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Decentralized, cooperative control algorithms enable autonomous sensing platforms to
conduct synoptic, adaptive surveys of dynamic spatiotemporal processes. Often these sens-
ing platforms are advected by strong and variable flow fields—i.e., winds in the atmosphere
and currents in the ocean. Existing cooperative control algorithms are based on simple
models of vehicle motion that do not consider an external flow field. In this paper, we
introduce a planar motion model that explicitly incorporates a flow field and, for uniform
and constant flows, we provide decentralized control algorithms that stabilize basic motion
primitives in the model. The motion primitives include synchronized motion, in which
all of the vehicles move in the same direction with arbitrary separation; balanced motion,
in which the centroid of vehicle positions is fixed; and circular motion, in with all of the
particles travel around a circle with a fixed center. By introducing a virtual particle that
serves as reference, we derive a circular-motion algorithm that stabilizes motion around a
prescribed center point.

Nomenclature

N Number of particles
rk Position of particle k
ṙk Velocity of particle k
vk Speed of particle k
fk Flow velocity experienced by particle k
β Magnitude of flow field
θk Orientation of particle k’s velocity relative to the flow
γk Orientation of particle k’s inertial velocity
ck Center of circle traversed by particle k
ω0 Constant angular rate
P N ×N projector matrix
Pk kth row of matrix P
K Control gain
i Imaginary unit

Subscript
k Particle index, 1, . . . , N

I. Introduction

A network of autonomous vehicles in the air or sea provides a distributed and adaptable sensory array ap-
plicable to, for example, in-situ environmental assessment, target surveillance, and remote sensing. Feedback
coordination of the trajectories of multiple sensor platforms enhances the performance of the entire array by
eliminating redundant sampling and regulating spatiotemporal separation between the array elements.6 Re-
cent progress in the design of theoretically justified coordination algorithms has focused on simplified models
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of the vehicle dynamics.3,11,12 Each vehicle is modeled as a Newtonian particle that moves at constant
speed subject to a gyroscopic, shape control. Decentralized control algorithms exist to stabilize parallel and
circular motion and symmetric patterns on convex curves with all-to-all or limited communication.9,11,12 In
a symmetric formation, synchronization and balancing controls combine to regulate the particle spacing in
a moving formation.

The motion of autonomous sensing platforms in the air and sea is impeded by strong and variable currents.
However, the feedback coordination of multiple autonomous vehicles in strong and variable currents has not
yet been fully addressed by theoretical methods. Some heuristic results exist for a single vehicle in moderate
flow. Davis et al. describe a minimum-time routing strategy, based on Snell’s law, for an underwater glider
in a time-invariant and known flow.1 Inanc et al. describe a nonlinear-optimization technique to generate
glider trajectories that minimize travel time and/or energy consumption in a time-varying and known flow.2

McGee et al. study UAV path planning (with an upper bound on the vehicle turning rate) in a spatially
uniform, time-invariant and known flow.7 Note, holding station in a uniform flow is equivalent to tracking
a target that moves at a constant speed—a problem studied in the UAV literature.4,5 Rysdyk considers
estimation and control strategies that support tracking a target with a constant line-of-sight in an unknown
flow.10

In this paper, we provide decentralized control algorithms to stabilize collective motion in a system of
self-propelled particles subject to an external flow field. The paper presents a direct extension of the flow-
free framework established previously by Sepulchre et al.11,12 We assume that the flow field is uniform
and constant, and that the particles move at a constant speed relative to the flow. We also assume that
the magnitude of the flow field never exceeds the magnitude of the particle speed relative to the flow.
These assumptions are imposed to obtain preliminary results; the assumption of spatial uniformity has been
relaxed in ongoing work. We focus here on the case of all-to-all communication; the extension to limited
communication that is possibly time-varying and/or directed follows the framework in Sepulchre et al.11

Under the simplifying assumptions, we provide algorithms to stabilize several motion primitives, including
synchronized motion with arbitrary particle separation, balanced motion with a fixed position centroid, and
circular motion around a fixed center. We also provide a circular-motion algorithm that parametrizes the
steady-state center of the motion. As is the case for the particle model without flow, these motion primitives
can be combined to form a control framework for designing complex sampling trajectories in the presence
of flow. For example, a decentralized control that regulates particle spacing around a circular formation
is proposed elsewhere.8 Extending the framework to non-uniform and time-varying flows is the subject of
ongoing work and not presented here.

