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Abstract— In a kinetic interaction network, signals are emit-
ted through motion. Natural examples include bird flocks, fish
schools, and robot teams. A kinetic interaction network trans-
mits information about external cues quickly and accurately.
Analysis of a one-dimensional interaction network reveals a
bound on the algebraic connectivity above which the transient
response is overdamped. A critically damped response, the
fastest and most accurate, is achieved by maximizing the
algebraic connectivity subject to this bound. For example,
in an n-neighbor interaction network, output rise time is
minimized for intermediate values of n. This analytical result
yields insight into natural networks and a design method
for synthetic networks. We apply this result to automobile
congestion by extending the Intelligent Driver Model to include
interactions with multiple vehicles. Simulations indicate that, in
certain portions of parameter space, traffic flow is improved by
including directed interactions with an intermediate number of
vehicles.

I. INTRODUCTION

A distributed network of unmanned vehicles that interact
through relative motion is capable of coordinated behav-
ior, even without directed communication. We apply linear
systems theory and algebraic graph theory to model the
transmission of information in a communication network
in which signals are emitted through motion. We use this
model to identify the topological configurations that achieve
a critically damped response to an internal or external cue.
The primary goal is to provide a theoretical foundation for
optimizing a motion-based interaction network for speed and
accuracy of information transmission. Progress towards this
goal is highlighted below in an application of the main result
to automobile congestion. A secondary goal is to gain insight
into naturally occurring interaction networks. Progressing
towards the second goal is ongoing and outside the scope
of the present paper.

A natural kinetic interaction network—such as a bird
flock, fish school, or human crowd—reacts almost simul-
taneously to an exogenous threat or endogenous event. For
example, a flock of birds will turn in unison to avoid a preda-
tor or roost in a tree. The collective response of a bird flock
or a fish school is the product of a fast-moving information
wave that propagates when neighboring individuals react to
changes in relative position and velocity [1].

A remarkable property of a natural interaction network
is the inherent capability to accurately and rapidly transmit

D. Paley is an assistant professor in the Department of Aerospace
Engineering, University of Maryland, College Park, MD USA
dpaley@umd.edu

A. Baharani is a graduate student in the Department of Aerospace
Engineering, University of Maryland, College Park, MD USA
ajay.baharani@gmail.com

information about internal or external cues that are sensed
by only a few individuals. In a fish school, this phenomenon,
known as a “wave of agitation”, propagates faster than the
speed of an individual fish [1] and enables the school to
respond as one to an external threat. Since fish do not com-
municate verbally, the signaling is accomplished primarily
by movement (kinetics). Just like a driver in automobile
traffic, each individual regulates the range and range rate
to neighboring individuals that encroach or move away.

The dynamics of interaction networks have been primarily
described by empirical studies in biology and theoretical
studies in physics and engineering. Empirical studies show
that schooling fish exhibit more accurate responses to ex-
ternal threats than individual fish [2]. Empirical studies of
starlings suggest that topological distance, as opposed to
metric distance, may determine the interaction network in
bird flocks [3]. In topological-distance coupling, the strength
of interaction between two individuals is determined not
by their physical separation but by the number of other
individuals between them. Starling-flock observations show
that anisotropy of neighbor positions disappears above an
average node degree of 6.5 independent of density [3].
These observations motivate our investigation of n-neighbor
networks—in which each node interacts with its n closest
neighbors—rather than proximity graphs—in which interac-
tions occur over a finite range.

Theoretical analyses of network dynamics have primar-
ily emphasized steady-state responses such as consensus
and collective motion. Under very mild assumptions on
the interaction topology, consensus is achieved by simple,
decentralized algorithms [4], [5]. The rate of convergence
to consensus can be increased by maximizing the algebraic
connectivity of the network, which is the smallest nonzero
eigenvalue of the Laplacian matrix [6]. Fast consensus can
be achieved in small-world networks [7] or by optimization
of the edge weights [8], [9]. Activity consensus such as
moving in the same direction or orbiting a common point
can be achieved by decentralized algorithms in synthetic
networks with time-varying or time-invariant and directed or
undirected communication topologies [10], [11], [12], [13].

