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Synchronization on the N-Torus with Noisy Measurements

Nina Mahmoudian and Derek A. Paley

Abstract— We consider the problem of cooperative control [12] and the sphere [10]. The problem of synchronization and
of unmanned vehicles in an uncertain environment in which  global convergence on th&-torus has been studied using
each vehicle can obtain only noisy measurements of the other 5se free state iteration by assuming exact data exchange
vehicles. In particular, we want to establish convergenceota de- bet th ts 1111, [121. Each t updates it di
sired formation using a stochastic algorithm with measurenent etween the agen 5 [11], [12]. af: aggn updates its hgadin
errors. In this paper, the problem of stabilization of parallel ~based on the relative phases of its neighbors on the torus.
formations in a self-propelled particle model is considerd, The contribution of this paper is to present convergence
which can be modeled as synchronization on thé/-torus in the  gnalysis in consensus seeking on fiidorus in an uncertain
presence of noisy measurements of relative phase. Simulatis  oyyironment where each agent can only obtain noisy mea-
are included to illustrate the result. . . ? .

surements of its neighbors’ relative phases. We study the
. INTRODUCTION behavior of a discrete-time network &f agents moving on
. g . g .
The increasing interest in applications of multi-agent auhe torus. IO de?' W'Ittr? th_e measuredrr}ent noise, a StOChE.S“C
tonomous systems such as unmanned air vehicles, mokfiRProXiMmation aigorithm 1S proposed for consensus seeing
ere the signal received from other agents is corrupted by

robots, and unmanned underwater vehicles increases dit se. C to th t of hroni
need for cooperative-control algorithms to address realev addiiive noise. Lonvergence 1o tn€ Set ot sync ronlzecls_m 'as
established for all-to-all interactions by construgtia

challenges. A networked multi-vehicle system may have

only limited knowledge of its environment and the state§t0.Cha.St'c Lyapunov funct_mn. we assume the corrgpt_mg
of the other agents. One such limitation is the issue oise is associated with signal reception, not transmissio

noisy communication links. With imperfect communication,and that it ha; Z€ro mean in the rariger/2, W/.2]' .
The paper is organized as follows. Section Il reviews

convergence of a standard consensus algorithm is not guar o
9 g g ﬁ1e problem of synchronization on th&-torus and con-

anteed. . .
. - . . nsus. It also summarizes existing convergence results fo
A consensus algorithm specifies the interaction betwe . . 9 9
lidean consensus in the presence of noisy measurement

each agent and its neighbors; consensus occurs when e F#F tochastic L vsis. Section Il i
agent reaches a common value. There is a rich body gping stochastic Lyapunov analysis. Section presents a

literature on consensus protocols in Euclidean space in bo tOtChaSt'? lll_yapunct)r\: fL]f.nC:'OHd forEs%nchromzat}ont_on tr}e
continuous time and discrete time, with applications totmul -orus foflowing the hirst-order Euler approximation o

agent autonomous systems [6], [7] (see [8], [9] for a revjew)the continuous-time algorlthm,_ estab_llshes the conditifon _
In addition, the problem of coordination and consensyeonvergence, and presents simulation results. A stochasti

with noisy communication has been addressed using vario apunov funph_on for syn(_:hrongtmn on tW'tOr“S for
[5screte—t|me is introduced in Section IV. Section V summa-

approaches. The majorization of a stress function is us th d indicat . h directi
in [3] to develop a distributed coordination algorithm that'2€S (€ Paper and indicates ongoing research directions.

stabilizes the shape of a relative sensing network to aetesir Il. BACKGROUND AND MATHEMATICAL
formation; robustness of the algorithm against measurémen PRELIMINARIES

errors in the relative information of neighboring agents is |, this section, the problems of synchronization on the
established. Robustness of consensus to noise for directediorys and Euclidean consensus are reviewed. In addition
communication characterized by ti& norm of the system gyisting convergence results for Euclidean consensusein th
is studied in [15]. A stochastic adaptive algorithm apptoacyesence of noisy measurement are summarized.

is used in [4], [S], in which a stochastic approximation consider a network ofN identical agents interacting

type algorithm with a decreasing step size is proposed aRgh an undirected grapld = (N,€) with nodesN =
convergence results are established with measureme®t nois; 2 . N} and edges{l,k} € £ ¢ N x N. The set

