ωk), (6)

where φk(θ) is defined in (2) and Kp > 0. Similarly, circular
motion can be achieved using the following control law [5]

uk = Kp(ψk(r,θ)− ωk), (7)

where ψk(r,θ) is defined in (4) and Kp > 0. The collective
behaviors produced by the first-order model are also exhib-
ited in this extended model.

III. THEORETICAL RESULTS

As mentioned previously, parallel and circular motion have
been achieved with both the first- and second-order models.
These models have assumed that every particle is aware
of the relative position and relative velocity of every other
particle in the group. Here we assume knowledge of relative
position and turning rate only.

A. Dynamic Model

Without loss of generality, we begin by examining a pair of
particles j and k. Fig. 3 shows particles j and k in an inertial
frame, I. Each particle’s position relative to the origin is
represented by the vectors rj and rk, respectively, while the
vector between the particles is represented by rj/k = rj−rk.

An inertial-frame representation is not necessarily known
to each particle. Particle k views the world from its own path
frame Bk = (k,xk,yk, zk) which moves with the particle
itself. xk is aligned with ṙk as shown in Fig. 3 and yk =
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Fig. 3. Vectors utilized in dynamic model

zk × xk, where zk is out of the page. We express rj/k as
components in frame Bk as rj/k = xj/kxk + yj/kyk.

We begin by considering the inertial kinematics of j
relative to k. Taking the derivative of rj/k with respect to
the inertial frame and expressing the result in matrix notation
with respect to frame I yields[Ivj/k]I =

[
Id
dt rj/k

]
I
= [ṙj − ṙk]I

=

[
cos θj − cos θk
sin θj − sin θk

]
I
.

(8)

In this equation, Ivj/k represents the velocity of particle j
with respect to k in the inertial frame. The subscript I refers
to the coordinate system in which this quantity is expressed.
For example,

[Ivj/k]I means that the velocity of particle j
with respect to particle k is expressed as vector components
in the inertial frame.

The inertial kinematics do not contain the relative orienta-
tion, θj−θk, which is needed to implement either controller
(2) or (4). To obtain the relative orientation, we rewrite
the inertial velocity in particle k’s path frame. The angular
velocity of Bk with respect to I is IωBk = ωkzk. The
velocity in the inertial frame can be expressed as components
in frame Bk using a 2x2 rotation matrix R to rotate by −θk:[Ivj/k]Bk

= R(−θk)
[Ivj/k]I

=

[
cos(θk) sin(θk)
− sin(θk) cos(θk)

] [
cos θj − cos θk
sin θj − sin θk

]
I

=

[
cos(θj − θk)− 1
sin(θj − θk)

]
Bk

.

(9)
Although the resulting matrix contains the desired relative

orientation, the term on the left is not directly measurable
from the path frame. It can be related to the path frame
velocity, Bkvj/k, using the transport equation:

I d
dt

(rj/k) =
Bk d

dt
(rj/k) +

IωBk × rj/k. (10)

In matrix notation,[Ivj/k]Bk
=
[Bkvj/k

]
Bk

+
[
ωkzk × rj/k

]
Bk

(11)

Using rj/k = xj/kxk + yj/kyk yields[
cos(θj − θk)− 1
sin(θj − θk)

]
Bk

=

[
ẋj/k
ẏj/k

]
Bk

+ ωk

[
−yj/k
xj/k

]
Bk

. (12)

Solving for θj − θk yields

θj − θk = arctan

(
ẏj/k + ωkxj/k

1 + ẋj/k − ωkyj/k

)
. (13)

With this relationship, calculating particle j’s velocity
orientation relative to k requires knowledge of k’s turning
rate as well as the position and velocity of particle j with
respect to k. Assuming the relative position, rj/k, and turning
rate, ωk, is measured, each particle can estimate the relative
velocity, Bkvj/k, in the path frame, Bk, using the estimator
described next.

B. Velocity Estimation

Consider the case where particle k is estimating the
relative velocity of particle j in frame Bk. In this case, let
r̂j/k = x̂j/kxk + ŷj/kyk and Bk v̂j/k = ˙̂xj/kxk + ˙̂yj/kyk
be the position and velocity estimates, respectively. Also, let
4rj/k , r̂j/k − rj/k and 4Bkvj/k , Bk v̂j/k − Bkvj/k
represent the estimation errors for position and velocity,
respectively. Note that we estimate the velocity of particle j
with respect to particle k in frame Bk. Choosing the estimator
dynamics

Bk d
dt (r̂j/k) = −K14rj/k +

Bk v̂j/k
Bk d
dt (v̂j/k) = −K24rj/k,

(14)

where K1 > 0 and K2 > 0, yields the following error
dynamics:

Bk d

dt

[
4rj/k
4Bkvj/k

]
Bk︸ ︷︷ ︸

,ėj/k

=

[
−K1 1
−K2 0

]
︸ ︷︷ ︸

,A

[
4rj/k
4Bkvj/k

]
Bk︸ ︷︷ ︸

,ej/k

+

[
0

−Bkaj/k

]
Bk︸ ︷︷ ︸

,gj/k(t)

.

