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Synchronization on the N-Torus with Noisy Measurements

Nina Mahmoudian and Derek A. Paley

Abstract— We consider the problem of cooperative control
of unmanned vehicles in an uncertain environment in which
each vehicle can obtain only noisy measurements of the other
vehicles. In particular, we want to establish convergence to a de-
sired formation using a stochastic algorithm with measurement
errors. In this paper, the problem of stabilization of parallel
formations in a self-propelled particle model is considered,
which can be modeled as synchronization on theN -torus in the
presence of noisy measurements of relative phase. Simulations
are included to illustrate the result.

I. INTRODUCTION

The increasing interest in applications of multi-agent au-
tonomous systems such as unmanned air vehicles, mobile
robots, and unmanned underwater vehicles increases the
need for cooperative-control algorithms to address real-world
challenges. A networked multi-vehicle system may have
only limited knowledge of its environment and the states
of the other agents. One such limitation is the issue of
noisy communication links. With imperfect communication,
convergence of a standard consensus algorithm is not guar-
anteed.

A consensus algorithm specifies the interaction between
each agent and its neighbors; consensus occurs when every
agent reaches a common value. There is a rich body of
literature on consensus protocols in Euclidean space in both
continuous time and discrete time, with applications to multi-
agent autonomous systems [6], [7] (see [8], [9] for a review).
In addition, the problem of coordination and consensus
with noisy communication has been addressed using various
approaches. The majorization of a stress function is used
in [3] to develop a distributed coordination algorithm that
stabilizes the shape of a relative sensing network to a desired
formation; robustness of the algorithm against measurement
errors in the relative information of neighboring agents is
established. Robustness of consensus to noise for directed
communication characterized by theH2 norm of the system
is studied in [15]. A stochastic adaptive algorithm approach
is used in [4], [5], in which a stochastic approximation
type algorithm with a decreasing step size is proposed and
convergence results are established with measurement noise.

There have been other works that consider noise-free con-
sensus on non-Euclidean manifolds such as theN -torus [11],
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[12] and the sphere [10]. The problem of synchronization and
global convergence on theN -torus has been studied using
noise-free state iteration by assuming exact data exchange
between the agents [11], [12]. Each agent updates its heading
based on the relative phases of its neighbors on the torus.

The contribution of this paper is to present convergence
analysis in consensus seeking on theN -torus in an uncertain
environment where each agent can only obtain noisy mea-
surements of its neighbors’ relative phases. We study the
behavior of a discrete-time network ofN agents moving on
the torus. To deal with the measurement noise, a stochastic
approximation algorithm is proposed for consensus seeking
where the signal received from other agents is corrupted by
additive noise. Convergence to the set of synchronized phases
is established for all-to-all interactions by constructing a
stochastic Lyapunov function. We assume the corrupting
noise is associated with signal reception, not transmission,
and that it has zero mean in the range[−π/2, π/2].

The paper is organized as follows. Section II reviews
the problem of synchronization on theN -torus and con-
sensus. It also summarizes existing convergence results for
Euclidean consensus in the presence of noisy measurement
using stochastic Lyapunov analysis. Section III presents a
stochastic Lyapunov function for synchronization on the
N -torus following the first-order Euler approximation of
the continuous-time algorithm, establishes the conditions for
convergence, and presents simulation results. A stochastic
Lyapunov function for synchronization on theN -torus for
discrete-time is introduced in Section IV. Section V summa-
rizes the paper and indicates ongoing research directions.

II. BACKGROUND AND MATHEMATICAL
PRELIMINARIES

In this section, the problems of synchronization on the
N -torus and Euclidean consensus are reviewed. In addition,
existing convergence results for Euclidean consensus in the
presence of noisy measurement are summarized.

Consider a network ofN identical agents interacting
via an undirected graphG = (N , E) with nodesN =
{1, 2, ..., N} and edges{l, k} ∈ E ⊂ N × N . The set
of neighbors of nodek is represented byNk = {l ∈
N|(l, k) ∈ E}. The graphG is called undirected when
(l, k) ∈ Nk ⇔ (k, l) ∈ Nk. The graphG corresponding
to all-to-all communication satisfies(k, l) ∈ E ∀ l 6= k.