There have been other works that consider noise-free cogy neighbors of nodes is represented byV, = {I €
sensus on non-Euclidean manifolds such as\hirus [11], N|(,k) € £}. The graphG is called undirected when
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whered;, = |Ny| is the number of neighbors of ageht If  interactions [14]. This paper addresses the problem of
graph G is undirected therl. is symmetric positive semi- synchronization in the presence of noisy measurement of
definite. If G is also connected then radk(= N — 1 and the relative phase® — #*, as depicted in Figure 1.

the null space oL is spanned byl y = [1,...,1]7 € RV,

A. Synchronization on the N-Torus Kl
w
Continuous-time algorithm: Consider a network ofN Jm t
identical agents evolving on the unit circ$e. ( For example, ;
the synchronization of vehicle headings in the plane ewlve 0, —

on the S'.) The state of each agent at tintecan be
represented by* € S!, k € N. The state space is the torus,
TN £ 81 x ... x S' and the agents communicate pairwise.
The goal is to stabilize the set of synchronized formations
in which 6% = ' VV k, . In the synchronized set the centroid
of the phasors

peé%Zewké%sz

keN keN
satisfies|pg| = 1.
Consider the all-to-all potential [13] Fig. 1. Phase measurement with additive neigeé.
N
U(o) = §|p9|27 1) Discrete-time algorithm: Let 9% € S', k € N, be the

which can be written in terms of the Laplacian hasestate of each agent at timeor, equivalently, the unit phasor
P P ZF € C, |2F| = 1. Consider a network ofV identical agents

i _ _ 10 1,00 i
p(;t]entlal, I;N - Qu = gyl Le®), where e evolving on the unit circle. The state equation of each agent
[, e ] We have k in a discrete-time synchronization algorithm is [11], [12]
N 1, ; N
U(@) =5 _<6101L610> =5 — P7 (2) 1
22N 2 Or = arg|(L—a"ef+a*— > a), (6)
where(.,.) is the inner product. The gradient b%(9) is k 1eN,
ou — _i@ewl’Lkei% __1 Z sin(0' — 6%), (3 where a* € (0,1). For the case of a fixed, undirected
a0* N N e graph, the algorithm (6) is a discrete-time approximation
whereLy, is the kth row of the theL. of aigrid;:gt igg:'; hvmvh];c;;;?: Ea[z 'f;‘?'an p;??% pfl)_tﬁgtlal,
A continuous-time gradient algorithm associated with the’”, — 2N ’ ' " L '

States are updated either asynchronously or synchronously

with small a* [11]. A dynamic approach was proposed

e - goU _ K S sin(6! — 0%). @) in [12], which uses the local information from the Euclidean
00k N consensus algorithm to estimate the global information re-

keEN . .
] ) ) quired for synchronization on th&-torus:
This control requires measurements of the relative phases

potential is [13]

6’ — 6%. The potentiall (§) reaches its unique maximum AR b ) A

when all phases are identical (synchronization). Wher: 1

0, the set of synchronized states is asymptotically stabde an oF ., = arg ((1 — a2k 4 ok — Z zﬁ) , (M
all other critical points ofU(#) are unstable [13]. i LEN;,

When K < 0, the same result equivalently holds in . . . _ _
a rotating frame, that is, for the coupled-phase osciltatotVhere Da = diag(d; *,...,dy"). The algorithm (7) is

model [13] expressed in terms_of the relative phasefs- zF for the
K convergence analysis.
0F = wy— — Z sin(f' — 6%). (5) If G = G(t) is uniformly connected and. = L(¢) is
N keN bounded and piecewise continuous [12], then algorithm (7)

In (5) all oscillators have identical natural frequengy aSymptotically converges to a critical point &f(6) [12,
and each oscillator is modeled by a phase variaie theorem 3]. The only stable set of equilibrium points is the
This model is a simplified version of the Kuramoto modelSYNchronized set characterized hyidentical phases.