This paper considers the transient response of an inter-
action network by applying systems and graph theory to
analyze an idealized model of an interaction network. We
use elementary physical components—point masses, linear
springs, and linear dampers—to construct a one-dimensional
network of harmonic oscillators. (A spring is used to model
an attractive/repulsive spacing force and a damper is an ide-
alized representation of the effect of velocity matching.) The
oscillator network can be viewed as an single-input, single-



output system, where the input is a force on one mass and
the output is the position of another. Spectral analysis relates
the transient response of the network to the topology of the
interaction graph. Despite its simplifying assumptions, this
framework provides a methodology for optimizing synthetic
networks for fast and accurate information transmission.

Analysis of the one-dimensional model characterizes the
network’s transient response in terms of the algebraic con-
nectivity of the interaction graph and damping ratio of the
oscillator interactions. Specifically, we observe that a criti-
cally damped network response occurs when the algebraic
connectivity is maximized subject to a constraint inversely
proportional to the squared damping ratio. This result implies
that the fastest and most accurate response of a nearest-
neighbor network will occur when the neighbor interactions
are limited to intermediate topological distances—which is
consistent with quantitative analysis of starling flocks [3].
(The topological distance between agent k and its nth closest
neighbor is n.) For the specific case of a nearest-neighbor
ring, we identify the number of neighbors that achieves a
critically damped response as a function of the damping ratio
and network size.

We highlight the broad applicability of the main result by
studying a nonlinear model of automobile-driver interactions,
specifically the Intelligent Driver Model (IDM) [14]. IDM
models acceleration and braking behavior of an individual
driver in response to a single vehicle directly in front of it.
We extend the model to include interactions with multiple
vehicles in front of the driver. We then conduct a parametric
study of the extended IDM that characterizes the response of
individual vehicles in a line of traffic, modeled as a directed
n-neighbor network. Simulations of the extended IDM in-
dicate that, indeed, there exists an intermediate number of
neighbors (n > 1) that minimizes latency in traffic flow.

The paper is organized as follows. Section II describes the
mathematical model of a one-dimensional kinetic interaction
network. Section III presents theoretical analysis of the
model and numerical simulations that validate and extend the
analysis. Section IV highlights the application of the main
result to a nearest-neighbor network. Section V describes
the results of numerical simulations of the extended IDM.
Section VI summarizes the contributions of the paper and
indicates topics of ongoing research.

II. DYNAMIC MODEL OF INTERACTION NETWORK

We study a one-dimensional network of N unit masses in
which an arbitrary number of masses are coupled pairwise
by identical damped springs (see Figure 1). We assume
that the interaction graph is connected and undirected. In
coordinates that represent the deviation of the mass positions
from equilibrium, the equations of motion can be expressed
in linear state-space form. We use this model to characterize
the transient response of the network using the damping ratio
of the node-level interactions.

The position of mass k ∈ {1, . . . , N} is denoted by xk ∈
R and its velocity by ẋk ∈ R. If mass j and k are connected,
then there exists between them a linear spring with spring

c

b
k = Nk = 1

x

Fig. 1. One-dimensional model of an arbitrary, connected network of unit
masses coupled by identical damped springs with spring constant c and
damping coefficient b.

constant c > 0 and rest length |k− j|x0 and a linear damper
with damping coefficient b = 2ξ

√
c, where ξ > 0 is the

damping ratio. (The damping ratio determines the impulse
response of an isolated pair of connected masses: ξ < 1 is
underdamped, ξ > 1 is overdamped, and ξ = 1 is critically
damped.) We assume that x1(0) < x2(0) < . . . < xN (0)
and the masses do not collide.

In the case that mass k is connected to only one or two
other masses that are immediately adjacent to it at t = 0, the
equations of motion are

ẍ1 = −c(x1 − x2 − x0)− 2ξ
√
c(ẋ1 − ẋ2)

ẍk = −c(xk − xk−1 − x0)− 2ξ
√
c(ẋk − ẋk−1)

−c(xk − xk+1 + x0)− 2ξ
√
c(ẋk − ẋk+1),

k = 2, . . . , N − 1
ẍN = −c(xN − xN−1 − x0)− 2ξ

√
c(ẋN − ẋN−1).