The LaplacianL associated to the graphG is defined as
the followingN ×N matrix:

Lkl =







dk, if l = k,
−1, if l ∈ Nk,
0, otherwise,



wheredk = |Nk| is the number of neighbors of agentk. If
graphG is undirected thenL is symmetric positive semi-
definite. If G is also connected then rank(L) = N − 1 and
the null space ofL is spanned by1N = [1, . . . , 1]T ∈ R

N .

A. Synchronization on the N-Torus

Continuous-time algorithm: Consider a network ofN
identical agents evolving on the unit circleS1. ( For example,
the synchronization of vehicle headings in the plane evolves
on the S1.) The state of each agent at timet can be
represented byθk ∈ S1, k ∈ N . The state space is the torus,
TN , S1 × . . .× S1 and the agents communicate pairwise.
The goal is to stabilize the set of synchronized formations
in which θk = θl ∀ k, l. In the synchronized set the centroid
of the phasors

pθ ,
1

N

∑

k∈N

eiθ
k

,
1

N

∑

k∈N

zk

satisfies|pθ| = 1.
Consider the all-to-all potential [13]

U(θ) =
N

2
|pθ|

2, (1)

which can be written in terms of the Laplacian phase
potential, P = QL = 1

2N 〈eiθ,Leiθ〉, where eiθ =

[eiθ
1

, . . . , eiθ
N

]T . We have

U(θ) =
N

2
−

1

2N
〈eiθ,Leiθ〉 =

N

2
− P, (2)

where〈., .〉 is the inner product. The gradient ofU(θ) is

∂U

∂θk
= −

1

N
〈ieiθ

l

,Lke
iθ〉 = −

1

N

∑

k∈N

sin(θl − θk), (3)

whereLk is thekth row of the theL.
A continuous-time gradient algorithm associated with the

potential is [13]

θ̇k = K
∂U

∂θk
= −

K

N

∑

k∈N

sin(θl − θk). (4)

This control requires measurements of the relative phases
θl − θk. The potentialU(θ) reaches its unique maximum
when all phases are identical (synchronization). WhenK <
0, the set of synchronized states is asymptotically stable and
all other critical points ofU(θ) are unstable [13].

When K < 0, the same result equivalently holds in
a rotating frame, that is, for the coupled-phase oscillators
model [13]

θ̇k = ω0 −
K

N

∑

k∈N

sin(θl − θk). (5)

In (5) all oscillators have identical natural frequencyω0

and each oscillator is modeled by a phase variableθk.
This model is a simplified version of the Kuramoto model,
where in general the oscillators have different natural
frequencies. Synchronization of the Kuramoto model have
been studied [1], [2], including oscillators with noisy,
randomly distributed intrinsic frequencies and time-delayed

interactions [14]. This paper addresses the problem of
synchronization in the presence of noisy measurement of
the relative phasesθl − θk, as depicted in Figure 1.

Fig. 1. Phase measurement with additive noiseω
kl
t .

Discrete-time algorithm: Let θkt ∈ S1, k ∈ N , be the
state of each agent at timet or, equivalently, the unit phasor
zkt ∈ C, |zkt | = 1. Consider a network ofN identical agents
evolving on the unit circle. The state equation of each agent
k in a discrete-time synchronization algorithm is [11], [12]

θkt+1 = arg

(

(1 − ak)zkt + ak
1

dk

∑

l∈Nk

zlt

)

, (6)

where ak ∈ (0, 1). For the case of a fixed, undirected
graph, the algorithm (6) is a discrete-time approximation
of a gradient algorithm for the Laplacian phase potential,
QL = 1

2N 〈eiθt ,Leiθt〉, whereeiθt = [eiθ
1

t , . . . , eiθ
N

t ]T . The
states are updated either asynchronously or synchronously
with small ak [11]. A dynamic approach was proposed
in [12], which uses the local information from the Euclidean
consensus algorithm to estimate the global information re-
quired for synchronization on theN -torus:

zkt+1 = zkt −DdLkzt

θkt+1 = arg

(

(1 − ak)zkt + ak
1

dk

∑

l∈Nk

zlt

)

, (7)

where Dd = diag(d−1
1 , . . . , d−1

N ). The algorithm (7) is
expressed in terms of the relative phasorszlt − zkt for the
convergence analysis.