where in general the oscillators have different natur
frequencies. Synchronization of the Kuramoto model ha
been studied [1], [2], including oscillators with noisy, Let zF € R be the state of agent at timet € Z*.
randomly distributed intrinsic frequencies and time-gieth Denote the state vectar, = [z}, ..., 2" ]7. A discrete-time
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synchronous consensus algorithm for each agent is [8] Consider the following conditions and assumptions for

o the additive noise and step size [4]:
=2+ > (=) ®
ke, (A1) The noisesv}! are independent with respect to indices
where ¢ € (0,1) is the step size for agenk. k,l,tEan: t]f:lehlmtlal state vectozrod WhereElfOL 0
Consensus is achieved by a network of agents if achw;! has zero mean and varian@’ >

k_ I where sup-o reaSURen;, @Y < oco.
-z =0 t— oo,VEk#I =5 kot 2
o = ] s 7 (A2) The sequencea;t >0, satisfies a; € [0,1],

For the case that agehtreceives noisy measurements of A3 % =0 @t hGOO anddZt tocét <§O ted.
the states of its neighborg}! is the resulting measurement( ) The graphG is undirected and connecte

of agentl’s states by agent [4]:
g v 4l [4, Theorem 21] shows that under assumptions (Al)-—

=+t teZT, 1eN, (A3) the expected value of the difference between the

where additive noiswl, t € Z*+. k € Nl € i} is state§ of any twq agents converges to zero and, therefore,
. Lt algorithm (9) achieves weak consensus.
introduced as shown in Figure 2.

A stochastic Lyapunov function can be defined based
Wy on the state differences of every pair of connected agents

,f / averaged over multiple random trials. Let potentill for
O agentk be [4]

- 1

e g (]H Ptk: 5 Z |Zf—zzl£|25 t>0.
@ ’ lEN,
.l\‘
#

Accordingly, the total potential i, = >,/ PF and the
Lyapunov functionV; is the expected value of the total

Fig. 2. State measurement with additive noisf'. potential,
From [4], a stochastic consensus algorithm is (assuming (Z Pk) =E(PR), t>0.
af =a; € [0,1]V k,t) keN

zfﬂ (- at s % Mtezt ©) In terms of the graph Laplacian we have
k ren, P = thth and V;, =F (thth) ,
We rewrite (9) to adopt the structure of the recursion usesiherez; = [z}, ..., 2/V]T.
in the classic stochastic apprOX|mat|on algorithm [4]
A [4, Theorem 26] states that, under assumptions (Al)—
=2+ d Z - %) (10) (A3), algorithm (9) achieves mean square consensus. The
LN result is based on asymptotic vanishing ®f, which
Note (10) only requires (noisy) measurements of the radativindicates that the state vectey will approach the subspace
states,z! — zF + wit. spanned byl y. This is proven by defining the directions
The objective is to select a step size so that agentd invariance associated with the consensus algorithm (9),
converge to a common limit in a certain sense. To chawhich is characterized in terms of the degree of each agent
acterize the asymptotic behavior of the agents, the fotigwi in the network. The proof shows that the oscillation of the
definitions are used [4]: sequencey,t > 0 along the directiorl 5 will gradually die

.V\eakconsensusE\zﬂ2<oth20,ke]\/,and off.

2
limy oo B |2F — 2" =0V k1€
t—00 ‘ t t‘ ’ N, IIl. NOISY SYNCHRONIZATION ON N-TORUS:

where FE is the expected valu2e operator. CONTINUOUS-TIME ALGORITHM
« Mean square consensus: E |zf|" < ooVt >0, k€ N, Synchronization on theV-torus requires knowledge of
and there exists a random varialafe such that the relative orientations of at least some of the agents.

lim, E|zk _Z*‘z OV keEN In this section, we study the case tha_lt agénteceives
- t ' measurements of the relative orientation of every other
. Srrong consensus. There exists a random variable  agent, albeit corrupted by noise. The results extend rigtura
such that to connected, undirected graphs. We have a networly of
. . _ N identical agents evolving on the torus, where each agent
lim;,o0z; = 2" with probability onev k& € V. k € N receives noisy measurements of the relative state of



its neighbors (see Figure 1). Assume that the relative phase measurendént 6 by

agentk is corrupted by noise’” at each instant. The result of
Consider the following two models for the noi§ef!,¢t €  measurement afs state byk is 6 + wF, hence the gradient