Next we consider a more general coupling topology. Let
Nk denote the set of masses connected to mass k. (The
cardinality of Nk is denoted #Nk.) In the case that each
mass is connected to an arbitrary set of neighbors, the
equations of motion are

ẍk =
∑
j∈Nk

−c(xk − xj − (k − j)x0)− 2ξ
√
c(ẋk − ẋj),(1)

k = 1, . . . , N.

Proposition 1: An equilibrium solution of (1) is ẋk =
ẋj = 0 and xk = xj + (k − j)x0 for all pairs of connected
masses j and k.

We write (1) in matrix notation using the N×N Laplacian
matrix, L, of the interaction graph. Let Lkk = #Nk and, for
j 6= k, Lkj = −1 if j ∈ Nk or else Lkj = 0. Note L is
undirected and, by assumption, connected. We have1

d

dt

[
x
ẋ

]
=
[
00T I
−cL −2ξ

√
cL

] [
x
ẋ

]
+
[
0
Li

]
cx0, (2)

where 0 = [0, . . . , 0]T ∈ RN , I is the N×N identity matrix
and i = [1, 2, . . . , N − 1, N ]T .

In order to analyze the behavior of solutions to (2),
we view the mass network as a single-input, single-output
system, where the input is a force on mass k = 1 and the
output is the position of mass k = N . In state-space form
with state vector z = [xT , ẋT ]T , input u, and output y = xN ,
we have the affine system

ż = Az +Bu+ f
y = CT z, (3)

1We use bold to denote an N × 1 matrix, e.g., x = [x1, . . . , xN ]T .



where
A =

[
00T I
−cL −2ξ

√
cL

]
, (4)

f = [0T , (Li)T ]T cx0 and B (resp. C) is an 2N×1 matrix of
all zeros except for the (N + 1)th (resp. N th) entry, which
is one.

Since there exists an equilibrium solution of (3) with u =
0, we can perform a change of coordinates to eliminate the
affine term. Let z̄ denote the equilibrium solution, which
implies

˙̄z = Az̄ + f = 0.

Introducing the coordinates ζ = z − z̄ to represent the
deviation of the state from the equilibrium yields

ż = Az +Bu+ f = ζ̇ + ˙̄z = ζ̇

and

ζ̇ = A(ζ + z̄) +Bu+ f = Aζ +Bu+Az̄ + f = Aζ +Bu.

In the new coordinates, the output is

y = CT (ζ + z̄) = CT ζ + x̄N ,

which implies
CT ζ = xN − x̄N .

In linear state-space form with state vector ζ, input u, and
output γ = xN − x̄N , we have

ζ̇ = Aζ +Bu
γ = CT ζ

(5)

where A, B, and C are defined as before. The state variable
ζ represents an N × 1 matrix of the perturbations of each
mass from equilibrium. We study the behavior of solutions
to (5) next.

III. SPECTRAL ANALYSIS OF NETWORK RESPONSE

A. Theoretical results for a general network

In this section we show that the critically damped re-
sponse of the model (5) to an initial displacement of mass
k = 1 minimizes the rise time without overshoot of the
displacement of mass k = N . Solutions to the network model
oscillate when the matrix A defined in (4) has eigenvalues
with nonzero imaginary parts. (We associate oscillations with
inaccuracy in the transient response.) By solving for the
eigenvalues of A as a function of the eigenvalues of the
Laplacian matrix L and damping ratio ξ, we find that a
critically damped response will occur when the algebraic
connectivity of L is maximized subject to an upper bound.
Increasing the algebraic connectivity above this bound re-
duces the speed of the transient response due to overdamping
at the network level. For the specific case of an nearest-
neighbor chain, we validate the analytical prediction with a
numerical simulation.