If G = G(t) is uniformly connected andL = L(t) is
bounded and piecewise continuous [12], then algorithm (7)
asymptotically converges to a critical point ofU(θ) [12,
theorem 3]. The only stable set of equilibrium points is the
synchronized set characterized byN identical phases.

B. Consensus in the Presence of Noise

Let zkt ∈ R be the state of agentk at time t ∈ Z+.
Denote the state vectorzt = [z1t , ..., z

N
t ]T . A discrete-time



synchronous consensus algorithm for each agent is [8]

zkt+1 = zkt +
ak

dk

∑

l∈Nk

(zlt − zkt ) (8)

where ak ∈ (0, 1) is the step size for agentk.
Consensus is achieved by a network of agents if
|zkt − zlt| → 0 as t → ∞, ∀ k 6= l.

For the case that agentk receives noisy measurements of
the states of its neighbors,qklt is the resulting measurement
of agentl’s states by agentk [4]:

qklt = zlt + wkl
t , t ∈ Z

+, l ∈ Nk,

where additive noise{wkl
t , t ∈ Z+, k ∈ N , l ∈ Nk} is

introduced as shown in Figure 2.

Fig. 2. State measurement with additive noisew
kl
t .

From [4], a stochastic consensus algorithm is (assuming
akt = at ∈ [0, 1] ∀ k, t)

zkt+1 = (1− at)z
k
t +

at
dk

∑

l∈Nk

qklt , t ∈ Z
+. (9)

We rewrite (9) to adopt the structure of the recursion used
in the classic stochastic approximation algorithm [4]

zkt+1 = zkt +
at
dk

∑

l∈Nk

(qklt − zkt ), (10)

Note (10) only requires (noisy) measurements of the relative
states,zlt − zkt + ωkl

t .
The objective is to select a step size so that agents

converge to a common limit in a certain sense. To char-
acterize the asymptotic behavior of the agents, the following
definitions are used [4]:

• Weak consensus: E
∣

∣zkt
∣

∣

2
< ∞ ∀ t ≥ 0, k ∈ N , and

limt→∞E
∣

∣zkt − zlt
∣

∣

2
= 0 ∀ k, l ∈ N ,

whereE is the expected value operator.
• Mean square consensus: E

∣

∣zkt
∣

∣

2
< ∞ ∀ t ≥ 0, k ∈ N ,

and there exists a random variablez∗ such that

limt→∞E
∣

∣zkt − z∗
∣

∣

2
= 0 ∀ k ∈ N .

• Strong consensus: There exists a random variablez∗

such that

limt→∞zkt = z∗ with probability one∀ k ∈ N .

Consider the following conditions and assumptions for
the additive noise and step size [4]:

(A1) The noiseswkl
t are independent with respect to indices

k, l, t and the initial state vectorz0, whereE |z0|
2
<

∞. Eachwkl
t has zero mean and varianceQkl

t ≥ 0,
where supt≥0,k∈N supl∈Nk

Qkl
t < ∞.

(A2) The sequenceat, t ≥ 0, satisfies at ∈ [0, 1],
∑∞

t=0 at = ∞, and
∑∞

t=0 a
2
t < ∞.

(A3) The graphG is undirected and connected.

[4, Theorem 21] shows that under assumptions (A1)–
(A3) the expected value of the difference between the
states of any two agents converges to zero and, therefore,
algorithm (9) achieves weak consensus.