(15)
When written in this form, we see the estimator is a

linear system ėj/k = Aej/k + gj/k(t), where gj/k(t) is a
perturbation.

Representing the equations in vector notation is useful in
order to study the stability of the system, but the second-
order model (5) and relative orientation relationship (13)
utilize Cartesian coordinates with respect to the frame Bk.
To be consistent, we can rewrite (14) as

Bk d
dt (x̂j/k) = −K14xj/k + ˙̂xj/k

Bk d
dt (ŷj/k) = −K14yj/k + ˙̂yj/k

Bk d
dt (

˙̂xj/k) = −K24xj/k
Bk d
dt (

˙̂yj/k) = −K24yj/k,

(16)

where 4xj/k , x̂j/k−xj/k and 4yj/k , ŷj/k−yj/k. x̂j/k
and ŷj/k represent the x and y position estimates, whereas



˙̂xj/k and ˙̂yj/k represent the x and y velocity estimates,
respectively.

Lemma 1: The error in the velocity estimation due to the
perturbation, gj/k(t), can be reduced by choosing the gains
K1 > 0 and K2 > 0 such that the quantity

K1

K2
+
K2 + 1

K1K2
> 0 (17)

is minimized.
Proof: Consider the following Lyapunov function

V = eTPe (18)

where e ,
[
4rj/k 4Bkvj/k

]T
. The matrix P is chosen

by solving the Lyapunov equation

PA+ATP = −Q (19)

where Q ∈ R2x2 is the identity matrix. For this system,

P =

[
K2+1
2K1

− 1
2

− 1
2

K2+K
2
1+1

2K1K2

]
. (20)

Taking the derivative with respect to time yields

V̇ = −eTQe
−Bkaj/k

(
−4rj/k + (K1

K2
+ K2+1

K1K2
)4Bkvj/k

)
.

(21)
The estimator assumes that the relative position is known;

therefore, the error in the position estimate is negligible.
As a result, (21) ensures V̇ ≤ 0 for ||e|| ≥ b, where
b is proportional to

(
K1

K2
+ K2+1

K1K2

)
||gj/k(t)||L. Therefore,

minimizing (17) will reduce the lower bound b.

C. Observer-Based Feedback Control

Let’s now consider an N -particle system that obeys the
second-order model (5). Each particle utilizes the estimator
(16) to determine the relative velocities of the other parti-
cles. These estimates are then used to calculate the relative
orientations of the particles using (13). Finally, each particle
implements the desired control using the relative orientations,
θ̂. The state-space representation of the combined system is:

ẋk = cos(θk)
ẏk = sin(θk)

θ̇k = ωk
ω̇k = Kp(ûk − ωk)

Bk ˙̂xj/k = −K14xj/k + ˙̂xj/k
Bk ˙̂yj/k = −K14yj/k + ˙̂yj/k
Bk ¨̂xj/k = −K24xj/k
Bk ¨̂yj/k = −K24yj/k,

(22)

with k, j = 1, ..., N and ûk represents the desired control
law.

Let

θ̂j − θk = arctan

(
˙̂yj/k + ωkx̂j/k

1 + ˙̂xj/k − ωkŷj/k

)
. (23)

and θ̂ = [θ̂1 − θk, ..., ̂θN − θk]. Note that the combination of
the control law and estimator further define the perturbation

in (15) as a vanishing perturbation1 because the particles
do not move in the body frame, Bk, when converged to
the desired formation. Since the particles are stationary, they
have velocity and acceleration, Bkaj/k, equal to zero.

For a parallel formation, ûk = φk(θ̂) in (22). Noting that
the parallel control law is a summation of sine terms and the
relative orientation calculation uses an inverse tangent, the
control law can be simplified using trigonometric identities
to

φk(θ̂) = −KN
∑N
j=1

˙̂yj/k+ωkx̂j/k√
( ˙̂yj/k+ωkx̂j/k)2+(1+ ˙̂xj/k−ωkŷj/k)2

.

(24)
Implementation of the circular control law is achieved the

same way using ûk = ψk(r, θ̂) in (22). Note that the relative
orientation is used to calculate the centers of rotation (3) in
particle k’s path frame.

Proposition 2: The observer-based feedback control algo-
rithm described in (22) will stabilize the desired formation
as long as each particle’s turning rate and distance between
particles remains sufficiently small.