Solutions to (5) will overshoot the steady-state response if
there are eigenvalues of the system matrix A with nonzero
imaginary part. We identify the set of critically damped solu-
tions by determining the parameter configurations in which

the eigenvalues of A have zero imaginary part. Suppose
v = [vT1 ,v

T
2 ]T is an eigenvector of A associated with

eigenvalue λ [15]. Then[
00T I
−cL −2ξ

√
cL

] [
v1

v2

]
= λ

[
v1

v2

]
,

which implies

v2 = λv1 (6)
−cLv1 − 2ξ

√
cLv2 = λv2. (7)

Substituting (6) into (7) and rearranging yields

Lv1 =
−λ2

c+ 2ξ
√
cλ

v1.

We observe that v1 is an eigenvector of L with eigenvalue

µ =
−λ2

c+ 2ξ
√
cλ
. (8)

Note, the eigenvalues of L are real and satisfy µ1 = 0 <
µ2 ≤ µ3 ≤ . . . ≤ µN [16]. Equation (8) is a quadratic
formula in λ,

λ2 + 2ξµ
√
cλ+ cµ = 0, (9)

which has solutions

λ = −ξµ
√
c±

√
µc(ξ2µ− 1). (10)

Inspection of the discriminant of (9) yields the following
result.

Theorem 1: Consider the matrix A is defined in (4), where
L is the Laplacian matrix of an undirected and connected
graph with algebraic connectivity µ2. The eigenvalues of (4)
are complex if and only if µ2 < 1/ξ2.

Proof: Using (10), an eigenvalue λ of A is complex
whenever µc(ξ2µ−1) < 0. Since µc ≥ 0, then λ is complex
if at least one eigenvalue of the Laplacian matrix satisfies
µ < 1/ξ2. Since µ2 is the smallest nonzero eigenvalue of L,
then µj < 1/ξ2, 3 ≤ j ≤ N , implies µ2 < 1/ξ2.

If at least one eigenvalue of A is complex, then the zero-
input solutions to (5) exhibit oscillations. Theorem 1 implies
that there exists a bifurcation point at 1/ξ2 that separates
the oscillating (underdamped) solutions to (5) from the non-
oscillating (overdamped) solutions. The bifurcation parame-
ter is the algebraic connectivity of L, µ2. Although increasing
the algebraic connectivity increases the rate of convergence
to consensus [6], a critically damped transient response,
which is the fastest and most accurate transient response,
occurs when the algebraic connectivity is maximized subject
to the constraint 1/ξ2.

B. Numerical validation for a n-neighbor network

In this section we validate the theoretical predictions
of the previous section using numerical simulations of an
n-neighbor network. The simulation results illustrated in
Figure 2 reveal that the output rise time is minimized by
the n-neighbor chain with the largest algebraic connectivity
that satisfies µ2 < 1/ξ2. In an n-neighbor chain, n is an
even integer and node k is connected to node j 6= k if
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Fig. 2. Critical damping minimizes output rise time in an n-neighbor
chain. (Results are plotted for N = 100.) The black dots indicate the value
n = n(ξ,N) that maximizes the algebraic connectivity subject to constraint
µ2 < 1/ξ2.

j ∈ {k − n/2, k − n/2 + 1, . . . , k + n/2− 1, k + n/2}. We
integrate (5) to evaluate the transient response of N masses
connected in an n-neighbor chain. Masses k = 2, . . . , N are
initially in equilibrium and mass k = 1 is initially displaced
by δ. The output rise time is the time elapsed from t = 0
until the displacement of mass k = N reaches 90% of its
steady-state value δ/N . (The steady-state value can be found
by conservation of linear momentum.) Figure 2 shows that,
for each damping ratio ξ and network size N , there exists a
value of n = n(ξ,N) that minimizes the output rise time. In
addition, the same value of n generates the largest algebraic
connectivity satisfying the constraint µ2 < 1/ξ2. This result
suggests a network-design procedure for maximizing speed
and accuracy by critically damping the transient response.