A stochastic Lyapunov function can be defined based
on the state differences of every pair of connected agents
averaged over multiple random trials. Let potentialP k

t for
agentk be [4]

P k
t =

1

2

∑

l∈Nk

|zkt − zlt|
2, t ≥ 0.

Accordingly, the total potential isPt =
∑

k∈N P k
t and the

Lyapunov functionVt is the expected value of the total
potential,

Vt = E

(

∑

k∈N

P k
t

)

= E(Pt), t ≥ 0.

In terms of the graph Laplacian we have

Pt = zTt Lzt and Vt = E
(

zTt Lzt
)

,

wherezt = [z1t , ..., z
N
t ]T .

[4, Theorem 26] states that, under assumptions (A1)–
(A3), algorithm (9) achieves mean square consensus. The
result is based on asymptotic vanishing ofVt, which
indicates that the state vectorzt will approach the subspace
spanned by1N . This is proven by defining the directions
of invariance associated with the consensus algorithm (9),
which is characterized in terms of the degree of each agent
in the network. The proof shows that the oscillation of the
sequencezt, t ≥ 0 along the direction1N will gradually die
off.

III. N OISY SYNCHRONIZATION ON N-TORUS:
CONTINUOUS-TIME ALGORITHM

Synchronization on theN -torus requires knowledge of
the relative orientations of at least some of the agents.
In this section, we study the case that agentk receives
measurements of the relative orientation of every other
agent, albeit corrupted by noise. The results extend naturally
to connected, undirected graphs. We have a network ofN
identical agents evolving on the torus, where each agent
k ∈ N receives noisy measurements of the relative state of



its neighbors (see Figure 1).

Consider the following two models for the noise{ωkl
t , t ∈

Z+, k ∈ N , l ∈ Nk}:
(N1) The additive noises are independent and identically

distributed with respect to the indicesk, l, t (Figure 3).
(N2) The additive noise on each agent is the same for every

measurement at timet (Figure 4).
The first noise model is more general and is not addressed
here; we adopt the second model, which we associate with
noisy reception (as opposed to noisy transmission) of infor-
mation.
We make the following additional assumptions:

Fig. 3. Additive noise model (N1):ωkl
t 6= ω

kj
t 6= ω

lj
t .

Fig. 4. Additive noise model (N2):ωkl
t = ω

kj
t = ωk

t 6= ωl
t.

(A1′) The graphG corresponds to an all-to-all communica-
tion network.

(A2′) The additive noise on agentk obeys noise model (N2),
i.e.,ωkl

t = ωkj
t = ωk

t ∀ l, j ∈ Nk, wherewk
t has zero

mean and finite rangesupt≥0,k∈N supl∈Nk
ωk
t ≤ π/2.

Using a first-order Euler approximation, the continuous-
time algorithm becomes

θkt+1 = θkt −
atK

N

∑

k∈N

sin(θlt − θkt ), (11)

which depends on the relative phaseθlt − θkt measurement
andat ∈ [0, 1]. As shown in (2) the phase potential at each
instant can be calculated from

Ut =
N

2
−

1

2N
〈eiθt ,Leiθt〉 =

N

2
− Pt. (12)

From (3), in discrete time we get

Ut+1 = Ut −
atK

N
〈ieiθ

l

t ,Lke
iθt〉2. (13)

Assume that the relative phase measurementθlt − θkt by
agentk is corrupted by noiseωk

t at each instant. The result of
measurement ofl’s state byk is θlt +ωk

t , hence the gradient
(3) becomes

∂U

∂θkt
= −

1

N
〈iei(θ

l

t
+ωk

t
),Lke

iθt〉

= −
1

N

∑

k∈N

sin(θlt − θkt + ωk
t ).