The paper outline is as follows. In Section II we introduce a self-propelled particle model that explicitly
incorporates an external flow field. In Section III we provide decentralized control algorithms to stabilize col-
lective motion in the presence of flow, including synchronized, balanced, and circular motion. In Section IV,
we summarize the results and provide indications of ongoing and future work.

II. Model

Previous work in this area has focused on a self-propelled particle model in which N point masses move
at unit speed in an inertial plane. The position of the kth particle is denoted by rk, k ∈ {1, . . . , N}, and
the velocity is ṙk.a In complex notation, the velocity is ṙk = eiθk , where θk ∈ S1 is the orientation or phase
angle. Each particle is subject to a state-feedback control uk. The flow-free particle model is

ṙk = eiθk

θ̇k = uk.
(1)

The model (1) is illustrated in Figure 1(a).
We explicitly incorporate a flow field in the particle model (1) by introducing a drift vector field, fk ∈ C.

The particle model with flow is
ṙk = fk + eiθk

θ̇k = uk.
(2)

aWe will drop the subscript and use bold to represent an N × 1 matrix, e.g, r , [r1 · · · rN ]T . Note, we identify the R2 plane
with the complex C plane to facilitate our analysis. The standard inner product in R2 is represented in C by 〈x, y〉 = Re{x̄y},
where x, y ∈ C and x̄ denotes the complex conjugate of x.
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(b) With flow β

Figure 1. Coordinates and notation for self-propelled particle models.

In general, fk may vary in time and space, i.e. fk = fk(t) and fk 6= fj .
In this paper, we study a special case of (2) in which the flow is uniform in space and constant in time.

We assume that the magnitude of the flow is less than one. Without loss of generality, we align the positive
real axis of the inertial reference frame with the direction of the flow. Let β ∈ R denote the magnitude of
the flow in this frame, where |β| < 1. The particle model with bounded, uniform and constant flow is

ṙk = β + eiθk

θ̇k = uk.
(3)

This model (3) is illustrated in Figure 1(b).
In (3), the magnitude of the particle inertial velocity depends on the phase angle θk. Let vk ∈ R and

γk ∈ S1 denote, respectively, the magnitude and orientation of the inertial velocity, i.e.,

vke
iγk = β + eiθk . (4)

Since, by assumption, |β| < 1, we observe that vk > 0. The magnitude vk is

vk =
√

(β + eiθk)(β + e−iθk)

=
√

1 + β2 + 2β cos θk. (5)

However, we would like to express vk in terms of γk instead of θk. Using Figure 1(b), we observe that

sin θk = vk sin γk (6)
cos θk = vk cos γk − β. (7)

Substituting (7) into (5) and rearranging the result yields a quadratic equation in vk,

v2
k − 2β cos γkvk + β2 − 1, (8)

which can be solved (using the positive root, since vk > 0), to obtain

vk = β cos γk +
√

1− β2 sin2 γk. (9)

The orientation γk is defined as

γk = arg{β + cos θk + i sin θk} = atan
(

sin θk
β + cos θk

)
. (10)

Differentiating the expression,

tan γk =
sin θk

β + cos θk
, (11)

with respect to time and solving for γ̇k, we obtain

γ̇k = (sin2 γk + cos γk sin γk cot θk)uk. (12)
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Substituting (6) and (7) into (12) yields

γ̇k = (1− βv−1
k cos γk)uk , νk. (13)

We view νk ∈ R as a control input, since given νk, we can solve for uk and integrate the model (3). We
rewrite (3) as

ṙk = vke
iγk

γ̇k = νk,
(14)

where vk is defined in (9). We use the particle model (14) in the design of our feedback control algorithms.
It represents a self-propelled particle model in which the particle speed vk depends on the orientation, γk,
of the particle velocity vector.

III. Results

III.A. Synchronization and Balancing

Two motion primitives of the particle model (1) are synchronized and balanced motions. In synchronized
motion, all of the particles move in the same direction with arbitrary separation, which implies all of the
particle phases are equal. In balanced motion, the centroid of particle positions, pr , (1/N)

∑N
j=1 rj , is fixed,

which implies that the quantity pθ , (1/N)
∑N
j=1 e

iθj = ṗr is equal to zero.12 Note, |pθ| = 1 for synchronized
motion. Synchronized and balanced motions can be stabilized using gradient control with respect to the
potential (1/2)|pθ|2.12

In the particle model (14), synchronized motion of the particles in an inertial frame corresponds to the
maximum of the potential

U(γ) ,
1
2
|pγ |2, (15)

where

pγ ,
1
N

N∑
j=1

eiγ (16)

is the centroid of the phasors eiγk , k = 1, . . . , N . The following proposition is a consequence of [12, Theo-
rem 1].