These conditions on the turning rate and distance come
from the perturbation term, gj/k(t). As shown in (15),
the perturbation is a function of the acceleration, Bkaj/k.
When derived, this term depends on the particle’s angular
rate, angular acceleration, relative velocity orientation, and
relative position. By reducing the distance between particles
and their turning rates, the acceleration term decreases, which
allows for more accurate estimations. With accurate estimates
of the relative velocity orientation, the particles converge to
the desired formation.

The state-space representation of the system has been
programmed to simulate the behavior of a group of particles.
Fig. 4 shows a simulation of the parallel control law, while
Fig. 5 displays a simulation of the circular control law. Both
simulations begin with each particle being given a random
velocity orientation, a random position, and zero turning rate.
Each particle also maintains N−1 estimates for the states of
the other particles as shown in (22). The particle’s position
estimates are initialized to their actual position in the body
frame, whereas the particle’s velocity estimates are initialized
to zero.

The plots for each simulation show the error in the
position and velocity estimates for each particle. There are
(N − 1)2 estimates shown because each individual particle
has N−1 estimators. Also, note that the error in the estimates
approaches zero as t→∞, which implies that each particle
determines the position and velocity of the other particles as
time goes to infinity.

IV. UNDERWATER VEHICLE TESTBED
The control laws and estimator have been designed using

an idealized modeling framework. This technique allows
higher level control laws to be studied for stability and
convergence without the need for a specific system model to
be utilized. However, these control laws need to be applied

1A vanishing perturbation is an additional term to a system that evaluates
to zero when the state of the system is at equilibrium [4].
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Fig. 4. A simulation of five self-propelled particles performing the parallel control law while estimating the other’s relative velocity. Each particle is
given a random starting position and velocity with control gains K = −1, Kp = 1, K1 = 10, and K2 = 100.
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Fig. 5. A simulation of five self-propelled particles performing the circular control law using their individual position and velocity estimates with ω0 = .5.
Each particle is given a random starting position and velocity with control gains K = 1, Kp = 1, K1 = 10, and K2 = 100.

to a physical system to demonstrate the usefulness of the
control law.

Taking this point into consideration, we are developing a
submarine testbed for experimental validation of motion co-
ordination algorithms. Each submarine is a radio-controlled
1:60 scale model of the U.S.S. Albacore and utilizes an
onboard microprocessor and sensors to steer the vehicle;
Fig. 6 indicates the current state of the testbed. (Additional
details are available in [10].) The microprocessor onboard
each vehicle serves two separate purposes. First, pitch and
yaw rates are stabilized to a desired rate via state-feedback
provided by gyroscopes fixed to the vehicle. Secondly, the
microprocessor serves as a wireless receiver for updated pitch
and yaw rates.

The pitch and yaw rates are updated using an underwater
motion capture system shown in Fig. 7. This system is
able to track the position and orientation of multiple rigid
bodies in real time. We utilize this knowledge to compute
the desired yaw rate from (2) or (4). The desired pitch
rate is determined by a proportional control to stabilize the
submarine’s depth. These desired rates are then transmitted
to each submarine where the onboard microprocessor takes
control of the submarine.

Tests using a single submarine have been used to validate
the second-order model under parallel (6) and circular (7)
control algorithms without estimation. These tests ensure that

the particle model adequately describes the rotational dy-
namics of a submarine and is sufficient to test the estimation
algorithm. Alongside the experimental data is a simulated
version with the same initial conditions for comparison.

Fig. 8 displays a single submarine performing the parallel
control law with a virtual particle traveling along the positive
x axis. The submarine is able to reorient itself in the general
direction of the formation before reaching the end of the tank.
The experimental result is similar to the simulated result, but
converges slower because the turning rate is limited by the
submarine’s dynamics.

Fig. 9 shows a single submarine performing the circular
control law in the tank with a virtual particle. The submarine
is circling the correct position, but does not achieve the
desired radius during the test.

V. CONCLUSION

This paper describes an observer-based feedback control
algorithm to stabilize parallel and circular formations using
a second-order particle model. Simulations illustrate the
results by reproducing the desired motion as well as relative
velocity errors that approach zero as time goes to infinity.
A submarine testbed is also described and will be used to
verify these algorithms on a physical system.

In ongoing research, we are formally analyzing the con-
vergence of the observer-based feedback control algorithm



Fig. 6. The underwater vehicle testbed consists of six submarines that
operate in the Neutral Buoyancy Research Facility at the University of
Maryland and twelve underwater cameras used for motion tracking.

Fig. 7. The motion capture system’s runtime environment allows data to
be recorded and analyzed.

(Proposition 2). Real-time application of the parallel and
circular control laws is being implemented on the experi-
mental testbed. The control algorithms will be examined for
their ability to achieve desired motions using the underwater
motion-capture system.
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