According to (A2′), the noise lies in a compact distribution
on the interval of[−π/2, π/2] with zero mean. Letαk

t =
θlt − θkt − π/2, which implies

θkt+1 = θkt −
atK

N

∑

k∈N

cos(αk
t + ωk

t ). (14)

The aim is to build a stochastic Lyapunov function based
on the potential functionUt and perform stability analysis
of (14). By analogy with (13) the evolution of the phase
potential becomes

Ut+1 = Ut −
atK

N
〈iei(θ

l

t
+ωk

t
),Lke

iθt〉〈ieiθ
l

t ,Lke
iθt〉

= Ut −
atK

N

∑

k∈N

〈iei(θ
l

t
+ωk

t
), eiθ

k

t 〉〈ieiθ
l

t , eiθ
k

t 〉.

Following [4], the mean of the total potential is the
stochastic Lyapunov functionVt = E(QLt

) = E(Pt). By
(12), considering the definition ofαk

t , we have,

Pt+1 = Pt +
atK

N

∑

k∈N

cosαk
t cos(α

k
t + ωk

t ) (15)

= Pt +
atK

N

∑

k∈N

(cos2 αk
t cosω

k
t

+
1

2
sin 2αk

t sinω
k
t ).

Hence, we take the expectation of both sides of (15).
By assumption (A2′), cosωk

t ≥ 0 for all k and t, hence
cos2 αk

t cosω
k
t ≥ 0. For the second term,E(sinωk

t ) = 0 and
the independence ofαk

t andωk
t gives

E(sin 2αk
t sinω

k
t ) = E(sin 2αk

t )E(sinωk
t )

Therefore, expected value of the second term is zero.
Consequently withK < 0, the Lyapunov function is
non-increasing;Vt+1 ≤ Vt, which implies limt→∞Vt =

limt→∞E(Pt) = 0. Since〈eiθt ,Leiθt〉 =
∑

(l,k)∈E |e
iθk

t −

eiθ
l

t |2, it follows that

limt→∞E|eiθ
k

t − eiθ
l

t |2 = 0 ∀ k, l ∈ N .

Theorem: Under assumptions (A1′)–(A2′), algorithm (14)
achieves weak consensus on theN -torus.

To illustrate synchronization of a set of agents in the
presence of noisy communication, we consider a graph
Laplacian corresponding to all-to-all communication of five
agents (N = 5).



The initial conditions of the simulation are picked ran-
domly from [0, 2π]. The measurement noise has a truncated
normal distribution in the range[−π/2, π/2]. Figure 5 shows
the weak convergence of algorithm (14) where the measure-
ment noise has standard deviation isσ = 10 and zero mean.
Figure 6 illustrates the potentialPt for ten trials and the
resulting stochastic Lyapunov function,Vt = E(Pt).
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Fig. 5. Five agents reach weak consensus on the torus with noise standard
deviationσ = 10.
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Fig. 6. The potential of five agents for ten trials withσ = 10 and the
stochastic Lyapunov function.

IV. N OISY SYNCHRONIZATION ON N-TORUS:
DISCRETE-TIME ALGORITHM

Let Θkl
t be the result of the measurement ofl’s state by

k:

Θkl
t = θlt + ωk

t , t ∈ Z
+, l ∈ Nk,

wherewk
t ∈ R is additive noise satisfying (A2′). Let zlt =

eiθ
l

t andΩkl
t = eiω

k

t , so thatzklt , eiΘ
kl

t = zltΩ
kl
t .

Augmenting algorithm (6) with the noise model yields the
following update rule:

θkt+1 = arg

(

(1− at)z
k
t + at

1

dk

∑

l∈Nk

zltΩ
kl
t

)

. (16)

To conduct the stability analysis of (16) following [4], the
total potential can be defined in terms of the graph Laplacian

Pt = zt
T
Lzt (17)

and the mean of the total potential is the stochastic Lyapunov
function

Vt = E(Pt). (18)

Consider the following additional assumption:

(A3′) The sequenceat, t ≥ 0, satisfies at ∈ (0, 1),
∑∞

t=0 at = ∞, and
∑∞

t=0 a
2
t < ∞.