IV. NETWORK DESIGN FOR CRITICAL DAMPING

Recall that the only assumptions on the network topology
invoked in Theorem 1 are that the interaction graph is
undirected and connected. As such, the result can be applied
to a broad family of networks. Here, we apply the result of
Theorem 1 to the design of a critically damped n-neighbor
ring, which has a topology described by a circulant graph
of degree n. (A circulant graph has a circulant Laplacian
matrix, which implies that analytical expressions exist for
the eigenstructure [17].) The goal is to find an analytical
expression for the value n = n(ξ,N) that maximizes µ2

subject to the constraint µ2 < 1/ξ2. In an n-neighbor
network µ2 increases with increasing n. The existence of
an upper bound on µ2 implies that, in a critically damped
n-neighbor network, n < N .

The algebraic connectivity of an n-neighbor ring with N
nodes is2 [18]

µ2 = n+ 1− sin((n+ 1)π/N)
sin(π/N)

.

2Also known as an (N,n) regular lattice
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Fig. 3. The value of n = n(ξ,N) that yields critical damping in an
n-neighbor ring. Plot shows agreement between approximate analytical
solution (dots) and direct numerical solutions (lines).

We seek to find the largest n = n(ξ,N) satisfying the
transcendental inequality

n+ 1− sin((n+ 1)π/N)
sin(π/N)

<
1
ξ2
. (11)

Assuming that (n + 1)π/N < 1, we obtain a third-order
polynomial approximation of (11) by truncating the Taylor
series of sin((n+1)π/N) and sin(π/N). The third-order ap-
proximation of (11) with the inequality replaced by equality
is

y3 − y + c = 0, (12)

where
c = −6 sin(π/N)

ξ2(π/N)3
.

If (12) has a single real root, y, then an approximate solution
to (11) is one fewer than the largest integer less than or equal
to the root, i.e. n = by − 1c. We have the following result.

Lemma 1: The solution to the cubic formula (12) is

y =
1

3u
+ u, u =

3

√
− c

2
±
√
c2

4
− 1

27
.

If N3| sin(π/N)|/ξ2 > π3/(9
√

3), then (12) has one real
root.

Proof: The solutions to (12) can be found by Cardano’s
method [19]. Equation (12) has one real root if the discrimi-
nant is negative and the discriminant is 4−27c2. Substituting
c defined in (12) yields the stated condition on N and ξ.

Lemma 1 provides an approximate expression for the
number of neighbors n = n(ξ,N) that achieve a critically
damped transient response in an n-neighbor ring. Figure 3
shows agreement between this approximation and a direct
numerical solution to (11). The optimal number of neighbors
is indeed significantly less than the total number of nodes,
provided that the total number of nodes is sufficiently large
and the individual interactions are not underdamped. This
example highlights the use of Theorem 1 in the context



of designing an interaction network for optimal speed and
accuracy of the transient response. It also appears consistent
with quantitative analysis of interaction networks in animal
groups [3].

V. APPLICATION TO THE INTELLIGENT DRIVER MODEL

A roadway traffic system inherently behaves as a motion-
based interaction network. In this section we use numer-
ical simulation of the nonlinear model to investigate the
applicability of the theory to an automobile traffic system.
Information flows through the network by means of visual
cues that are taken in by each driver. This information is
used by the driver to make a decision about his position and
velocity relative to the drivers surrounding him. Inefficient
transmission of this information may lead to traffic jams
and backups. Traffic jams occur frequently in society and
usually take some time to clear up until traffic is flowing
smoothly again. If the same result seen in the simple mass-
spring-damper simulation is observed in a traffic simulation,
it implies an optimum traffic network architecture in which
information is transmitted the fastest and most accurately.
The results may provide more insight on how to allow traffic
to flow more efficiently.

The following equations identify a traffic model known as
the Intelligent Driver Model (IDM), developed and described
in [14]:

dv

dt
= a

[
1−

(
v

v0

)δ
−
(
s∗

s

)2
]
,

s∗ = s0 + vT +
v∆v
2
√
ab
, (13)

a: maximum acceleration
v: current velocity
v0: desired velocity
b: deceleration constant
s∗: desired gap between vehicles
s: actual gap between vehicles
s0: minimum gap between vehicles (i.e. when v = 0)
T : desired time headway between vehicles
∆v: velocity difference (positive when approaching)
δ: acceleration exponent
Note, equation (13) only models the longitudinal dynamics