Proposition 1. The particle model (14) with flow speed |β| < 1 and the gradient control

νk = −K∂U

∂γ
= −K〈pγ , ieiγk〉, K < 0, (17)

forces convergence of all solutions to the critical set of U . The set of synchronized motions are asymptotically
stable and every other equilibrium is unstable.

Proposition 1 provides an algorithm to stabilize synchronized motion in a uniform and constant flow
field. We stabilize solutions of (14) that exhibit balanced motion by considering the potential

V (r,γ) =
1
2
|pṙ|2, (18)

where

pṙ ,
1
N

N∑
j=1

vje
iγj (19)

is the centroid of the particle velocities. The time-derivative of V along solutions of (14) is

V̇ = 〈pṙ, ṗṙ〉 =
N∑
j=1

〈pṙ, v̇jeiγj + vjie
iγj γ̇j〉, (20)

where we obtain
v̇k =

−β sin γk√
1− β2 sin2 γk

vkγ̇k (21)
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by differentiating (9). Substituting (21) into (20) yields

V̇ =
N∑
j=1

〈pṙ, (δj + i)eiγj 〉vjνj , (22)

where δk ∈ R is

δk ,
−β sin γk√

1− β2 sin2 γk
. (23)

Lyapunov analysis leads to the following result.

Theorem 1. The particle model (14) with flow speed |β| < 1 and the control

νk = −K〈pṙ, (δk + i)eiγk〉vk, K > 0, (24)

where δk is given by (23), asymptotically stabilizes the set of balanced motions.

Proof. Substituting (24) into (22) yields

V̇ = −K
N∑
j=1

〈pṙ, (δj + i)eiγj 〉2v2
j ≤ 0. (25)

By the invariance principle, all of the solutions of (14) with the control (24) converge to the largest invariant
set, Λ, in which

〈pṙ, (δk + i)eiγk〉 ≡ 0 (26)

In this set, γ̇k = 0 and v̇k = 0, which implies pṙ is constant. Since δk + i 6= 0, then the invariance condition
(26) is satisfied for all k = 1, . . . , N , only when pṙ = 0.

III.B. Circular Formations

In the absence of flow, i.e., using the model (1), setting uk = ω0, where ω0 6= 0 is constant, drives particle k
around a circle of radius ω−1

0 and fixed center,12

ck , rk + ω−1
0 i

ṙk
|ṙk|

. (27)

In the presence of uniform and constant flow, we have the following result.

Lemma 1. The model (14) with flow speed |β| < 1 and the control

νk = ω0vk (28)

drives particle k around a circle of radius ω−1
0 centered at ck(t) = rk(0) + ω−1

0 ieiγk(0).

Proof. We derive the control νk that steers the particle around a circle of radius ω−1
0 by differentiating (27)

along solutions of (14). This results in

ċk = vke
iγk − ω−1

0 eiγkνk = (vk − ω−1
0 νk)eiγk . (29)

Substituting νk defined in (28) into (29) yields ċk = 0, which completes the proof.

A circular formation is a solution of the particle model (14) in which all of the particles orbit the same
circle in the same direction. In a circular formation, ck = cj for all pairs j and k, which implies that a
circular formation satisfies the condition12

Pc = 0, (30)

where
P = diag{1} − 1

N
11T (31)

projects CN to the subspace complementary to the span of 1 , [1 · · · 1]T ∈ RN .
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Figure 2. Stabilization of circular motion with N = 20 and flow speed, β, equal to 75% of the particle speed relative to
the flow. Without symmetry breaking, the particles converge to a circular formation with an arbitrary center. With
symmetry breaking, the particles converge to a circular formation with center equal to the reference point c0 = 6.7+i6.8.

We derive a decentralized control that stabilizes a circular formation by considering the potential

S(r,γ) ,
1
2
〈c, Pc〉. (32)

Note S ≥ 0, with equality only when c = c01, c0 ∈ C. The time derivative of S along solutions of (14) is

Ṡ =
N∑
j=1

〈ċj , Pjc〉 =
N∑
j=1

〈eiγj , Pjc〉(vj − ω−1
0 νj), (33)

where Pk denotes the kth row of P . The following result provides a control algorithm to stabilize circular
formation in a uniform and constant flow. It extends [12, Theorem 2], which provides a circular-formation
algorithm that applies only in the absence of flow.