From equation (16), we have

θkt+1 = arg

[

at
1

dk

∑

l∈Nk

zltΩ
k
t + (1 − at)z

k
t

]

= arg

[

at
1

dk

∑

l∈Nk

(zltΩ
k
t − zkt Ω

k
t ) + (1− at + atΩ

k
t )z

k
t

]

= arg

[

at
1

dk

∑

l∈Nk

(zlt − zkt )Ω
k
t + (1− at + atΩ

k
t )z

k
t

]

.

Subsequently, we obtain

zkt+1 =
1

ρk

[

at
Ωk

t

dk

∑

l∈Nk

(zlt − zkt ) + (1− at + atΩ
k
t )z

k
t

]

=
1

ρk

[

at
Ωk

t

dk
Lkzt + (1− at + atΩ

k
t )z

k
t

]

,

whereLk is thekth row of L and

ρk =

∣

∣

∣

∣

at
1

dk
Ωk

tLkzt + (1− at + atΩ
k
t )z

k
t

∣

∣

∣

∣

.

(If ρk = 0, then agentk is allowed to take any position on
the circle [12].)

We define the following additional matrices:Dρ =
diag(ρ−1

1 , . . . , ρ−1
N ) and DΩ = diag(Ω1

t , . . . ,Ω
N
t ). Recall

Dd = diag(d−1
1 , . . . , d−1

N ), which for all-to-all communica-
tion becomesDd = 1

N−1IN . We have

zt+1 = Dρ[atDdDΩLzt + ((1− at)IN + atDΩ)zt]. (19)

Substituting (19) into (17) gives

Pt+1 = [atDdDΩLzt + ((1− at)IN + atDΩ)zt]
T

DρLDρ[atDdDΩLzt + ((1− at)IN + atDΩ)zt].

Let L̂ = DdL andL
′ = DρLDρ. SinceL, Dd, andDρ

are symmetric positive semi-definite,L̂ andL′ are symmetric
positive semi-definite. Consider the following equalities:

[atDdDΩL̂zt]
T

= atz
T
t L̂DΩ

[((1 − at)IN + atDΩ)zt]
T

= (1 − at)z
T
t + atz

T
t DΩ.



The total potential is

Pt+1 = (1− at)
2zTt L

′zt

+at(1 − at)
(

zTt L̂DΩL
′zt + zTt L

′
DΩL̂zt

+zTt L
′
DΩzt + zTt DΩL

′zt
)

(20)

+a2t

(

zTt L̂DΩL
′
DΩL̂zt + zTt L̂DΩL

′
DΩzt

+zTt DΩL
′
DΩL̂zt + zTt DΩL

′
DΩzt

)

.

Taking the expectation of both sides of (20) builds the Lya-
punov function expression (18). Analysis of (18) is ongoing,
but suggest the following proposition.
Proposition: Under assumptions (A1′)–(A3′), algorithm (16)
achieves weak consensus on theN -torus, i.e.,

limt→∞E
∣

∣zkt − zlt
∣

∣

2
= 0 ∀ k, l ∈ N .
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Fig. 7. Five agents reach weak consensus on the torus with noise standard
deviationσ = 10.
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Fig. 8. The potential of five agents for ten trials usingσ = 10 and the
stochastic Lyapunov function.

Figure 7 shows the weak convergence of algorithm (16)
for five agents with all-to-all communication where the
measurement noise has normal distribution and is randomly
selected between[−π/2, π/2], with standard deviationσ =
10 and zero mean. Figure 8 illustrates the potentialPt for

ten trials and shows that the resulting stochastic Lyapunov
functionVt decays to zero.

V. CONCLUSIONS

We are considering the problem of cooperative control of
unmanned vehicles in an uncertain environment when each
vehicle can obtain only noisy measurements of the other
vehicles. We aim to prove convergence to the desired forma-
tion and robustness to measurement errors using a stochastic
algorithm. This paper studies the problem of consensus on
the N -torus for all-to-all interactions corrupted by noise.
A stochastic approximation algorithm is applied and weak
consensus of agents is established. In ongoing research we
are extending the results to limited communication.
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