(i.e., the acceleration and braking actions) of the drivers
in a one-dimensional model. This implies that there are no
lane changes. The IDM assumes that velocity and position
differences, ∆v and s respectively, are taken with respect
to the vehicle directly in front, creating a chain of drivers.
Taking the leading vehicle as driver k = 1, each of the
kth drivers actions solely depend on the driver immediately
in front, k − 1 for k = 2, ..., N where N is the total
number of drivers. The acceleration exponent δ specifies
how the acceleration decreases when approaching the desired
velocity [14]: the limiting case δ → ∞ corresponds to
approaching v0 with a constant acceleration a, whereas δ = 1
corresponds to an exponential relaxation to v0.

Here we extend the IDM to account for the interactions
in a directed n-neighbor network where each vehicle bases
its actions on n vehicles in front of it. The extended model
(in notation consistent with the previous sections) is

ẍk = a

1−
(
ẋk
v0

)δ
−

∑
j∈N (k)

(
1−

(
x∗k,j

xj − xk

)2
) ,

x∗k,j = |k − j|(x0 + ẋkT ) +
ẋk(ẋk − ẋj)

2
√
ab

, (14)

xk: position of the kth driver
x∗k,j : desired distance between kth and jth drivers
x0: minimum gap between drivers
N (k): the neighbor set of vehicle k
By inspecting equation (14) it can be seen that the accel-

erations are now the result of the sum of the interactions of
the kth driver with several other drivers that are contained
in its neighbor set N (k). All vehicles (excluding the leader)
have interactions with other vehicles. The leading vehicle is
a unique case in this example because it has zero neighbors.
Therefore its dynamics are different and can be simplified to

ẍ1 = a

[
1−

(
ẋ1

v0

)δ]
.

We numerically integrated the extended IDM to see if
there exists an optimum number of neighbors that minimizes
the output rise time as was observed earlier in the mass-
spring-damper model. The output used here is the actual gap
between the last vehicle in the chain (k = N ) and the leading
vehicle (k = 1). It is expected that the gap should reach a
steady state value once the vehicle is in the desired operating
mode, i.e., at the desired velocity, v0 and desired gap x∗N,1.

Figure 4 illustrates how output rise time varies with n and
δ for N = 50 vehicles. All vehicles are initially at rest in
an equilibrium state, with the exception of the leader, which
has an initial velocity of v0. It is clear that n has an effect
on the rise time and that there exists an n where the rise
time is minimized, just like in the earlier mass-spring-damper
simulation. It also illustrates how the rise time is affected by
the parameter, δ, and how the optimal number for n varies
with δ, the acceleration constant. In this example, for δ < 2
the trend seems to be that the minimum rise time is realized
at n = 1 with the rise time increasing with increasing n.
However with δ ≥ 2 the relationship changes, and the rise
time is minimized at some value n > 1 as seen earlier. The
results shown above suggest that this n-neighbor coupling
may have applications in improving traffic flow.

VI. CONCLUSION

Increasing the algebraic connectivity of a network in-
creases the rate of convergence of a dynamical system
evolving on the network to steady-state (e.g., to consensus).
This paper provides new insight into the role of the algebraic
connectivity in the transient response of a distributed system.
Specifically, we use an idealized one-dimensional model of
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Fig. 4. Simulation results for the modified Intelligent Driver Model with
50 vehicles. The output rise time is minimized at n = 1 when δ < 2. For
2 ≤ δ ≤ 5, the rise time is minimized at some 1 < n� N (black dots).

an interaction network to identify an upper bound on the
algebraic connectivity that ensures the transient response is
not overdamped. The upper bound is inversely proportional
to the squared damping ratio of the node-level interactions.
Networks that maximize the algebraic connectivity subject
to this constraint achieve a critically damped response. Sim-
ulations show that a critically damped response minimizes
the output rise time in an n-neighbor network, including in
an extended version of the Intelligent Driver Model.

In ongoing work we are extending the analysis by con-
structing a multi-dimensional modeling framework that en-
compasses nonlinearities in the interactions and the config-
uration space. We also are working to perform a robustness
analysis and to connect this work to string and mesh stabil-
ity [20].
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