Zt ke N,l e Ny} (3) becomes
(N1) The additive noises are independent and identically oU 1, sotswh) »
distributed with respect to the indicési, ¢ (Figure 3). 90k _N<w ) Le™™)
(N2) The additive noise on each agent is the same for every t 1
measurement at time(Figure 4). = —= ) sin(0] — 0 +wy).
The first noise model is more general and is not addressed keN

here; we adopt the second model, which we associate Wiftxcording to (AZ), the noise lies in a compact distribution
noisy reception (as opposed to noisy transmission) of infopn the interval of[—7/2,7/2] with zero mean. Let} =
mation.

_ » _ 0! — 0% — 7/2, which implies
We make the following additional assumptions:

K
O, = 08— 2= > cos(af +wf). (14)
%l
Wy keN
! The aim is to build a stochastic Lyapunov function based
— on the potential functio/; and perform stability analysis
of (14). By analogy with (13) the evolution of the phase
@ potential becomes
L + / K . _ _ .
w;f \®/+ U = U — atT@eZ(eierf),Lk619t><i619i,Lkewt>
‘\wi‘" a K (0L wr)  i0Fy g il ok
t = Ut_T (1e"PeTw) et (1t et ).
keN

Following [4], the mean of the total potential is the
stochastic Lyapunov functiol; = F(Qr,) = E(P). By
(12), considering the definition af?, we have,

/
@ f \ Py = P b3 Z cosa¥ cos(af +wk) (15)
k
T Wy @ keN
it /‘

K
. P+ atT Z (cos? af cos wk
@ kEN
—i—l sin 2aF sinwf).
Fig. 4. Additive noise model (N2wh! = w7 = Wk # Wl 2
Hence, we take the expectation of both sides of (15).
p
(A1) The graphG corresponds to an all-to-all communica- BY assumpt|on (A, coswy > 0 for all k andt, hence

tion network. cos? af coswf > 0. Fokr the second ternd;(sinw)) = 0 and
(A2") The additiveknoise on agehtobeys noise model (N2), the independence off andwf gives
ki k

— ; k
e, wil =w’ =wkF VI je€ N, wherew) khas zero E(sin 2aF sinwh) = E(sin 20%) B(sin wF)
mean and finite rang@ip, ¢ renr SUPen, Wi < /2.

Therefore, expected value of the second term is zero.
Using a first-order Euler approximation, the continuous€onsequently withX < 0, the Lyapunov function is

time algorithm becomes non-increasing;V;+1 < V4, which implieslim;, ..V, =

. _ ; 0y T 00\ _ 0y _

= K g, n) iU = 0 SINGETLEER) = e I

t+1 t t t) e'%:)2, it follows that
keN X .
which depends on the relative phage— #F measurement limy o Ele’ — > =0V kL€ N.
gndat € [0,1]. As shown in (2) the phase potential at each Theorem: Under assumptions (Al—(A2), algorithm (14)
instant can be ]cvalculelted from N achieves weak consensus on tNetorus.
0 0
= — (" L)y = — — p,. 12
Ui 2 oN <€ , e > 2 t ( )

To illustrate synchronization of a set of agents in the
presence of noisy communication, we consider a graph
Laplacian corresponding to all-to-all communication okfiv
agents V = 5).

From (3), in discrete time we get

K .
U1 =U; — %(iewi,Lkew“ﬂ (13)



The initial conditions of the simulation are picked ran- To conduct the stability analysis of (16) following [4], the
domly from [0, 27]. The measurement noise has a truncateital potential can be defined in terms of the graph Laplacian
normal distribution in the range-=/2, 7/2]. Figure 5 shows
the weak convergence of algorithm (14) where the measure-
ment noise has standard deviatiorris= 10 and zero mean.
Figure 6 illustrates the potentiaP, for ten trials and the and the mean of the total potential is the stochastic Lyapuno

P = ZtTLZt (17)

resulting stochastic Lyapunov functiol; = E(F;).

55
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.
200 1000

Fig. 5. Five agents reach weak consensus on the torus wisie standard
deviationo = 10.
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Fig. 6. The potential of five agents for ten trials with= 10 and the

stochastic Lyapunov function.