Theorem 2. All solutions of the particle model (14) with flow speed |β| < 1 and the control

νk = ω0(vk +K〈Pkc, eiγk〉), K > 0, (34)

converge to a circular formation with radius ω−1
0 and direction determined by the sign of ω0.

Proof. The potential S is positive definite and proper in the space of relative circle centers. Substituting
(34) into (33) yields

Ṡ = −K
N∑
j=1

〈Pkc, eiγk〉2 ≤ 0. (35)

By the invariance principle, all of the solutions of (14) with control (34) converge to the largest invariant
set, Λ, in which

〈Pkc, eiγk〉 ≡ 0. (36)

In this set, γ̇k = ω0vk and ċk = 0. Therefore, in order to satisfy the invariance condition, (36), all of the
solutions in Λ must satisfy Pc = 0, which is the circular-formation condition. Application of Lemma 1
completes the proof.

We illustrate this result in Figure 2(a), for N = 20, β = 0.75, K = 0.01, and ω0 = 0.1.
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III.C. Symmetry Breaking

The control algorithm described in Theorem 2 depends only on relative positions, rk − rj . Consequently, it
preserves a symmetry of the closed-loop particle model that engenders invariance to rigid translation of the
collective. This implies the steady-state center of the circle depends on initial conditions. For applications
in path-planning for autonomous vehicles, there exists the need to specify the steady-state center of the
vehicle formation in the presence of flow. We describe below a symmetry-breaking algorithm that provides
this capability.

Following Sepulchre et al.,11 we introduce a virtual particle k = 0 that serves as a reference. The virtual
particle dynamics,

ṙ0 = v0e
iγ0 (37)

γ̇0 = ω0v0, (38)

where ω0 6= 0, are independent of the dynamics of the particles; they drive particle 0 in a circle with fixed
center c0 = r0(0) + ω−1

0 ieiγ0(0). The virtual-particle states are available to a subset of the particles, called
informed particles. Let ak0 = 1 if particle k is an informed particle and ak0 = 0 otherwise.

Consider augmenting the potential S defined in (32) with the quadratic potential11

S0 =
1
2

N∑
j=1

aj0|cj − c0|2, (39)

which is minimized when cj = c0 for all {j | j ∈ 1, . . . , N, aj0 = 1}. The time-derivative of S̃ , S+S0 along
solutions of (14) is

˙̃S =
N∑
j=1

(
〈eiγj , Pjc〉+ aj0〈eiγj , cj − c0〉

)
(vj − ω−1

0 νj) (40)

This leads to the following result, illustrated in Figure 2(b).

Corollary 1. Let c0 = r0(0)+ω−1
0 ieiγ0(0) be the fixed reference provided by the virtual particle k = 0 and let

ak0, k = 1, . . . , N , equal one if particle k is informed of this reference and zero otherwise. If there is at least
one informed particle and no more than N − 1 informed particles, then all solutions of the particle model
(14) with the control

νk = ω0(vk +K(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)), K > 0, (41)

converge to a circular formation with radius ω−1
0 , direction determined by the sign of ω0, and center c0.

Proof. With the control (41), the time-derivative of the augmented potential S̃ satisfies

˙̃S = −K
N∑
j=1

(〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉)2 ≤ 0. (42)

By the invariance principle, all solutions converge to the largest invariant set, Λ, for which

〈eiγk , Pkc〉+ ak0〈eiγk , ck − c0〉 ≡ 0 (43)

for k = 1, . . . , N . In this set, γ̇k = ω0vk and ċk = 0. For ak0 = 0, then the invariance condition (44) is
satisfied only if Pkc = 0. This implies c is in the span of 1, i.e. ck = cj for all pairs k and j. For ak0 = 1,
the invariance condition becomes

〈eiγk , ck − c0〉 ≡ 0, (44)

which holds only if ck = c0. This implies ck = c01, which completes the proof.
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IV. Conclusion

Distributed sensing with multiple, mobile platforms requires cooperative-control algorithms that generate
coordinated sampling trajectories in the presence of strong and variable flow fields. The design of these
algorithms is based on simple models of platform motion that often ignore the presence of flow. In this
paper, we introduce a self-propelled particle model that explicitly incorporates the presence of a uniform
and constant flow field. We provide decentralized control algorithms that stabilize synchronized, balanced,
and circular motions. We also provide a symmetry-breaking control that parametrizes the steady-state
center of the circular motion. These motion primitives will be essential in constructing a cooperative-control
framework for autonomous and distributed sensing in the presence of flow. In ongoing research, we aim to
extend this framework to non-uniform and possibly time-varying flows.
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