IV. NOISY SYNCHRONIZATION ON N-TORUS.
DISCRETETIME ALGORITHM

Let ©F! be the result of the measurementisf state by
k:

oM =0 1wk tezt, leN,

Wherewt eRis additive noise satisfying (AR Let 2!
et andQF = el | so thatzF! £ ¢©F' = IOk,

function
Vi = E(P,). (18)
Consider the following additional assumption:
(A3) The sequencea;,t >0, satisfiesa; € (0,1),

oo, and "% a? < oo.

Zzo ay =

From equation (16), we have

0r ., = arg atd Z 208 + (1 - ay)2! ]
L lENk
1
= arg|a;— Z (ZF — 2F0F) + (1 — ay + a, Q) 2f
L i leEN
1
= arg |a;— Z (2L = 2)QF + (1 — ay + a,2)2F|.
L dk IENk

Subsequently, we obtain

k 1 Qf l
G2 TR LU (2t = 2¢) + (1 — @y + @) zf
Pk k 1EN},
1 QF
= — [at—thzt +(1—ar+ ath)zf} ,
Pk dy,

whereL;, is the kth row of L and

Pk = |At

1
d—kaLkzt +(1—a+ ath)zf

(If pr. = 0, then agent is allowed to take any position on
the circle [12].)

We define the following additional matriced,
diag(p;',...,pN") and Do = diag(Q},...,QY). Recall
D, = diag(d;*,...,dy"), which for all-to-all communica-
tion becomed = —In. We have

= Dp[athDQLZt —+ ((1 — at)IN —+ atDQ)Zt]. (19)

Zt+1
Substituting (19) into (17) gives

Pt+1 [athDQth =+ ((1 — at)IN =+ atDQ)Zt]T

DpLDp[athDQth + ((1 — at)IN + atDQ)Zt].

Let L = D4L andL’ = D,LD,. SinceL, Dy, andD,

Augmenting algorithm (6) W|th the noise model yields theare symmetric positive semi- deflnlfh andL’ are symmetric

following update rule:

0r., = arg <(1—at)zt —i—atd Z lQ?). (16)

lENk

positive semi-definite. Consider the following equalities

CLtZérIAJDQ
(1 —ay)zl + a2l Dg.

LT
[a:DgDqLz)
(1 — ar)In + a;Dq)z]"



The total potential is

Py o= (1- at)QZ?L'zt
+a(1 — ay) (Zér]ZDQLIZt + 2I'L/DgLz,
+2I' L'Dqz + Z?DQL/Zt) (20)
+a? (th LDoL'DoLz + :TLDoL' Doz

+Z?D(2L/D51£Zt + Z?DQL/DQZt) .

ten trials and shows that the resulting stochastic Lyapunov
function V; decays to zero.

V. CONCLUSIONS

We are considering the problem of cooperative control of
unmanned vehicles in an uncertain environment when each
vehicle can obtain only noisy measurements of the other
vehicles. We aim to prove convergence to the desired forma-
tion and robustness to measurement errors using a stozhasti
algorithm. This paper studies the problem of consensus on

Taking the expectation of both sides of (20) builds the Lyame N-torus for all-to-all interactions corrupted by noise.
punov function expression (18). Analysis of (18) is ongoiNga stochastic approximation algorithm is applied and weak

but suggest the following proposition.

consensus of agents is established. In ongoing research we

Proposition: Under assumptions (A)-(A3'), algorithm (16)  are extending the results to limited communication.

achieves weak consensus on tkietorus, i.e.,

limy o B |2F — 2L[* =0V k1 € N,

. . . .
0 200 400 600 800 1000
iterations

Fig. 7. Five agents reach weak consensus on the torus wisie standard

deviationo = 10.

25 T T T T

20 1

15 1

0 200 400 600 800 1000
iterations

Fig. 8. The potential of five agents for ten trials using= 10 and the
stochastic Lyapunov function.

Figure 7 shows the weak convergence of algorithm (16)
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for five agents with all-to-all communication where the
measurement noise has normal distribution and is randomly

selected betweep-m/2, /2], with standard deviatios =
10 and zero mean. Figure 8 illustrates the potenialfor



